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The free vibrations of a flexible circular cylinder
inclined at 80◦ within a uniform current are
investigated by means of direct numerical simulation,
at Reynolds number 500 based on the body diameter
and inflow velocity. In spite of the large inclination
angle, the cylinder exhibits regular in-line and cross-
flow vibrations excited by the flow through the lock-in
mechanism, i.e. synchronization of body motion and
vortex formation. A profound reconfiguration of the
wake is observed compared with the stationary body
case. The vortex-induced vibrations are found to
occur under parallel, but also oblique vortex shedding
where the spanwise wavenumbers of the wake and
structural response coincide. The shedding angle and
frequency increase with the spanwise wavenumber.
The cylinder vibrations and fluid forces present a
persistent spanwise asymmetry which relates to the
asymmetry of the local current relative to the body
axis, owing to its in-line bending. In particular, the
asymmetrical trend of flow–body energy transfer
results in a monotonic orientation of the structural
waves. Clockwise and counter-clockwise figure eight
orbits of the body alternate along the span, but the
latter are found to be more favourable to structure
excitation. Additional simulations at normal incidence
highlight a dramatic deviation from the independence
principle, which states that the system behaviour is
essentially driven by the normal component of the
inflow velocity.

1. Introduction
Flow-induced vibrations (FIVs) of flexible bodies with
bluff cross section are encountered in a great variety of
physical systems, from the oscillations of plants in wind
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2to the vibrations of risers and mooring lines immersed in ocean currents. Such vibrations cause
amplification of mean drag forces, increased fatigue damage and sometimes failure of the
structures. Their prediction and the development of vibration reduction techniques require a
detailed understanding of the underlying flow–structure interaction mechanisms. The impact of
FIV in several civil, wind, offshore and nuclear engineering applications has motivated a number
of studies, as collected in [1–3].

Vortex formation downstream of a bluff structure induces unsteady forces on the body which
can lead to structural vibrations if the body is flexible. Vortex-induced vibrations (VIVs) of slender
deformable structures placed in flow are a common type of FIV in ocean engineering. In practical
applications, the flexible structures (e.g. marine risers, towing cables) are often inclined with
respect to the direction of the oncoming current, sometimes at large angles. The VIVs that may
appear in such configurations are the object of this work.

The canonical problem of a rigid cylinder forced or free to oscillate in the cross-flow direction
within a current perpendicular to its axis has helped in clarifying in the fundamental phenomena
of VIVs [4–13]. VIVs occur when the frequency of vortex formation and the frequency of body
oscillation coincide; this condition of wake–body synchronization is referred to as lock-in. Under
lock-in, the vortex shedding frequency can substantially depart from the Strouhal frequency,
i.e. the shedding frequency downstream of a stationary body; also, the vibration frequency can
shift considerably away from the structure natural frequency. The typical amplitude of VIV
responses is of the order of one cylinder diameter in the cross-flow direction. When the rigid body
is also allowed to oscillate in the in-line direction, vibrations of smaller amplitudes occur in this
direction with a frequency ratio of 2 compared with the cross-flow response [14–16]. The VIVs
of a long flexible cylinder placed in flow at normal incidence have also been well documented
[17–22]. The lock-in mechanism results in oscillations of the slender deformable body with similar
amplitudes to those noted in the rigid body case and a frequency ratio of 2 can generally be
established between the in-line and cross-flow vibration components. However, the flexibility
of the body and its distributed interaction with the flow may lead to an increased complexity
of the responses, as, for instance, the occurrence of mixed standing–travelling structural waves
or multi-frequency vibrations [23–27]. A notable feature related to the structure flexibility is the
possible variability of the phase difference between the in-line and cross-flow vibrations along the
cylinder; previous works have shown that the phase difference angle may drift along the span but
remains locked to a specific range in the regions where the flow excites the flexible body [28,29].

Several studies concerning rigid cylinders, either fixed or forced to oscillate in the cross-
flow direction, have emphasized that body inclination may have a considerable impact on flow
patterns and fluid forcing [30–35]; yet vortex-induced excitation of the rigid body through lock-in
still occurs in this context, even at inclination angles larger than 70◦ [36–40]. In the above-
mentioned studies, the angle of inclination (α) is defined as the angle between the oncoming flow
velocity direction and the plane perpendicular to the rigid cylinder axis, i.e. α = 0◦ corresponds to
the normal incidence configuration; this definition is adopted in this work based on the position of
the flexible cylinder in quiescent fluid. Previous works have examined the possibility of likening
the inclined body case to the normal incidence case. The independence principle (IP) or cosine
law assumes that the flow dynamics is essentially determined by the component of the oncoming
flow velocity perpendicular to the cylinder and that the component aligned with the cylinder axis,
the axial component, has a negligible influence. According to the IP, the system behaviours in the
inclined and normal configurations should thus match once the physical quantities (e.g. fluid
forces, vortex shedding and body oscillation frequencies) are normalized by the inflow normal
component; hence, the response of the system in the inclined case could be directly predicted
based on the normal incidence case results. A remarkable effect of body inclination is the possible
occurrence of oblique vortex shedding where the spanwise vortex rows forming downstream
of the cylinder are not parallel to its axis. Oblique vortex shedding results in deviation from
the IP [31]; the frequency of vortex formation under oblique shedding is usually larger than the
frequency predicted by the IP [32,35]. In the fixed rigid cylinder case, the IP was shown to provide
accurate predictions of the flow physics for α < 40◦ approximately. A transverse oscillation of the
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3body tends to force parallel shedding [31,35,37]. This suggests an extended range of validity of
the IP for a flexibly mounted rigid cylinder subjected to VIV; however, parallel shedding does not
necessarily ensure validity of the IP [40].

In spite of its implications in engineering applications, the case of a slender flexible body
inclined in flow has received much less attention. In a previous work [41], a flexible cylinder
inclined at 60◦ within a uniform current was shown to exhibit VIV associated with parallel vortex
shedding, whereas an oblique shedding pattern was observed in the stationary body case. The
IP was found to provide an accurate prediction of the structural responses and fluid forces, as
long as the in-line bending of the cylinder was small. A significant in-line bending induces a
strong shear of the inflow velocity profile locally normal to the body, which may lead to multi-
frequency vibrations and thus to a deviation from the IP; even in this case, the predominant
vibration frequency was found to be in agreement with the IP.

When the flexible cylinder is placed at a larger inclination angle, the behaviour of the flow–
structure system remains to be investigated. The occurrence of VIV and the possible application
of the IP in this case still need to be elucidated. Previous studies concerning rigid cylinders
indicate that the fluid loading caused by the slanted vortex formation in the case of oblique
shedding would not lead to excitation of the body, owing to the alternating sign of the fluctuating
forces along the span [35,42]. For a flexible body at a large inclination angle, the question arises
whether such oblique shedding may induce vibrations (i.e. far from IP validity conditions),
and, if the lock-in condition is established, what will be the reciprocal influence of the flexible
structure oscillations on the slanted shedding pattern. To address these aspects, a combined
wake–body analysis is presented on the basis of high-resolution simulation results issued from
direct numerical simulations of the flow past a flexible circular cylinder of length to diameter
aspect ratio 50, placed at 80◦ of inclination in a uniform current at Reynolds number 500, based
on the inflow velocity and cylinder diameter. The flexible cylinder is modelled as a tension-
dominated structure, and different values of the tension are selected in order to explore a range
of typical responses of the system.

The paper is organized as follows. The fluid–structure model and the numerical method
are described in §2. The fixed rigid cylinder case, which represents a baseline configuration to
quantify the modifications associated with body oscillations in the following, is briefly considered
in §3. The flexible cylinder case is examined in §4. The main findings of the present study are
summarized in §5.

2. Formulation and numerical method
The physical configuration is similar to that considered in a previous work concerning the VIV of
a flexible cylinder at lower inclination angle [41]. The cylinder has a circular cross section and a
length (L) to diameter (D) aspect ratio L/D = 50; it is pinned at both ends and free to oscillate in
the in-line (x-axis) and cross-flow (y-axis) directions. The cylinder is inclined at α = 80◦ within a
uniform flow of velocity magnitude U. The Reynolds number based on U and D, Re = ρfUD/μ,
where ρf and μ denote the fluid density and viscosity, is set equal to 500. Similar to the inclination
angle α, the axial and normal components of the oncoming flow are defined based on the position
of the cylinder in quiescent fluid. The inflow axial component refers to the component parallel to
the cylinder in a fluid at rest (z-axis), and the inflow normal component designates the component
aligned with the x-axis. The velocity magnitude of the inflow normal component is Un = U cos(α)
and the associated Reynolds number Ren = Re cos(α) = 86.8. The physical quantities normalized
by Un are denoted by the subscript ( )n in the following. For comparison purposes, a normal
incidence configuration where the inflow axial component is removed is also considered. Previous
works, for example [34], suggested that application of the IP should also include an appropriate
scaling of the Reynolds number, i.e. the Reynolds number selected in the normal incidence case
should match the Reynolds number based on Un in the inclined body case, instead of U. In order
to assess the validity of the IP, both values of the Reynolds number (Ren = 500 and Ren = 86.8) are
considered in the present normal incidence configuration.
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The physical variables are non-dimensionalized by ρf, D and U. The cylinder mass ratio,
defined as m = ρc/ρfD2, where ρc is the cylinder mass per unit length, is set to 6. The constant
tension and damping of the structure are designated by τ and η. The non-dimensional tension is
defined as T = τ/ρfD2U2 and the non-dimensional damping as K = η/ρfDU. The non-dimensional
displacements of the cylinder in the in-line and cross-flow directions are denoted by ζx and ζy.
The sectional in-line and cross-flow force coefficients are defined as Cx = 2Fx/ρfDU2 and Cy =
2Fy/ρfDU2, where Fx and Fy are the in-line and cross-flow dimensional sectional fluid forces. The
structural dynamics are governed by forced vibrating string equations which can be expressed as
follows [23]:

mζ̈{x,y} − Tζ
′′
{x,y} + Kζ̇{x,y} = C{x,y}

2
, (2.1)

where ˙ and
′

denote the time and space derivatives. The string non-dimensional phase velocity
is ω = √

T/m. In order to cover a range of structural responses, three values of T, 54, 37.5 and 13.5,
are selected. The structural damping is set equal to zero (K = 0) to allow maximum amplitude
oscillations. As a preliminary step of the study, the case of a fixed rigid cylinder aligned with the
z-axis (ζ{x,y} = 0) is also considered.

The flow past the cylinder is predicted using direct numerical simulation of the three-
dimensional incompressible Navier–Stokes equations. The parallelized code Nektar, based on the
spectral/hp element method [43], is used to solve the coupled flow–structure system. The version
of the code employs a Jacobi–Galerkin formulation in the (x, y) plane and a Fourier expansion
in the spanwise (z) direction. A boundary-fitted coordinate formulation is used to take into
account the cylinder unsteady deformation. Details concerning the numerical method and its
validation have been reported in [44,45] for similar configurations. The computational domain
(50D downstream and 20D in front, above, and below the cylinder), boundary conditions (no-
slip condition on the cylinder surface, flow periodicity on the side boundaries) and discretization
(2175 elements with polynomial order p = 7 in the (x, y) plane and 512 complex Fourier modes in
the z-direction) are the same as in [22,41]. The present analysis is based on time series of more
than 800 time units. Convergence of each simulation is established by monitoring the mean and
root mean square (RMS) values of the fluid force coefficients and body displacements.

3. Fixed rigid cylinder
Before investigating the behaviour of the coupled flow–structure system, the case of a fixed rigid
cylinder is briefly considered in this section. The objective is to characterize the main features of
the flow and of the fluid forces in the absence of body motion, and to assess the validity of the IP
in this context.

An overview of the flow past the inclined stationary cylinder is presented in figure 1a by
means of instantaneous isosurfaces of the spanwise vorticity (z component); the vorticity is non-
dimensionalized using Un. For comparison purpose, the flow past the fixed rigid cylinder at
normal incidence (Ren = 500) is visualized in figure 1b. As also reported in previous studies
concerning rigid cylinders at similar inclination angles [35,37], the wake of the inclined stationary
body is composed of obliquely shed vortex rows, contrary to the normal incidence case where the
vortex rows are parallel to the cylinder axis. The vortices are peeling off from the cylinder with
an angle approximately equal to 16◦ with respect to the cylinder axis; their inclination increases
in the near region and the angle of the straight slanted vortex rows observed in the wake is equal
to 66◦ approximately, i.e. relatively close but not equal to the body inclination angle. In spite
of its oblique orientation, the wake structure resembles the 2S pattern [6] occurring at normal
incidence: at each spanwise location, two counter-rotating vortices form per shedding period. The
frequency of vortex shedding, established from the time series of the cross-flow component of the
flow velocity 10D downstream of the cylinder, and non-dimensionalized using Un is reported
in table 1 (fvn) for the inclined body and the normal incidence configurations. As previously
mentioned, two values of the Reynolds number are considered at normal incidence: Ren = 500
and Ren = 86.8, which correspond to the values of Re and Ren in the inclined body case. Regardless
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Figure 1. Instantaneous isosurfaces of the spanwise vorticity in the (a) inclined (Re= 500, ωzn = ±0.48) and (b) normal
(Ren = 500,ωzn = ±1.73) fixed rigid cylinder configurations. Arrows represent the oncoming flow. Part of the computational
domain is shown. (Online version in colour.)

Table 1. Vortex shedding frequency and span-averaged values of themean in-line force coefficient, RMS in-line force coefficient
fluctuation and RMS cross-flow force coefficient, in the inclined and normal fixed rigid cylinder configurations.

fvn 〈C̄xn〉 〈(C̃xn)RMS〉 〈(Cyn)RMS〉
inclined cylinder, Re= 500, Ren = 86.8 0.593 1.618 0.031 0.675

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

normal cylinder, Ren = 500 0.208 1.141 0.043 0.250
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

normal cylinder, Ren = 86.8 0.159 1.362 0.004 0.194
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

of the Reynolds number value selected in the normal incidence configuration, the frequency of
vortex formation is substantially larger for the oblique shedding pattern observed downstream
of the inclined cylinder.

The fluid forces exhibit temporal fluctuations at each spanwise location, but the alternation of
positive and negative oblique vortices forming continuously along the inclined cylinder results in
constant values of the span-averaged forces (〈Cx〉 = 〈C̄x〉 and 〈Cy〉 = 0, where and 〈 〉 denote the
time- and span-averaging operators), as also mentioned by Mittal & Sidharth [42]. The absence
of temporal fluctuations of the span-averaged forces suggests that the slanted shedding pattern
would not excite the rigid cylinder if it was free to oscillate. However, vortex-induced excitation
remains possible for a flexible structure; this aspect will be studied in §4. The span-averaged
values of the mean in-line force coefficient, RMS in-line force coefficient fluctuation and RMS
cross-flow force coefficient exerted on the stationary cylinder are presented in table 1; in table 1
and in the following, the fluctuations are denoted by ˜. The fluid forces are non-dimensionalized
by Un. Clear differences can be noted between the inclined and normal body configurations. In
particular, the mean in-line force is significantly larger in the inclined cylinder case.

The physical quantities in the inclined and normal body cases do not match after normalization
by Un; therefore, the IP is not valid for the stationary cylinder, in agreement with previous
works. It can be noted that the shedding frequency and fluid forces in the inclined and normal
configurations differ even if the magnitude of the inflow velocity component normal to the vortex
rows is used in the normalization.

The case of the fixed rigid cylinder at 80◦ is thus characterized by a strongly inclined vortex
shedding pattern and a clear departure from the IP. The flexible body configuration is addressed
in the following.
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Figure 2. (a–c) Mean in-line displacement of the cylinder and (d–f ) inflow velocity component locally normal to the cylinder,
along the span, for (a,d) T = 54, (b,e) T = 37.5 and (c,f ) T = 13.5.

4. Flexible cylinder
The behaviour of the flow–structure system and the validity of the IP are investigated in this
section for three values of the flexible cylinder tension. The flexible body responses are quantified
in §4a. The flow patterns and the occurrence of wake–body synchronization are examined in §4b.
The fluid forces and flow–structure energy transfer are analysed in §4c.

(a) Structural responses
The mean in-line displacement of the inclined cylinder along its span is plotted in figure 2a–c for
each value of the tension. The in-line bending of the cylinder increases as T decreases, but remains
lower than 1.5% of the body length. The in-line curvature induces an asymmetry of the inflow
velocity profiles locally normal and parallel to the inclined cylinder along its span; an asymmetry
may thus be expected in the flow–structure system behaviour. In particular, owing to the large
angle of inclination, a small in-line bending results in a significant shear of the current velocity
locally normal to the body; its magnitude, which increases with z, is equal to U cos(α + θ ), where
θ is the local angle between the z-axis and the cylinder axis in its mean position. The magnitude of
the locally normal velocity, non-dimensionalized by U, is presented in figure 2d–f ; it ranges from
0.16 (z = 0) to 0.19 (z = 50), for T = 54, and from 0.13 (z = 0) to 0.24 (z = 50), for T = 13.5. It can
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Figure 3. (a–c) Selected time series of the inclined cylinder in-line displacement fluctuation, (d–f ) RMS in-line displacement
fluctuation, (g–i) selected time series of the inclined cylinder cross-flow displacement and (j–l) RMS cross-flow displacement,
along the span, for (a,d,g,j) T = 54, (b,e,h,k) T = 37.5 and (c,f ,i,l) T = 13.5. (Online version in colour.)

be observed that the point of maximum mean displacement tends to shift towards z = 50, i.e. the
region of large magnitude of the locally normal current.

As in the fixed rigid cylinder case, the normal incidence results for Ren = 500 and Ren = 86.8
are also reported in order to quantify the impact of the inflow axial component and assess the IP
validity. In general, it can be noted that the amplitude of the in-line bending differs between the
inclined and normal cylinder cases (figure 2a–c). The body curvature remains symmetrical about
the mid-span point in the latter case. Contrary to the inclined body configuration, the profile of
the inflow velocity locally perpendicular to the cylinder at normal incidence (Un cos(θ )) is very
close to uniform, as shown in figure 2d–f.

Selected time series of the in-line and cross-flow displacements of the inclined cylinder and
associated RMS values are plotted along the span in figure 3. In these plots, the fluctuation of the
in-line displacement about the body mean position is considered, and the non-dimensional time
variable t is normalized using Un (tn). In all studied cases, the inclined cylinder exhibits regular
oscillations in both directions. The structural responses consist of mixed standing–travelling wave
vibrations with a predominant standing wave nature. The vibration amplitudes are comparable
to those reported in previous studies concerning flexible cylinders at normal incidence [17,20,22]
or lower inclination angle [41] and the smaller amplitudes of the in-line responses, compared
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Table 2. Cross-flow vibration frequency, spatial wavenumber, structural mode and natural frequency associated with the
excited wavenumber in the inclined cylinder configuration and cross-flow vibration frequency in the normal cylinder
configuration, as functions of the tension/phase velocity.

inclined cylinder normal cylinder

Re= 500, Ren = 86.8 Ren = 500 Ren = 86.8

T ω fyn ky ny fnatn (ky) fyn fyn
54 3 0.165 0.01 1 0.162 0.171 0.168

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37.5 2.5 0.262 0.02 2 0.271 0.143 0.143
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.5 1.5 0.318 0.04 4 0.325 0.167 0.167
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with the cross-flow oscillations, were also noted in these works. The vibrations generally present
a spanwise asymmetry, as expected owing to the asymmetry of the local inflow velocity profiles
induced by the in-line bending. The inclined body responses are dominated by a single frequency
and a single structural wavenumber in each direction. A ratio of 2 can be established between
the in-line and cross-flow vibration frequencies, as also observed in the above mentioned studies.
The excited structural wavenumbers increase as T decreases. In all cases, the in-line and cross-
flow vibration wavenumbers exhibit a ratio of 2; the linear dispersion relation of a string in
vacuum and the frequency ratio of 2 suggest such ratio between the excited wavenumbers.
The principal characteristics of the structural response are presented in table 2; because of the
above-mentioned ratio between the in-line and cross-flow frequencies/wavenumbers, only the
cross-flow response properties are reported. The vibration frequency is non-dimensionalized by
Un (fyn). The sine Fourier mode number ny (nth mode defined as sin(πnzD/L)) associated with
the excited wavenumber ky (ny = 2kyL/D) is also reported. The following dispersion relation is
used to estimate the natural frequency fnat associated with the structural wavenumber k when the
body is immersed in fluid:

fnat(k) = kω
√

m
m + (π/4)Cm

, (4.1)

where Cm is the added mass coefficient induced by the fluid forces in phase with the cylinder
acceleration. The natural frequencies normalized by Un ( fnatn), and associated with the excited
wavenumbers, for Cm = 1, are indicated in table 2. The actual vibration frequencies remain close
to the natural frequencies predicted by the above dispersion relation.

The RMS values of the displacement amplitudes and the cross-flow vibration frequencies in
the normal incidence configuration are also presented in figure 3 and table 2, for Ren = 500 and
Ren = 86.8. Although the responses of the inclined and normal cylinders appear relatively close in
some specific cases, e.g. cross-flow displacement at T = 54 (figure 3j), it can be observed that they
do not match in general. The normal cylinder responses remain essentially symmetrical, which
is not the case for the inclined body. As a consequence, at the present large inclination angle,
the IP which was found to fail for a stationary cylinder, also fails when the cylinder is subjected
to free vibrations. In a previous work concerning a flexible cylinder at lower inclination angle
(α = 60◦) [41], the deviation from the IP was attributed to the in-line bending of the structure;
among others, the IP does not take into account the shear of the current locally perpendicular
to the body owing to its curvature. In that previous study, it was shown that introducing, in
the normal incidence case, a sheared velocity profile matching the locally perpendicular inflow
component, leads to responses comparable to those occurring in the inclined body configuration.
Additional simulations with modified inflow profiles indicate that this result cannot be extended
to the present inclination angle: even if the locally perpendicular velocity profile is the same, the
responses of the inclined and normal cylinders still differ. This shows that the system behaviour is
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not only driven by the locally normal inflow component and that the locally parallel component
may also become a crucial element at large inclination angle.

The cross-flow vibration frequency of the inclined cylinder is close to the normal case
oscillation frequency for T = 54, but clearly deviates when the tension is reduced. Such deviation
of the vibration frequency was not observed at lower inclination angle [41]. The inclined body
vibration frequency increases as T decreases and it reaches high values compared with the typical
frequencies reported in the literature on flexible cylinder VIV [17,18,44]. The broad range of
response frequencies raises the question of the nature of the interaction between the flexible
structure and the flow, and more precisely, the possible occurrence of wake–body synchronization
in this context. This question is clarified in §4b.

For a better analysis of the mixed standing–travelling wave nature of the inclined cylinder
responses, the displacements can be approximated as follows, using N + 1 temporal Fourier
modes:

ζ{x,y}(z, t) ≈
N/2∑

s=−N/2

as
{x,y}(z) exp(2π if st) =

N/2∑
s=−N/2

|as
{x,y}|(z) exp(i(2π f st + Ψ s

{x,y}(z))), (4.2)

where f s = s/T and T is the sampling period. The complex modal coefficients as
x and as

y are written
in terms of their moduli and their spatial phases Ψ s

x and Ψ s
y . The spanwise evolutions of the

unwrapped spatial phases associated with the in-line and cross-flow vibration frequencies (for
s > 0) are plotted in figure 4a–c, for each value of the tension. The strong standing wave nature
of the responses is confirmed by the zigzagging trends of the phases. It can also be noted that for
all cases, the value of the phase tends to increase with z along the span. Therefore, the structural
vibrations of the inclined cylinder present a slight travelling wave behaviour orientated from
z = 50 to z = 0 (decreasing z). The structural waves thus follow the shear of the inflow velocity
component locally normal to the cylinder, i.e. they travel from the region of large normal flow
velocity to the region of low normal velocity. The preferential orientation of the waves will be
connected to the fluid forcing in §4c. Such systematic orientation of the structural waves is not
observed at normal incidence.

The frequency ratio of 2 identified between the in-line and cross-flow vibrations results in
figure eight trajectories of the cylinder in the plane perpendicular to the span, as illustrated
in figure 4d–i. The phase difference between the in-line and cross-flow vibration components
occurring at frequencies 2f s and f s, respectively, is evaluated as follows:

Φs
xy = Ψ 2s

x − 2Ψ s
y . (4.3)

In the present case where a single frequency is excited in each direction, the shape and
orientation of the cylinder trajectory are determined, at each spanwise location, by a single
phase difference Φs

xy. Values of this phase difference in the range 0–180◦ (180–360◦, respectively)
correspond to figure eight orbits where the body moves upstream (downstream, respectively)
when reaching the cross-flow oscillation maxima; these two types of trajectories are referred
to as counter-clockwise and clockwise, respectively [46]. The spanwise evolution of the phase
difference in the inclined body case is plotted in figure 4j–l for each value of the tension;
the locations of the points selected in figure 4d–i are indicated by dashed lines and the limit
between counter-clockwise and clockwise orbits (180◦) is denoted by a plain line. The spanwise
patterns of the in-line/cross-flow response synchronization differ in the normal incidence cases,
as expected owing to the differences pointed out previously in the structural vibrations; they are
not presented here. As detailed in a prior work concerning flexible cylinders at normal incidence
[29], the strong standing wave nature of the inclined cylinder vibrations results in a well-defined
alternation of counter-clockwise and clockwise orbits along the span; the transition between the
two types of orbits occurs near the minima of the in-line response amplitude. Previous studies
have emphasized that the orientation of the trajectory is closely related to the transfer of energy
between the flow and the flexible body [28,29]; this aspect, which remains to be investigated in
the inclined cylinder case, will be addressed in §4c.
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Figure 4. (a–c) Unwrapped spatial phases of the in-line and cross-flow displacements along the span. (d–i) Typical
trajectories at selected spanwise locations. ( j–l) Spanwise evolution of the phase difference between the in-line and cross-
flow displacements. The reported results concern the inclined cylinder configuration for (a,d,e,j) T = 54, (b,f ,g,k) T = 37.5 and
(c,h,i,l) T = 13.5. The locations of the monitoring points in (d–i) are indicated by dashed lines in ( j–l), and the limit between
counter-clockwise and clockwise trajectories (180◦) is denoted by a plain line.

The above analysis shows that the flexible cylinder inclined at 80◦ is subjected to regular free
oscillations but that the IP is not valid for the prediction of the structural responses. In §4b, the
inclined body vibrations are connected to the flow patterns occurring in its wake.
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Figure 5. (a–c) Instantaneous isosurfaces (ωzn = ±0.58) and (d–f ) isocontours in the (x, y) plane (ωzn ∈ [−1.04, 1.04])
of the spanwise vorticity in the inclined cylinder configuration, for (a,d) T = 54, (b,e) T = 37.5 and (c,f ) T = 13.5. In (a–c),
arrows represent the oncoming flow and the spanwise locations selected in (d–f ) are indicated by dashed lines. Part of the
computational domain is shown. (Online version in colour.)

(b) Flow patterns and wake–body synchronization
The flow past the freely vibrating inclined cylinder is visualized in figure 5a–c through
instantaneous isosurfaces of the spanwise vorticity, for the three values of the tension. A striking
feature is that each case exhibits a different angle of inclination of the vortex rows occurring in the
wake. For T = 54, the vortices are found to be essentially parallel to the cylinder, as in the normal
incidence configuration where parallel shedding is noted for all simulated cases. Such transition
from oblique to parallel shedding once the body oscillates was also reported in previous studies
for a flexible cylinder at 60◦ [41] and a rigid cylinder up to 70◦ [37,40]; the present results indicate
that this phenomenon persists in the case of a flexible cylinder inclined at 80◦. In contrast, oblique
shedding is observed for the lower values of the tension; the angle between the vortex rows and
the z-axis is approximately equal to 7◦ for T = 37.5 and 20◦ for T = 13.5, versus 66◦ in the stationary
body case. The vortices present slightly lower slant angles as they are peeling off from the cylinder,
and a small bending of the vortex rows can be noted in the near wake region, as also observed
in the fixed rigid cylinder case (§3); the above-mentioned values correspond to the inclination
angles of the developed straight vortex rows. Instantaneous isocontours of the spanwise vorticity
in the (x,y) plane, at selected locations indicated by dashed lines in figure 5a–c, are presented in
figure 5d–f. As in the fixed rigid cylinder case, the wake is characterized by the formation of two
counter-rotating vortices per shedding cycle, i.e. the 2S pattern.

In order to quantify the spatio-temporal properties of the wake and connect them to the
structural responses, a detailed analysis of the cross-flow component of the flow velocity (v),
along a line parallel to the z-axis and located 10D downstream of the cylinder, is reported in
the following. Selected time series of v are plotted in figure 6a–c, for the three values of the
tension. The parallel or oblique nature of the wake pattern as a function of T can be clearly
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Figure 6. (a–c) Selected time series of the cross-flow component of flow velocity 10D downstream of the inclined cylinder
(positive/negative values in yellow/blue) and associated (d–f ) PSD and (g–i) unwrapped spatial phase, along the span, for
(a,d,g) T = 54, (b,e,h) T = 37.5 and (c,f ,i) T = 13.5. In (d–f ), the PSD is normalized by the magnitude of the largest peak at
each spanwise location and the colour bar levels range from0 (blue) to 1 (yellow); the cross-flow vibration frequency is indicated
by a black dashed line and the vortex shedding frequency observed in the absence of structural oscillation by a white dashed-
dotted line. In (h,i), dashed-dotted lines denote the minima of the cross-flow vibration envelope. (Online version in colour.)

identified in these plots. The power spectral density (PSD) of v, presented in figure 6d–f, is used
to determine the vortex shedding frequency at each point of the body length. In these plots,
the PSD is normalized by its largest magnitude and the frequency is non-dimensionalized by
Un (fn). For each value of the tension, the vortex shedding frequency is constant along the span
and matches the cross-flow vibration frequency (indicated by a black dashed line). Therefore,
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the lock-in condition is established along the entire cylinder length, as also observed at normal
incidence. To the best of the authors’ knowledge, the appearance of the lock-in condition for a
flexible cylinder at such large inclination angle was not previously reported. In all studied cases,
independently of the slant angle of the vortex rows, the excitation of the inclined flexible cylinder
by the flow thus occurs through synchronization between the body oscillation and the vortex
formation; that is why the responses of the inclined cylinder are referred to as VIV.

The vortex shedding frequency downstream of the vibrating cylinder is considerably reduced
compared with the frequency observed in the absence of structural oscillation, which is denoted
by a white dashed-dotted line in figure 6d–f. Because the lock-in condition is established in all
cases, the vibration frequencies reported in table 2 correspond to the vortex shedding frequencies.
When the vortex rows are parallel to the inclined body (T = 54), the shedding frequency remains
close to the frequency identified at normal incidence; yet this does not imply validity of the IP,
as shown in §4a (e.g. figure 3d). As also noted by earlier studies [35,37] for fixed rigid cylinders
inclined in flow, the vortices exhibit larger formation frequency under oblique shedding than
under parallel shedding. In the oblique pattern case, the IP substantially underestimates the
shedding (and vibration) frequency.

For flexible cylinders subjected to VIV under parallel shedding, previous works have shown
that the alternating regions of positive and negative transverse displacement along the span
are associated with the simultaneous formation of vortex rows of opposite vorticity signs
along the cylinder length [41,44]; this observation suggests a coincidence between the spanwise
wavenumber of the wake pattern and the excited structural wavenumber. To clarify this aspect
in the present configuration, the cross-flow velocity component v is approximated by a Fourier
expansion similar to (4.2) and the unwrapped spatial phase Ψ s

v associated with the predominant
frequency of v (for s > 0) is plotted along the span in figure 6g–i, for each value of the tension. For
T = 54, under parallel shedding, the phase remains relatively constant along the cylinder length.
In contrast, the phase regularly decreases along the span for T = 37.5 and T = 13.5, in agreement
with the inclination of the wake. The locations of the minima of the cross-flow vibration are
indicated by dashed-dotted lines in figure 6h,i; they essentially correspond to the nodes of the
associated sine Fourier mode (ny) and the distance between two successive minima is equal to
1/2ky. It appears that the phase of v exhibits variations of approximately −180◦ between each
minimum of the cross-flow vibration. The spanwise wavenumber of the oblique wake pattern
thus matches the excited structural wavenumber (0.02 for T = 37.5 and 0.04 for T = 13.5); hence,
the cylinder vibration and the wake pattern are found to be spatially locked. As also observed in
the absence of vibration in [35], the slant angle and shedding frequency tend to increase with the
spanwise wavenumber, which increases when the tension is reduced in the flexible body case.

The present observations show that the vibrations of the inclined flexible cylinder occur under
the lock-in condition and that this state of wake–body synchronization is accompanied by a
profound reconfiguration of the flow pattern compared with the fixed rigid cylinder case, both
temporally, with a substantial alteration of the vortex formation frequency, and spatially, with
a modification of the shedding angle. The forcing exerted by the flow on the vibrating inclined
body is examined in the following.

(c) Fluid forces and flow–structure energy transfer
The spanwise evolutions of the mean in-line force coefficient and of the RMS in-line and cross-
flow force coefficients are plotted in figure 7a–i, for the three values of the tension; in figure 7d–f,
the fluctuation of the in-line force coefficient about its mean value is considered. For comparison
purposes, the fluid forces are non-dimensionalized by Un, and the normal incidence results
for Ren = 500 and Ren = 86.8 are also reported in these plots. As mentioned in previous studies
concerning rigid and flexible cylinders at lower incidence [14,39,41], a considerable amplification
of the force fluctuations and mean in-line force generally occurs once the body oscillates. The
magnitudes and spanwise patterns of the fluid forces clearly differ between the inclined and
normal body configurations; hence, the IP is not valid. A notable feature in the inclined cylinder
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case is the spanwise asymmetry of the fluid forces, whereas the forces remain mainly symmetrical
at normal incidence. In the inclined body case, as discussed in §4a, the structure in-line bending
causes an asymmetry of the local inflow velocity profiles and in particular a large shear of
the current locally normal to the cylinder. It appears that the mean in-line force exhibits larger
magnitudes for z > 25, i.e. in the spanwise region associated with large values of the locally
normal current velocity (figure 2d–f ); this phenomenon is accompanied by an asymmetrical
bending of the structure, as shown in figure 2a–c. It is recalled that additional simulations have
been performed at normal incidence with a sheared current in order to match the velocity profile
locally perpendicular to the inclined body; as expected, the sheared profile induces asymmetrical
distributions of the forces, yet their spanwise evolutions and amplitudes still significantly depart
from the inclined cylinder results.

The effective in-line and cross-flow added mass coefficients due to the fluid forces in phase
with the cylinder acceleration are determined as follows:

Cmx = − 2
π

Cxζ̈x

ζ̈ 2
x

, Cmy = − 2
π

Cyζ̈y

ζ̈ 2
y

. (4.4)
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The evolutions of the effective added mass coefficients along the inclined cylinder span are plotted
in figure 7j–l. It appears that Cmx and Cmy substantially differ from the potential flow value
of 1 (dotted line) and exhibit large spanwise modulations with spikes near the minima of the
structural response amplitude (dashed-dotted lines). In spite of the variability of the effective
added mass coefficients, it was noted in §4a that the actual vibration frequencies are close to the
natural frequencies predicted by the dispersion relation (4.1), in which the potential flow value of
the added mass coefficient is considered; such behaviour is also observed at normal incidence.

The transfer of energy between the flow and the vibrating cylinder is quantified, in each
direction, through the mean fluid force coefficient in phase with the body velocity:

Cvx =
√

2
Cxnζ̇x√

ζ̇ 2
x

, Cvy =
√

2
Cynζ̇y√

ζ̇ 2
y

. (4.5)

In the above definitions, the fluid forces are non-dimensionalized by Un. Positive values of these
coefficients indicate that the flow provides energy to excite the structural vibrations and negative
values indicate that the body oscillations are damped by the flow. The spanwise distributions
of Cvx and Cvy along the inclined cylinder are presented in figure 7m–o. For each value of the
tension, a regular alternation of excitation and damping regions can be observed along the
span and it appears that the excitation/damping zones of the in-line and cross-flow responses
coincide. In the following, the spatial pattern of energy transfer is studied in relation with the
spanwise evolution of the cylinder trajectory orientation. For a flexible cylinder placed at normal
incidence in sheared current, the lock-in condition is preferentially established through counter-
clockwise figure eight trajectories of the body; as a result, the excitation of the structure by the
flow mainly occurs through this type of orbit [28,29]. In the present case of a flexible cylinder
inclined in uniform current, the lock-in condition is established along the entire body length,
but the energy transfer is still closely connected to the orientation of the body trajectory. To
clarify this connection, the orbit orientation determined from the in-line/cross-flow response
phase difference (figure 4j–l) is specified in figure 7m–o; white and grey background colours
denote counter-clockwise and clockwise orbits, respectively. In all cases, it appears that the
body is excited in spanwise regions where it exhibits counter-clockwise trajectories, whereas
clockwise orbits are essentially associated with vibration damping. Therefore, an orientation more
favourable to positive energy transfer also exists at large inclination angle. The selection of the
counter-clockwise orientation for body excitation is expected to be driven by similar mechanisms
to those previously described in the normal incidence case, under parallel vortex shedding (closer
proximity of the cylinder and the recently shed vortices, specific phasing between body motion
and vortex suction forces [16,46]). The inclined body results show that the link between energy
transfer and orbit orientation persists over a range of wake configurations, i.e. parallel shedding
but also oblique shedding patterns with different slant angles.

The structural responses of the inclined cylinder were all shown to exhibit a slight travelling
wave behaviour, orientated towards decreasing z (§4a). This trend was observed under both
parallel shedding and oblique shedding, where the vortex rows are moving towards increasing
z; in the latter case, the structural waves and the vortices thus travel in opposite directions.
This apparently paradoxical phenomenon can be elucidated in light of the spanwise pattern of
energy transfer. The largest peaks of positive energy input occur for z > 25, and the magnitude
of these peaks tends to decrease along the span. The global decreasing trend of Cvx and Cvy as z
decreases is illustrated by the linear approximations of these coefficients, represented by circles
and triangles in figure 7m–o. The space-averaged values of Cvx and Cvy are positive over the
second half of the cylinder and negative over the first half; hence, the span may be separated
into a global region of excitation (z > 25) and a global region of damping (z < 25). It can be noted
that the region which includes the largest peaks of Cvx and Cvy corresponds to the region where
the in-line bending results in the largest magnitudes of the inflow velocity locally normal to the
cylinder (figure 2d–f ) and the global direction of decreasing energy transfer coincides with the
direction of decreasing magnitude of the locally normal velocity. As also reported in prior works
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concerning VIV of flexible cylinders exposed to normal sheared currents [26,44], the orientation
of the structural waves is determined by the energy input/output pattern: the waves follow the
global direction of decreasing energy transfer, orientated from the region of large locally normal
inflow velocity to the region of low locally normal velocity in the present case, and thus travel
towards z = 0. Contrary to the inclined cylinder configuration, no monotonic orientation of the
structural waves can be identified at normal incidence; this is in agreement with the absence of
systematic trend of energy transfer along the span.

The analysis of the fluid forces confirms a substantial deviation from the IP at large inclination
angle and emphasizes persistent features of the flow–structure system, which occur for all
studied cases, i.e. regardless of the excited wavenumbers and wake configuration. In particular,
a connection is established between energy transfer and some characteristics of the inclined body
responses, such as the orbit orientation and the travelling wave nature of the structural vibrations.

5. Conclusion
The free vibrations of a flexible cylinder inclined at 80◦ within a uniform current at Re = 500
have been examined on the basis of direct numerical simulation results. A normal incidence
configuration was also considered to assess the validity of the IP which states that the inclined
and normal incidence body configurations are comparable if the normal component of the inflow
velocity (Un) is used to scale the physical quantities. The flexible cylinder was modelled as a
tension-dominated structure, and three values of the tension were selected in order to cover a
range of typical responses of the system. As a preliminary step, a brief overview of the fixed rigid
cylinder case was presented: in the absence of body motion, the wake of the inclined cylinder
is characterized by an oblique vortex shedding pattern with a large slant angle and the IP is
not valid, as previously reported in the literature. The principal findings of this work can be
summarized as follows.

(a) In-line and cross-flow vibrations at large inclination angle
In all studied cases, the inclined flexible cylinder is found to exhibit regular oscillations in the
in-line and cross-flow directions. The structural responses consist of mixed standing–travelling
wave vibrations with a predominant standing wave nature. For each value of the tension, a single
frequency associated with a single structural wavenumber is excited in each direction and a ratio
of 2 is observed between the in-line and cross-flow response frequencies/wavenumbers. In spite
of a substantial variability of the effective added mass coefficients along the span, the vibration
frequencies remain close to the structure natural frequencies. The cylinder oscillations are
generally accompanied by a considerable amplification of the mean and fluctuating components
of the fluid forces, compared with the stationary body case.

(b) Wake–body synchronization under parallel and oblique vortex shedding
The vibrations of the inclined flexible cylinder are excited through synchronization between the
body oscillation and the vortex formation, i.e. the lock-in condition; that is why the present
structural responses are referred to as VIV. It is found that, depending on the tension, the lock-in
condition may involve either parallel or oblique vortex shedding patterns. In the latter case, the
structural response and the wake pattern are shown to remain spatially locked, i.e. their spanwise
wavenumbers coincide. In all cases, the occurrence of wake–body synchronization induces a
dramatic reconfiguration of the flow pattern compared with the stationary cylinder case, with
a notable reduction of the vortex shedding angle and frequency. As a general trend, the shedding
angle and frequency tend to increase with the spanwise wavenumber, which increases when
the tension is reduced. Regardless of the shedding angle, the wake structure resembles the 2S
pattern, with the formation of two counter-rotating vortices per cycle. Owing to the frequency
ratio of 2 identified between the in-line and cross-flow vibrations and to their predominant
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standing wave nature, the inclined cylinder presents an alternation of clockwise and counter-
clockwise figure eight orbits along its length. Wake–body synchronization occurs along the entire
span, independently of the orbit orientation. However, for all the observed wake patterns, i.e.
parallel shedding but also oblique shedding with different slant angles, the counter-clockwise
trajectories are found to be more favourable to body excitation, whereas clockwise orbits are
mainly associated with vibration damping.

(c) Deviation from the independence principle
Comparison of the vibrations and fluid forces in the inclined and normal body configurations
shows that the behaviour of the system generally departs from the IP. The frequencies of the
VIV occurring under oblique shedding are found to be considerably underestimated by the IP.
Under parallel shedding, the response frequency of the inclined cylinder is close to the frequency
identified at normal incidence, after normalization by Un; yet, this does not imply validity of the
IP, because even in this case, major differences are noted in the oscillation and force amplitudes
between the two configurations. In the inclined body configuration, the flow–structure system
exhibits a persistent spanwise asymmetry. Such asymmetry of the vibration and force patterns
is expected because the structure in-line bending results in asymmetrical profiles of the inflow
velocity components locally normal and parallel to the body; at large inclination angle, the locally
perpendicular current presents a significant shear. This source of asymmetry is not captured by
the IP and it appears that the response of the system remains essentially symmetrical at normal
incidence. Along the inclined cylinder span, the global direction of decreasing flow–structure
energy transfer is found to coincide with the direction of decreasing magnitude of the locally
perpendicular velocity; this spanwise trend of energy transfer induces a monotonic orientation
of the slight travelling wave behaviour of the structural vibrations, which does not exist at
normal incidence.
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