

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : <u>http://oatao.univ-toulouse.fr/</u> Eprints ID : 13677

To cite this version : Ngueveu, Sandra Ulrich and Sareni, Bruno and Roboam, Xavier *Upper and lower bounding procedures for the optimal management of water pumping and desalination processes*. (2014) In: 20th Conference of the International Federation of Operational Research Societies (IFORS 2014), 13 July 2014 - 18 July 2014 (Barcelona, Spain)

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval.

Instances Results

Conclusion

Upper and Lower Bounding Procedures for the Optimal Management of Water Pumping and Desalination Processes

Sandra Ulrich NGUEVEU Bruno SARENI, Xavier ROBOAM

LAAS-CNRS / LAPLACE ngueveu@laas.fr, {sareni, roboam}@laplace.univ-tlse.fr

18/07/2014

Laplace

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval. Instances Results

Conclusion

2 Literature review

3 Resolution method

Application to the water pumping problem

6 Conclusion

Plan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval.

Results

Conclusion

Context

Energy considerations are becoming paramount in the resolution of real-world applications.

Introduction

Objective

Address the (combinatorial) optimization challenge of integrating energy constraints in deterministic (scheduling) models with constraints related to their physical, technological and performance characteristics.

Challenges

Non-linearities come from energy efficiency functions

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval. Instances Results

Conclusion

PGMO project OREM (Combinatorial optimization with multiple resources and energy constraints)

- Previous studies involve multiple energy sources and general non-linear efficiency functions, but no scheduling.
- All our previous work on scheduling under energy constraint considered linear (and even identical) energy efficiency functions, which oversimplifies the problem.
- We want to solve explicitely and in an integrated fashion energy resource allocation problems and energy-consuming activity scheduling problems with non linear energy efficiency functions.
- This work (phase 1) proposes a proof of concept by studying a single-source scheduling problem involving realistic non-linear efficiency functions provided by the researchers in Electrical Engineering from LAPLACE.

Introduction

S.U.Ngueveu

System

Figure : Source : (Sareni et al., 2012)

S.U.Ngueveu

Introduction Context Description

- Literature
- Method
- Application

Comp. Eval.

Instances Results

Conclusion

Mechanic-hydraulic-electric models

Electrical model

- V_m, I_m : electrical tension, courant
- T_m : motor electromag. torque
- Ω : rotation speed
- k_Φ : torque equivalent coefficient
- r : stator resistance

Electric motor equations (inertia neglected) :

$$V_m = rI_m + k_{\Phi}\Omega \qquad (1)$$
$$T_m = \Phi_m I_m \qquad (2)$$

Electrical power needed : $P_e = V_m I_m$.

Pressure drop in the pipe

- $\Delta Pipe$: pressure drop
- *h* : height of water pumping
- ρ : water density

Mechanical-Hydraulic conv.

- P_p : output pressure
- q : debit of water
- *a*, *b* : non linear girator coefs
- c : hydraulic friction
- p_0 : suction pressure
- $f_p + f_m$: mechanical losses

Static equations of the motor-pump (mechanical inertia neglected) :

$$P_{p} = (a\Omega + bq)\Omega - (cq^{2} + p_{0}) \qquad (3)$$

$$T_m = (a\Omega + bq)q + (f_m + f_p)\Omega \qquad (4)$$

Static+Dynamic pressure

$$\Delta \text{Pipe} = kq^2 + \rho gh \qquad (5)$$

S.U.Ngueveu

Introduction

Context Description

- Literature
- Method
- Application
- Comp. Eval.
- Results
- Conclusion

Reverse Osmosis module model

Reverse Osmosis module

- $\bullet\ R{\rm Mod}$: losses in the pipes of the RO module
- *R*Valve : variable restriction
- RMem : losses in the RO membrane
- *q_c* : debit of rejected water (concentrate)
- q_p : debit of fresh water (permeate)

Quasi static model of the RO module (storage effect neglected) :

$$P_{p} - \Delta \text{Pipe} = (R_{\text{Mod}} + R_{\text{Valve}})q_{c}^{2}$$
(8)
$$q_{p} = \frac{P_{p} - \Delta \text{Pipe}}{R_{\text{Me}}}$$
(9)
$$q = q_{p} + q_{c}$$
(10)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval.

Instances Results

Conclusion

Efficiency functions of pumps 1 & 3

The electric power required is expressed in function of the water level of the intake tank \mathbf{h} and the water debit \mathbf{q} .

power required =

 $r * \mathcal{K}(\mathbf{h}, \mathbf{q}) + ((f_m + f_p) * \Omega(\mathbf{h}, \mathbf{q}) + \mathbf{q} * (a * \Omega(\mathbf{h}, \mathbf{q}) + (b * \mathbf{q}))) * \Omega(\mathbf{h}, \mathbf{q})$

where

$$\begin{cases} \Omega(\mathbf{h},\mathbf{q}) = \frac{-(b*\mathbf{q}) + \sqrt{(b*\mathbf{q})^2 - 4*a*(-(p_0 + \rho_g*(\mathbf{h} - l_{\text{out}}) + (k+c)*\mathbf{q}^2))}}{2*a}\\ \mathcal{K}(\mathbf{h},\mathbf{q}) = (((f_m + f_p)*\Omega(\mathbf{h},\mathbf{q}) + \mathbf{q}*(a*\Omega(\mathbf{h},\mathbf{q}) + (b*\mathbf{q})))/k_{\phi})^2\end{cases}$$

```
S.U.Ngueveu
```

Introduction

Context Description

Literature

Method

Application

Comp. Eva Instances Results

Conclusion

Efficiency function of pump 2 + RO

The subsystem resulting from the combinaison of pump 2 and the Reverse Osmosis module is modeled with equation :

power required =

 $r * \mathcal{K}(\mathbf{q_c}, \mathbf{h}) + ((f_m + f_p) * \Omega(\mathbf{q_c}, \mathbf{h}) + (\mathbf{q_c} + \mathcal{F}(\mathbf{q_c}) / R_{\mathrm{Me}}) * \mathcal{M}(\mathbf{q_c}, \mathbf{h})) * \Omega(\mathbf{q_c}, \mathbf{h})$

where

$$\begin{array}{l} \mathcal{F}(\mathbf{q}_{c}) = (R_{\mathrm{Mod}} + R_{\mathrm{Valve}}) * \mathbf{q}_{c}^{2} \\ \mathcal{G}(\mathbf{q}_{c}) = (b * (\mathbf{q}_{c} + \mathcal{F}(\mathbf{q}_{c})/R_{\mathrm{Me}})) \\ \mathcal{M}(\mathbf{q}_{c}, \mathbf{h}) = a * \Omega(\mathbf{q}_{c}, \mathbf{h}) + \mathcal{G}(\mathbf{q}_{c}) \\ \Omega(\mathbf{q}_{c}, \mathbf{h}) = \frac{-\mathcal{G}(\mathbf{q}_{c}) + \sqrt{\mathcal{G}(\mathbf{q}_{c})^{2} - 4a * (-(p_{0} + \rho g * (\mathbf{h} - I_{\mathrm{out}}) + (\mathbf{k} + c) * ((\mathbf{q}_{c} + \mathcal{F}(\mathbf{q}_{c})/R_{\mathrm{Me}})^{2}) + \mathcal{F}(\mathbf{q}_{c})))}{2^{2} a} \\ \mathcal{K}(\mathbf{q}_{c}, \mathbf{h}) = (((f_{m} + f_{p}) * \Omega(\mathbf{q}_{c}, \mathbf{h}) + (\mathbf{q}_{c} + \mathcal{F}(\mathbf{q}_{c})/R_{\mathrm{Me}}) * (a * \Omega(\mathbf{q}_{c}, \mathbf{h}) + \mathcal{G}(\mathbf{q}_{c})))/k_{\phi})^{2} \end{array}$$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval. Instances Results

Conclusion

Introduction

Introduction

• Problem description / Problem statement / system description

2 Literature review

Resolution method

- 4 Application to the water pumping problem
- 5 Computational Evaluation
 - Instances
 - Results

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval. Instances Results

Conclusion

Literature review

Roboam X., Sareni B., Nguyen D. T., and Belhadj J. . *Optimal* system management of a water pumping and desalination process supplied with intermittent renewable sources. In Proceedings of the 8th Power Plant and Power System Control Symposium, vol 8, p. 369-374, 2012.

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval. Instances Results

Conclusion

Literature review

Mathematical programming-based resolution methods on similar problems Camponogara E., De Castro M. P. and Plucenio, A. *Compressor scheduling in oil fields : A piecewise-linear formulation*. IEEE International Conference on Automation Science and Engineering, p. 436 - 441, 2007. Borghetti A., D'Ambrosio C., Lodi A. and Martello S., *An milp approach for short-term hydro scheduling and unit commitment with head-dependent reservoir.* IEEE Transactions on Power Systems, 23(3), p. 1115 - 1124, 2008.

Generic MINLP resolution methods

Grossmann I.E.. Review of nonlinear mixed-integer and disjunctive programming techniques. Optimization and Engineering, 3, p. 227 - 252, 2002.

Hybrid algorithms and frameworks

Polisetty P.K. and Gatzke E.P.. A decomposition-based minlp solution method using piecewise linear relaxations. Technical report, Univ. of South Carolina, 2006. Bonami P., Biegler L.T., Conn A.R., Cornuéjols G., Grossmann I.E., Laird C.D., Lee J., Lodi A., Margot F., Sawaya N., and Wächter A. An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization, 5(2), p.186 - 204, 2008.

Floudas C.A. and Gounaris C.E.. A review of recent advances in global optimization. Journal of Global Optimization, 45, p. 3 - 389, 2009.

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval. Instances Results

Conclusion

Introduction

Introduction

• Problem description / Problem statement / system description

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Literature review

3 Resolution method

- 4 Application to the water pumping problem
- 5 Computational Evaluation
 - Instances
 - Results

S.U.Ngueveu

Context

Method

Instances Results

Description

Resolution method

(b) Piecewise bounding

Step 2 : Reformulation of the problem into two mixed integer problems (MILP)

- the problem is originally a MINLP
- using the pair of bounding functions previously defined

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval.

Results

Conclusion

Principle

Piecewise bounding a function f of m variables within a tolerance value ϵ consists in identifying two piecewise linear functions (\overline{f}^{ϵ} , \underline{f}^{ϵ}) that verify :

$$\underline{f}^{\epsilon}(x) \le f(x) \le \overline{f}^{\epsilon}(x), \quad \forall x \in \mathbb{R}^{m}$$

$$f(x) - \underline{f}^{\epsilon}(x) \le \epsilon f(x), \quad \forall x \in \mathbb{R}^{m}$$
(11)
(12)

$$\overline{f}^{\epsilon}(x) - f(x) \le \epsilon f(x), \quad \forall x \in \mathbb{R}^m$$
 (13)

Purpose

- Two MILP ($\overline{\text{MILP}}$ and $\underline{\text{MILP}}$) are obtained
- Linearizations before the optimization allow :
 - the respect of the predefined tolerance value
 - the minimization of the number of sectors
 - $\bullet\,$ min. of the number of additional integer variables in $\overline{\rm MILP}$ and $\underline{\rm MILP}$

Piecewise bounding

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval. Instances Results

Conclusion

Piecewise bounding

Proposition

 $\exists \epsilon^* \text{ such that } \forall \underline{f}^{\epsilon}$, the optimal solution cost of the corresponding <u>MILP</u> is the global optimal solution cost of the original MINLP.

Proof outline

Based on two properties :

- (i) The solution value of <u>MILP</u> does not decrease with the decrease of ϵ .
- (ii) The theorem of (Duran and Grossman,1986) which is the basis of the OA algorithm states that if all feasible discrete variables are used as linearization points then the resulting MILPCP problem (denoted M-OA by Grossmann in 2002) has the same optimal solution than the original MINLP.

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval.

Results

Conclusion

Introduction

- Introduction
- Problem description / Problem statement / system description

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Literature review

Resolution method

4 Application to the water pumping problem

- 5 Computational Evaluation
 - Instances
 - Results

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval.

Instances Results

Conclusion

Piecewise bounding heuristics Bounding the efficiency function of pump 1

Assumptions

The efficiency function is either convex or concave.

Objective

For $\underline{f^{\epsilon}}$ and $\overline{f^{\epsilon}}$, identify the minimum number of sectors n, and the parameters of each sector i: slope a_i , y-intercept b_i and limits q_{\min_i} and q_{\max_i} .

Principle

Each sector *i* verifies : $p = a_i q + b_i$. Consecutive sectors i - 1 and *i* satisfy : $q_{\min_i} = q_{\max_{i-1}}$

Idea

Use supporting linear functions tangent to f^1 at predefined points, to control where the max error will be located, to respect eq. (11)-(13).

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval.

Instances Results

Conclusion

Piecewise bounding heuristics Bounding the efficiency function of pump 1

Lower bounding

For a potential tangent point $\tilde{q} : a_i = \frac{df^1}{dq}(\tilde{q})$ and $b_i = f^1(\tilde{q}) - \tilde{q}\frac{df^1}{dq}(\tilde{q})$.

Upper bounding

For a potential tangent point \tilde{q} : $a_i = \frac{df^1}{dq}(\tilde{q})$ and $b_i = f^1(q_{\min_i}) - q_{\min_i} \frac{df^1}{dq}(\tilde{q})$.

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval.

Instances Results

Conclusion

Piecewise bounding heuristics

Extension to the efficiency function of pump 3

Specificity

 f^3 takes into account the water level *h* from its intake tank. It is a function of two variables (q, h) instead of one.

Solution chosen

Piecewise bounding functions in the form p = aq + b - sh where s is a correction parameter.

Idea similar to (Borghetti et al., 2008) but here we ensure that eq. (11)-(13) remain verified.

Extension to the efficiency function of pump 2 and RO module

Solution chosen

Bounding of the global efficiency function of the subsystem "pump 2 + RO module" (instead of separated efficiency functions).

S.U.Ngueveu

MILP reformulation

Data

- $\mathbb{N}_I, \mathbb{N}_P, \mathbb{N}_T$: set of time intervals, pumps, set of tanks
- ts : scale of time, duration of the time intervals
- hq : section of the tanks, used to convert the debit into water level
- $P_{\min}^{i}, P_{\max}^{i}, \forall i \in \mathbb{N}_{P}$: pumping power limits of pump *i*
- $L_{\min}^{i}, L_{\max}^{i}, \forall i \in \mathbb{N}_{P}$: capacity limits of tank *i*
- $l_{\text{init}}^{j}, j \in \mathbb{N}_{T}, \geq 0$: initial water level of tank j
- $\operatorname{Pin}_i, \forall i \in \mathbb{N}$: input power available at time interval *i*
- piecewise functions data computed with the heuristics :
- $\{n_{P_i}, a_i^j, b_i^j, s_i^j, \alpha^j, \beta^j, Q_{\min}^{i,j}, Q_{\max}^{i,j}\}, \forall i \in \mathbb{N}_P, \forall j \in 1..n_{P_i}$ Binary variables
 - $r_i, \forall i \in \mathbb{N}_I$: equal to 0 iff all tanks are full at time interval *i*.
 - $sect_i^{j,k}, \forall i \in \mathbb{N}_I, \forall j \in 1...n_{p_1}, \forall k \in 1..3$: equal to 1 iff pump k is used at the j^{th} section of its piecewise power function during time interval i.

Continuous variables

- $q_i^{j,k}, \forall i \in \mathbb{N}_I, \forall j \in 1...n_{p_1}, \geq 0$: equal to the flow of water pumped by pump k at time i if it is used at the j^{th} sector of the piecewise power function and 0 otherwise.
- $I_i^j, \forall i \in \mathbb{N}_I, \forall j \in \mathbb{N}_T, \geq 0$: equal to the level of water going in tank j at time interval i
- $v_{j}^{j,k}, \forall i \in \mathbb{N}_{I}, \forall j \in 1...n_{p_{2}}, \geq 0$: equal to the level of water in tank k if pump k + 1 is used at the j^{th} section of the piecewise power function at time i and 0 otherwise.

uction

- Context Description
- Literature
- Method

Application

Comp. Eval.

Instances Results

S.U.Ngueveu

Context Description

Application

Instances Results

$\min \sum_{i \in \mathbb{N}} r_i * ts$

subject to

MILP reformulation

$$r_0 = 1$$
 (9)

(8)

$$l_0^j = l_{\text{init}}^j, \quad \forall j \in \mathbb{N}_T$$
 (10)

$$r_i - r_{i-1} \le 0$$
, $\forall i \in \mathbb{N}_I$ (11)

$$\sum_{j \in \mathbb{N}_T} l_i^j + (\sum_{j \in \mathbb{N}_T} L_{\max}^j) r_i \ge \sum_{j \in \mathbb{N}_T} L_{\max}^j, \qquad \forall i \in \mathbb{N}_I$$
(12)

$$\sum_{k \in \mathbb{N}_P} \sum_{j \in 1...n_{p_k}} (a_k^j q_i^{j,k} + b_k^j sect_i^{j,k} - s_k^j v_i^{j,k}) \le \operatorname{Pin}_i, \quad \forall i \in \mathbb{N}_I$$
(13)

$$l_{i}^{1} - l_{i-1}^{1} - \sum_{j \in 1..n_{p_{1}}} hq * ts * q_{j,1}^{i} + \sum_{j \in 1..n_{p_{2}}} hq * ts * (\alpha^{j}q_{j,2}^{i} + \beta^{j}secl_{i}^{j,2}) \leq 0, \qquad \forall i \in \mathbb{N}_{I}$$
(14)

$$l_i^2 - l_{i-1}^2 - \sum_{j \in 1..n_{p_2}} \ln q * \operatorname{ts} * ((\alpha^j - 1)q_{j,2}^i + \beta^j \operatorname{sect}_i^{j,2}) + \sum_{j \in 1..n_{p_3}} \ln q * \operatorname{ts} * q_{j,3}^i \le 0, \qquad \forall i \in \mathbb{N}_I$$
(15)

$$l_i^3 - l_{i-1}^3 - \sum_{j \in 1..n_{p_3}} hq * ts * q_{j,3}^i \le 0, \quad \forall i \in \mathbb{N}_I$$
 (16)

$$L_{\min}^{k} \leq l_{i}^{k} \leq L_{\max}^{k}, \quad \forall i \in \mathbb{N}_{I}, k \in \mathbb{N}_{P}$$
 (17)

$$\sum_{j \in 1..n_{p_k}} P_{\min}^k sect_i^{j,k} \le \sum_{k \in N_P\{1\}} \sum_{j \in 1..n_{p_k}} (a_k^j q_i^{j,k} + b_k^j sect_i^{j,k} - s_k^j v_i^{j,k}) \le \sum_{j \in 1..n_{p_k}} P_{\max}^k sect_i^{j,k}, \qquad \forall i \in \mathbb{N}_I, k \in \mathbb{N}_P \quad (18)$$

$$Q_{\min}^{i,j} sect_i^{j,k} \le q_i^{j,k} \le Q_{\max}^{i,j,s} sect_i^{j,k}, \forall i \in \mathbb{N}_I, k \in \mathbb{N}_P, j \in 1..n_{p_k}$$
(19
$$\sum_{j \in 1..n_m} sect_i^{j,k} \le 1, \quad \forall i \in \mathbb{N}_I, k \in \mathbb{N}_P$$
(20)

$$v_i^{j,k} - l_i^j \le 0, \forall k \in \mathbb{N}_P, i \in \mathbb{N}_I, j \in 1..n_{p_k}$$
(21)
 $v_i^{j,k} - L_{\max}^j sect_i^{j,k} \le 0, \quad \forall k \in \mathbb{N}_P, i \in \mathbb{N}_I, j \in 1..n_k$ (22)

Figure : Source : (Ngueveu et al. 2014)

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval. Instances Results

Conclusion

Introduction

Introduction

• Problem description / Problem statement / system description

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Literature review

Resolution method

Application to the water pumping problem

- 5 Computational Evaluation
 - Instances
 - Results

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval.

Instances Results

Conclusion

Implementation

- Matlab (for the efficiency functions)
- + GLPK (for transfer)
- + CPLEX 12.5 (for the MILP resolution)
- Intel Core 2Duo, 2.66 GHz 4GB of RAM

Data :

- Same pump characteristics as (Roboam X., Sareni B., Nguyen D. T., and Belhadj J. 2012).¹
- Input power profile deduced from the Guadeloupe wind site

Implementation and data

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval Instances Results

~ · ·

Computational Evaluation

	Pur	Pump 1		np 2+RO)	Pump 3	
ϵ	$\overline{n_{p_1}}$	<u>n_{p_1}</u>	$n_{p_1} \mid \overline{n_{p_2}} \mid \underline{n_{p_2}}$		$\overline{n_{p_3}}$	<u>n_{p3}</u>
5%	2	2	11	21	3	2
1%	5	5	21	29	8	5
0.5%	8	7	35	62	13	7
0.3%	10	9	43	74	17	9

Table : Number of sectors per tolerance value

	MILP		MILP			Gap	opt
ϵ	UB	S	LB	S	UB*	%	
5%	20580	4	19740	15	-	4.25	no
1%	20100	15	19920	140	-	0.9	no
0.5%	20040	178	19980	117	-	0.3	no
0.3%	20040	64	19980	321	19980	0.3	yes

Table : Upper and Lower bounds values obtained

S.U.Ngueveu

Introduction

Context Description

Literature

Method

Application

Comp. Eval.

Results

Conclusion

Done

- Groundwork for the integration of energy source characteristics in production scheduling problems.
- Resolution scheme is based on piecewise linear bounding and integer programming
- Bounding heuristics for convex and concave efficiency/transfer functions have been introduced.
- Good results on a water production optimization problem with non linear efficiency functions : global optimization problem solved to optimality on the given data sets.

Ongoing

• Address multiple energy sources with different characteristics and their resulting problems untractable for black-box solvers.