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Introduction
Context
Energy considerations are becoming paramount in the resolution
of real-world applications.

Objective
Address the (combinatorial) optimization challenge of
integrating energy constraints in deterministic (scheduling)
models with constraints related to their physical, technological
and performance characteristics.

Challenges
Non-linearities come from energy efficiency functions
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Introduction
PGMO project OREM (Combinatorial optimization with
multiple resources and energy constraints)

Previous studies involve multiple energy sources and
general non-linear efficiency functions, but no scheduling.
All our previous work on scheduling under energy
constraint considered linear (and even identical) energy
efficiency functions, which oversimplifies the problem.
We want to solve explicitely and in an integrated fashion
energy resource allocation problems and energy-consuming
activity scheduling problems with non linear energy
efficiency functions.
This work (phase 1) proposes a proof of concept by
studying a single-source scheduling problem involving
realistic non-linear efficiency functions provided by the
researchers in Electrical Engineering from LAPLACE.
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Figure : Source : (Sareni et al., 2012)
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Mechanic-hydraulic-electric models

Electrical model
Vm, Im : electrical tension, courant

Tm : motor electromag. torque

Ω : rotation speed

kΦ : torque equivalent coefficient

r : stator resistance

Electric motor equations
(inertia neglected) :

Vm = rIm + kΦΩ (1)

Tm = ΦmIm (2)
Electrical power needed : Pe = VmIm.

Mechanical-Hydraulic conv.
Pp : output pressure

q : debit of water

a, b : non linear girator coefs

c : hydraulic friction

p0 : suction pressure

fp + fm : mechanical losses

Static equations of the motor-pump
(mechanical inertia neglected) :

Pp = (aΩ + bq)Ω− (cq2 + p0) (3)

Tm = (aΩ + bq)q + (fm + fp)Ω (4)

Pressure drop in the pipe

∆Pipe : pressure drop

h : height of water pumping

ρ : water density

Static+Dynamic pressure

∆Pipe = kq2 + ρgh (5)

Ω(q) =
−bq +

√
(bq)2 + 4a[(c + K)q2 + p0 + ρgh]

2a
(6)

(7)
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Reverse Osmosis module model

Reverse Osmosis module
RMod : losses in the pipes of the RO module
RValve : variable restriction
RMem : losses in the RO membrane
qc : debit of rejected water (concentrate)
qp : debit of fresh water (permeate)

Quasi static model of the RO module
(storage effect neglected) :

Pp −∆Pipe = (RMod + RValve)qc2 (8)

qp =
Pp −∆Pipe

RMe
(9)

q = qp + qc (10)
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Efficiency functions of pumps 1 & 3

Pump 
P1 

RO Module 
Pump 

P2 
Tank T1 Tank T2 

Pump 
P3 

Tank T3 

The electric power required is expressed in function of the water
level of the intake tank h and the water debit q.

power required =
r ∗K(h,q) + ((fm + fp) ∗Ω(h,q) + q ∗ (a ∗Ω(h,q) + (b ∗q))) ∗Ω(h,q)

where
{

Ω(h,q) =
−(b∗q)+

√
(b∗q)2−4∗a∗(−(p0+ρg∗(h−lout)+(k+c)∗q2))

2∗a
K(h,q) = (((fm + fp) ∗ Ω(h,q) + q ∗ (a ∗ Ω(h,q) + (b ∗ q)))/kφ)2
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Efficiency function of pump 2 + RO

Pump 
P1 

RO Module 
Pump 

P2 
Tank T1 Tank T2 

Pump 
P3 

Tank T3 

The subsystem resulting from the combinaison of pump 2 and
the Reverse Osmosis module is modeled with equation :

power required =
r ∗ K(qc, h) + ((fm + fp) ∗ Ω(qc, h) + (qc + F(qc)/RMe) ∗M(qc, h)) ∗ Ω(qc, h)

where
F(qc) = (RMod + RValve) ∗ qc2

G(qc) = (b ∗ (qc + F(qc)/RMe))
M(qc, h) = a ∗ Ω(qc, h) + G(qc)

Ω(qc, h) =
−G(qc)+

√
G(qc)2−4a∗(−(p0+ρg∗(h−lout)+(k+c)∗((qc+F(qc)/RMe)2)+F(qc)))

2∗a
K(qc, h) = (((fm + fp) ∗ Ω(qc, h) + (qc + F(qc)/RMe) ∗ (a ∗ Ω(qc, h) + G(qc)))/kφ)2
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Literature review
Roboam X., Sareni B., Nguyen D. T., and Belhadj J. . Optimal
system management of a water pumping and desalination
process supplied with intermittent renewable sources. In
Proceedings of the 8th Power Plant and Power System Control
Symposium, vol 8, p. 369-374, 2012.
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Generic MINLP resolution methods
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Hybrid algorithms and frameworks
Polisetty P.K. and Gatzke E.P.. A decomposition-based minlp solution method
using piecewise linear relaxations. Technical report, Univ. of South Carolina, 2006.
Bonami P., Biegler L.T., Conn A.R., Cornuéjols G., Grossmann I.E., Laird C.D.,
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optimization. Journal of Global Optimization, 45, p. 3 - 389, 2009.
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Resolution method
Step 1 : Piecewise linear bounding of the nonlinear energy
transfer/efficiency functions

(a) Linear approximation (b) Piecewise bounding

Step 2 : Reformulation of the problem into two mixed integer
problems (MILP)

the problem is originally a MINLP
using the pair of bounding functions previously defined
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Piecewise bounding
Principle
Piecewise bounding a function f of m variables within a
tolerance value ε consists in identifying two piecewise linear
functions (f

ε
, f ε) that verify :

f ε(x) ≤ f (x) ≤ f
ε
(x), ∀x ∈ Rm (11)

f (x)− f ε(x) ≤ εf (x), ∀x ∈ Rm (12)
f
ε
(x)− f (x) ≤ εf (x), ∀x ∈ Rm (13)

Purpose

Two MILP (MILP and MILP) are obtained
Linearizations before the optimization allow :

the respect of the predefined tolerance value
the minimization of the number of sectors

min. of the number of additional integer variables in
MILP and MILP
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Piecewise bounding

Proposition
∃ε∗ such that ∀f ε, the optimal solution cost of the
corresponding MILP is the global optimal solution cost of the
original MINLP.

Proof outline
Based on two properties :
(i) The solution value of MILP does not decrease with the

decrease of ε.
(ii) The theorem of (Duran and Grossman,1986) which is the

basis of the OA algorithm states that if all feasible discrete
variables are used as linearization points then the resulting
MILPCP problem (denoted M-OA by Grossmann in 2002)
has the same optimal solution than the original MINLP.
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Piecewise bounding heuristics
Bounding the efficiency function of pump 1

Assumptions
The efficiency function is either convex or concave.

Objective
For f ε and f ε, identify the minimum number of sectors n, and the
parameters of each sector i : slope ai , y-intercept bi and limits qmini

and qmaxi .

Principle
Each sector i verifies : p = aiq + bi .
Consecutive sectors i − 1 and i satisfy : qmini = qmaxi−1

Idea
Use supporting linear functions tangent to f 1 at predefined points, to
control where the max error will be located, to respect eq. (11)-(13).
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Piecewise bounding heuristics
Bounding the efficiency function of pump 1

Lower bounding
For a potential tangent point q̃ : ai = df 1

dq (q̃) and bi = f 1(q̃)− q̃ df 1

dq (q̃).

qmin1 

q 
~ 

qmin1 

q 
~ 

qmin1 qmax1 

q 
~ 

Upper bounding
For a potential tangent point q̃ : ai = df 1

dq (q̃) and bi = f 1(qmini )− qmini
df 1

dq (q̃).

qmin1 

q 
~ 

qmin1 

q 
~ 

qmin1 

q 
~ 

qmax1 
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Piecewise bounding heuristics
Extension to the efficiency function of pump 3

Specificity
f 3 takes into account the water level h from its intake tank. It is a
function of two variables (q, h) instead of one.

Solution chosen
Piecewise bounding functions in the form p = aq + b − sh where s is
a correction parameter.
Idea similar to (Borghetti et al., 2008) but here we ensure that eq.
(11)-(13) remain verified.

Extension to the efficiency function of pump 2 and RO module

Solution chosen
Bounding of the global efficiency function of the subsystem "pump 2
+ RO module" (instead of separated efficiency functions).
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MILP reformulation
Data

NI ,NP ,NT : set of time intervals, pumps, set of tanks
ts : scale of time, duration of the time intervals
hq : section of the tanks, used to convert the debit into water level
P i

min,P
i
max, ∀i ∈ NP : pumping power limits of pump i

Li
min, L

i
max, ∀i ∈ NP : capacity limits of tank i

l jinit, j ∈ NT ,≥ 0 : initial water level of tank j
Pini , ∀i ∈ N : input power available at time interval i
piecewise functions data computed with the heuristics :
{npi , a

j
i , b

j
i , s

j
i , α

j , βj ,Q i,j
min,Q

i,j
max},∀i ∈ NP , ∀j ∈ 1..npi

Binary variables
ri , ∀i ∈ NI : equal to 0 iff all tanks are full at time interval i .
sect j,ki , ∀i ∈ NI ,∀j ∈ 1..np1 , ∀k ∈ 1..3 : equal to 1 iff pump k is used at the
jth section of its piecewise power function during time interval i .

Continuous variables
qj,k
i ,∀i ∈ NI , ∀j ∈ 1..np1 ,≥ 0 : equal to the flow of water pumped by pump

k at time i if it is used at the jth sector of the piecewise power function
and 0 otherwise.
l ji , ∀i ∈ NI , ∀j ∈ NT ,≥ 0 : equal to the level of water going in tank j at
time interval i
v j,k
i ,∀i ∈ NI , ∀j ∈ 1..np2 ,≥ 0 : equal to the level of water in tank k if
pump k + 1 is used at the jth section of the piecewise power function at
time i and 0 otherwise.
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MILP reformulation

MOSIM14 - November 5-7-2014 - Nancy - France

min
∑

i∈N
ri ∗ ts (8)

subject to

r0 = 1 (9)

lj0 = ljinit, ∀j ∈ NT (10)

ri − ri−1 ≤ 0, ∀i ∈ NI (11)∑

j∈NT

lji + (
∑

j∈NT

Lj
max)ri ≥

∑

j∈NT

Lj
max, ∀i ∈ NI (12)

∑

k∈NP

∑

j∈1..npk

(aj
kqj,k

i + bj
ksect

j,k
i − sj

kvj,k
i ) ≤ Pini, ∀i ∈ NI (13)

l1i − l1i−1 −
∑

j∈1..np1

hq ∗ ts ∗ qi
j,1 +

∑

j∈1..np2

hq ∗ ts ∗ (αjqi
j,2 + βjsectj,2

i ) ≤ 0, ∀i ∈ NI (14)

l2i − l2i−1 −
∑

j∈1..np2

hq ∗ ts ∗ ((αj − 1)qi
j,2 + βjsectj,2

i ) +
∑

j∈1..np3

hq ∗ ts ∗ qi
j,3 ≤ 0, ∀i ∈ NI (15)

l3i − l3i−1 −
∑

j∈1..np3

hq ∗ ts ∗ qi
j,3 ≤ 0, ∀i ∈ NI (16)

Lk
min ≤ lki ≤ Lk

max, ∀i ∈ NI , k ∈ NP (17)∑

j∈1..npk

P k
minsect

j,k
i ≤

∑

k∈Np{1}

∑

j∈1..npk

(aj
kqj,k

i + bj
ksect

j,k
i − sj

kvj,k
i ) ≤

∑

j∈1..npk

P k
maxsect

j,k
i , ∀i ∈ NI , k ∈ NP (18)

Qi,j
minsect

j,k
i ≤ qj,k

i ≤ Qi,j
maxsect

j,k
i , ∀i ∈ NI , k ∈ NP , j ∈ 1..npk

(19)
∑

j∈1..npk

sectj,k
i ≤ 1, ∀i ∈ NI , k ∈ NP (20)

vj,k
i − lji ≤ 0, ∀k ∈ NP , i ∈ NI , j ∈ 1..npk

(21)

vj,k
i − Lj

maxsect
j,k
i ≤ 0, ∀k ∈ NP , i ∈ NI , j ∈ 1..npk

(22)

Figure 5 – Mathematical formulation proposed
Figure : Source : (Ngueveu et al. 2014)
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Implementation and data
Implementation

Matlab (for the efficiency functions)
+ GLPK (for transfer)
+ CPLEX 12.5 (for the MILP resolution)

Intel Core 2Duo, 2.66 GHz 4GB of RAM
Data :

Same pump characteristics as (Roboam X., Sareni B.,
Nguyen D. T., and Belhadj J. . 2012). 1

Input power profile deduced from the Guadeloupe wind site
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Figure : Source : (Ngueveu et al. 2014)

1. Ref. Grundfos : 1.5kW– SP5A-17 ; 2.2kW – SP5A-21
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Computational Evaluation
Pump 1 (Pump 2+RO) Pump 3

ε np1 np1 np2 np2 np3 np3

5% 2 2 11 21 3 2
1% 5 5 21 29 8 5
0.5% 8 7 35 62 13 7
0.3% 10 9 43 74 17 9

Table : Number of sectors per tolerance value

MILP MILP Gap opt
ε UB s LB s UB* %
5% 20580 4 19740 15 - 4.25 no
1% 20100 15 19920 140 - 0.9 no
0.5% 20040 178 19980 117 - 0.3 no
0.3% 20040 64 19980 321 19980 0.3 yes

Table : Upper and Lower bounds values obtained
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Conclusion

Done
Groundwork for the integration of energy source
characteristics in production scheduling problems.
Resolution scheme is based on piecewise linear bounding
and integer programming
Bounding heuristics for convex and concave
efficiency/transfer functions have been introduced.
Good results on a water production optimization problem
with non linear efficiency functions : global optimization
problem solved to optimality on the given data sets.

Ongoing
Address multiple energy sources with different
characteristics and their resulting problems untractable for
black-box solvers.
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