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Spectral Clustering: Interpretation

and Gaussian Parameter

Sandrine Mouysset, Joseph Noailles, Daniel Ruiz, and Clovis Tauber

Abstract Spectral clustering consists in creating, from the spectral elements of a

Gaussian affinity matrix, a low-dimensional space in which data are grouped into

clusters. However, questions about the separability of clusters in the projection space

and the choice of the Gaussian parameter remain open. By drawing back to some

continuous formulation, we propose an interpretation of spectral clustering with

Partial Differential Equations tools which provides clustering properties and defines

bounds for the affinity parameter.

1 Introduction

Spectral clustering aims at selecting dominant eigenvectors of a parametrized

Gaussian affinity matrix in order to build an embedding space in which the

clustering is made. Many interpretations of this method were lead to explain why

the clustering is made in the embedding space with graph theory with randomwalks

(Meila and Shi 2001), matrix perturbation theory (Ng et al. 2002), Operators in Man-

ifolds (Belkin and Niyogi 2003), physical models as inhomogeneous ferromagnetic

Potts model (Blatt et al. 1996) or Diffusion Maps (Nadler et al. 2006). But all these

analysis are investigated asymptotically for a large number of points and do not
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explain why this method works for a finite data set. Moreover, another problem

still arise: the affinity parameter influences the clustering results (Ng et al. 2002;

Von Luxburg 2007). And the difficulty to define an adequate parameter seems to

be slightly connected to the lack of some clustering property explaining how the

grouping in this low-dimensional space correctly defines the partitioning in the

original data.

In this paper, we propose a fully theoretical interpretation of spectral clustering

whose first steps were introduced by Mouysset et al. (2010). From this, we define

a new clustering property in the embedding space at each step of the study and

new results showing the rule of the Gaussian affinity parameter. After recalling

the spectral clustering method and the rule of the affinity parameter in Sect. 2.1,

we propose a continuous version of the Spectral Clustering with Partial Differential

Equations (PDE). To do so, we consider a sampling of connected components

and, from this, we draw back to original shapes. This leads to formulate spectral

clustering as an eigenvalue problem where data points correspond to nodes of

some finite elements discretization and to consider the Gaussian affinity matrix

A as a representation of heat kernel and the affinity parameter � as the heat

parameter t . Hence, the first step is to introduce an eigenvalue problem based on

heat equation which is defined with a Dirichlet boundary problem. From this, in

Sect. 2.2, we deduce an “almost” eigenvalue problem which can be associated to

the Gaussian values. Thus identifying connected component appears to be linked to

these eigenfunctions. Then, by introducing the Finite Elements approximation and

mass lumping, we prove in Sect. 2.3 that this property is preserved with conditions

on t when looking at eigenvectors given by spectral clustering algorithm. Finally,

in Sect. 3, we study numerically the difference between eigenvectors from the

spectral clustering algorithm and their associated discretized eigenfunctions from

heat equation on a geometrical example, as a function of the affinity parameter t .

2 Interpretation

In the following, spectral clustering and its inherent problem are presented. Then

we propose a continuous version of this method.

2.1 Spectral Clustering: Rule of Gaussian Parameter

Let consider a data set P D fxi giD1::N 2 R
p. Assume that the number of

targeted clusters k is known. First, the spectral clustering consists in constructing the

parametrized affinity matrix based on the Gaussian affinity measure between points

of the data set P. After a normalization step, by stacking the k largest eigenvectors,

the spectral embedding in Rk is created. Each row of this matrix represents a data

point xi which is plotted in this embedding space and then grouped into clusters via



Fig. 1 Geometrical example: (a) clustering result for � D 0:8, (b) percentage of clustering error

function of � , (c) spectral embedding space for � D 0:8

the K-means method. Finally, thanks to an equivalence relation, the final partition

of data set is directly defined from the clustering in the embedding space.

So this unsupervised method is mainly based on the Gaussian affinity measure,

its parameter � and its spectral elements. Moreover, it is known that the Gaussian

parameter conditions the separability between the clusters in the spectral embedding

space and should be well chosen (Von Luxburg 2007). The difficulty to fix this

choice seems to be tightly connected to the lack of results explaining how the

grouping in this low-dimensional space defines correctly the partitioning in the

original data for a finite data set. Figure 1 summaries these previous remarks

via a percentage of clustering which evaluated the percentage of mis-clustered

points applied on a geometrical example of two concentric rectangles (Fig. 1a). For

� D 0:8, value which provides clustering errors (Fig. 1b), the two clusters defined

with K-means are represented in the spectral embedding (Fig. 1c) by the respective

black and grey colors. A piece of circle in which no separation by hyperplane is

possible is described. Thus, in the original space, both rectangles are cut in two and

define a bad clustering as show in Fig. 1a.

2.2 Through an Interpretation with PDE Tools

As spectral elements used in spectral clustering do not give explicitly this topo-

logical criteria for a discrete data set, we are drawing back to some continuous

formulation wherein clusters will appear as disjoint subsets as shown in Fig. 2.

In that way, we first have to define a clustering compatibility which establishes the

link between continuous interpretation and the discrete case. So we consider an open

set ˝ subdivided by k disjoints connected components of˝ .

Definition 1 (Clustering Compatibility). Let ˝ be a bounded open set in R
p

made by ˝i ; i 2 1; ::; k disjoint connected components such that: ˝ D
Sk

iD1 ˝i .

Let P be a set of points fxi g
N
iD1 in the open set ˝ . Let note Pj , for j D

f1; ::; kg, the non empty set of points of P in the connected component ˝j

of ˝:Pj D ˝j \ P; 8j 2 f1; ::; kg. Let C D fC1; ::; Ck0g be a partition of P.



Fig. 2 Principle of the interpretation with PDE tools

Suppose that k D k0 then C is a compatible clustering if 8j D f1; ::; k0g; 9i 2

f1; ::; kg; Cj D Pi .

To make a parallel version in the L2.˝/ space, data points which believe

in a subset of ˝ are equivalent to believe in the same connected component.

In the following, we will formulate spectral clustering as an eigenvalue problem

by assuming data points as nodes of some finite elements discretization and by

considering Gaussian affinity matrix as a representation of heat kernel. But as the

spectrum of heat operator in free space is essential, we will make a link with a

problem defined on bounded domain in which the spectrum is finite. Then, due to the

fact that we compare the discrete data defined by the elements of the affinity matrix

with some L2 functions which are the solutions of heat equation, we will introduce

an explicit discretization with the Finite Element theory and the mass lumping to

cancel all knowledge about the mesh. Then we will make a feedback of this analysis

for the application of spectral clustering by defining clustering properties following

the successive approximations. Finally, this study will lead to a functional rule of �

and a new formulation of a spectral clustering criterion.

2.2.1 Link Between Gaussian Affinity and Heat Kernel in R
p

Let recall the Gaussian affinity element Aij between two data points xi and xj is

defined by Aij D exp
�
! xi ! xj

2
=2�2

�
. A direct link between the affinity Aij

and the heat kernel on R�
C � R

p , defined by KH .t; x/ D .4�t/!
p
2 exp

!
!kxk2=4t

�

could be established as follows:

Aij D .2��2/
p
2 KH

!
�2=2; xi ! xj

�
; 8i ¤ j; 8.i; j / 2 f1; ::; N g: (1)

Equation (1) permits defining the affinity measure as a limit operator: the Gaussian

affinity is interpreted as the heat kernel of a parabolic problem and its Gaussian

parameter � as a heat parameter t . Consider the following parabolic problem which

is called heat equation, for f 2 L2.Rp/:

.PRp /

(
@t u ! �u D 0 for .t; x/ 2 R

C � R
p;

u.x; 0/ D f for x 2 R
p:



Due to the fact that the spectrum of heat operator in free space, noted SH , is essential

and eigenfunctions are not localized in Rp without boundary conditions, we have to

restrict the domain definition and make a link with a problem on a bounded domain

˝ in which the eigenfunctions could be studied.

2.2.2 Clustering Property with Heat Equation

Let now introduce the initial value problem in L2.˝/, for f 2 L2.˝/:

.P˝/

8
ˆ̂<
ˆ̂:

@t u ! �u D 0 in RC � ˝;

u.t D 0/ D f; in˝;

u D 0; on RC � @˝:

Denote by KD the Green’s kernel of .P˝/. The solution operator in H 2.˝/ \

H 1
0 .˝/ associated to this problem is defined, for f 2 L2.˝/, by:

SD.t/f .x/ D

Z

˝

KD.t; x; y/f .y/dy; x 2 R
p:

Let consider f. fvn;i/n;i>0; i 2 f1; ::; kgg 2 H 1
0 .˝/ such that . fvn;i/n;i>0 are the

solutions of � fvn;i D �n;i fvn;i on ˝i for i 2 f1; ::; kg and n > 0 and extend

fvn;i D 0 on ˝n˝i . These functions are eigenfunctions of .P˝/ and the union of

these eigenfunctions is an Hilbert basis ofH 1
0 .˝/. Moreover, as˝ D

Sk
iD1 ˝i , for

all i 2 f1; ::; kg and n > 0, the eigenfunctions, noted f. fvn;i /n;i>0; i 2 f1; ::; kgg,

satisfied: SD.t/ fvn;i D e!�n;i t fvn;i . So the eigenfunctions of SD have a geometrical

property: its support is included in only one connected component. Thus a clustering

property in the spectral embedding space could be established.

Proposition 1 (Clustering Property). For all point x 2 ˝ and � > 0, let note

��
x a regularized Dirac function centred in x: ��

x 2 C 1.˝; Œ0; 1�/; �"
x.x/ D 1 and

supp.�"
x/ � B.x; "/. The eigenfunctions of SD , noted fvn;i , for i 2 f1; ::; kg and

n > 0 such that for all x 2 ˝ and all i 2 f1; ::; kg and for all t > 0, the following

result is satisfied:

�
9"0 > 0; 8" 2�0; "0Œ; 9n > 0; .SD.t/�"

x j fvn;i/L2.˝/ ¤ 0
�

” x 2 ˝i (2)

where .f jg/L2.˝/ D
R

˝
f .y/g.y/dy; 8.f; g/ 2 L2.˝/ is the usual scalar product

in L2.

Proof. By contrapositive, let i 2 f1; ::; kg and a point x 2 ˝j with any j ¤ i . Let

dx D d.x; @˝j / > 0 be the distance of x from the boundary of ˝j . According to

the hypothesis on ˝ , we have d0 D d.˝i ; ˝j / > 0. So for all " 2�0; inf.dx; d0/Œ,

B.x; "/ � ˝j . Then for all t > 0, supp.SD.t/�"
x/ � ˝j and so, for n > 0,



.SD.t/�"
x j fvn;i/L2.˝/ D 0. So there does not any "0 > 0 which verifies the direct

implication of (2). Reversely, let x 2 ˝i and " 2�0; inf.dx ; d0/Œ, B.x; "/ � ˝i .

So the support of �"
x is in ˝i . As the . fvn;i /n>0 is an Hilbert basis of L2.˝i/ and

that �"
x.x/ D 1 ¤ 0 then there exists n > 0 such that .�"

x j fvn;i / ¤ 0. In this case,

.SD.t/�"
x j fvn;i/L2.˝/ D e!�n;i t .�"

x j fvn;i / ¤ 0.

By considering an open subset O which approximates from the interior the open

set ˝ such that Volume.˝nO/ � �, for � > 0, both heat operators of .PRp / and

.P˝/ could be compared in O. Let ı be the distance fromO to˝ as shown in Fig. 2.

Due to the fact that the difference between the Green kernels KH and KD could

be estimated in O and is function of the heat parameter t , the geometrical property

could thus be preserved on the heat operator in free space restricted to O. Let vn;i

be the eigenfunction fvn;i which support is restricted to O, for all i 2 f1; ::; kg and

n > 0. From this, we obtain, for 0 < t < ı2:

SOH .t/vn;i D exp!�ni t vn;i C �.t; vn;i /; (3)

with k�.t; vn;i /kL2.O/ ! 0 when t ! 0; ı ! 0:

So we can prove that on O, the eigenfunctions for the solution operator for bounded

heat equation are quasi-eigenfunctions for SOH plus a residual (Mouysset et al.

2010). The clustering property adapted to the restricted heat operator SOH remains

introducing an hypothesis on the heat parameter t . Moreover, (2) is modified with

non-null values by introducing a gap between scalar product with eigenfunctions

such that for all x > 0 and all i 2 f1; ::; kg:

2
4

9"0 > 0; 9˛ > 0; 8" 2�0; "0Œ; 9n > 0; 8t > 0 small enough,

vn;i D argmaxfvm;j ;m2N;j 2Œj1;kj�g

ˇ̌
.SOH .t/��

x jvm;j /L2.O/

ˇ̌

and
ˇ̌
.SOH .t/�"

x jvn;i /L2.O/

ˇ̌
> ˛

3
5 ” x 2 Oi :

(4)

These previous results prove that in infinite dimension, a clustering could be realized

in the spectral embedding space because the eigenfunctions have a geometrical

property. This study leads to the following question: do eigenvectors of the affinity

matrix behave like eigenfunctions of .P˝/?

2.3 Discretization with Finite Elements

From this, we will look for a similar behaviour onto eigenvectors of A by

introducing a finite dimension representation matching with the initial data set P

with help of the finite elements (Ciarlet 1978). So, we consider data points as finite

dimensional approximation and elements of the affinity matrix built from data points

as nodal values of SOH .



2.3.1 Approximation in Finite Dimension

Let �h be a triangulation on NO such that: h D max
K2�h

hK , hK being a characteristic

length of triangle K . Let consider a finite decomposition of the domain: NO D

[K2�h
K in which .K; PK ; ˙K/ satisfies Lagrange finite element assumptions for

all K 2 �h. We define also the finite dimension approximation space: Vh D fw 2

C0. NO/I 8K 2 �h; wjK 2 PKg and denote ˘h the linear interpolation from C 0. NO/

in Vh with the usual scalar product .�j�/L2.Vh/ (Ciarlet 1978). According to this

notations, for t > 0, the ˘h-mapped operator SOH applied to each shape function

�j is, for h3pC2 < t2, for all 1 � j � N :

.4�t/
p
2 ˘h.SOH .t/�j /.x/ D

NX

kD1

..A C IN /M /kj �k.x/ C O

�
h3pC2

t2

�
; (5)

whereM stands for the mass matrix defined by:Mij D .�i j�j /L2.Vh/. Equation (5)

means that the affinity matrix defined in (1) in spectral algorithm is interpreted as

the ˘h-projection of operator solution of .PRp / with M mass matrix from Finite

Element theory (Mouysset et al. 2010).

So we could formulate finite elements approximation of continuous clustering

result (3). From the eigenfunctions of SD restricted to O, their projection in Vh,

notedWn;i , are defined by:Wn;i D ˘hvn;i 2 Vh; 8i 2 f1; ::; kg. So, for h
3pC2

2 < t <

ı2, the following result could be established:

.4�t/
!p
2 .A C IN /M Wn;i D e!�n;i t Wn;i C 	 .t; h/ ; (6)

where k	 .t; h/ kL2.Vh/ ! 0 and ı ! 0. Equation (6) shows that the geometrical

property is preserved in finite dimension on the eigenvectors of .A C IN /M .

Moreover, a lower bound for the heat parameter was defined. But all this previous

results include the mass matrix which is totally dependent of the finite elements.

In order to cancel this dependence, mass lumping process is investigated.

2.3.2 Mass Lumping

The mass lumping method consists in using a quadrature formula whose integration

points are the interpolation points of the finite element. So let Ik be the list of indices

of points which are element of K 2 �h. Let consider the quadrature scheme exact

for polynomials of degree� 1:

Z

K

�.x/dx �
X

k2Ik

jKj

3
�.xik / (7)



where jKj is the area of the finite elementK . So, with additional regularity condition

on the mesh which bounds jKj, the mass lumping permits considering the mass

matrix M as a homogeneous identity matrix. So (6) is modified so that, 9 ˛ > 0,

such that:

˛ .A C IN / Wn;i D e!�n;i t Wn;i C 	 0.t; h/; (8)

where k	 0.t; h/kL2.Vh/ ! 0 and ı ! 0. The approximation in finite dimension

of the clustering property (4) is reformulated as follows, for all xr 2 P, for all

i 2 f1; ::; kg:

2
664

9˛ > 0; 9n > 0; 8t > 0; t; h2=t and h.3pC1/=t2 small enough,

Wn;i D argmaxfWm;j ;m2N;j 2Œj1;kj�g

ˇ̌
ˇ
!
.A C IN /:r jWm;j

�
L2.Vh/

ˇ̌
ˇ

and

ˇ̌
ˇ..A C IN /:r jWn;i /L2.Vh/

ˇ̌
ˇ > ˛

3
775 ” xr 2 Oi ;

(9)

where ..A C IN //:r is the r th column of the matrix .A C IN /, for all r 2 f1; ::N g.

This leads to the same clustering for a set of data points either we consider

eigenfunctions in L2.˝/ or ˘h-interpolated eigenfunction in the approximation

space Vh. With an asymptotic condition on the heat parameter t (or Gaussian

parameter �), points which are elements of the same cluster have the maximum of

their projection coefficient along the same eigenvector. So the clustering in spectral

embedding space provides the clustering in data space.

3 Gaussian Parameter: A Geometrical Example

This previous theoretical interpretation proves that the Gaussian parameter should

be chosen within a specific interval in order to improve the separability between

clusters in the spectral embedding space. In order to experiment the parallel between

continuous version and the approximate one, we consider a geometrical example

with non convex shapes as shown in Fig. 3a. For each connected component (or each

cluster) i 2 f1; 2g, the discretized eigenfunction, noted W1;i , associated to the first

eigenvalue of each connected component and the eigenvectors, noted Yi , which

gives maximum projection coefficient with W1;i are respectively plotted in Fig. 3b,

c and e, f. The correlation ! betweenW1;i and Yi is represented as a function of the

heat parameter t in Fig. 3d: ! D j.W1;i jYi /j.kW1;i k2kYi k2/!1. The vertical black

dash dot lines indicate the lower and upper estimated bounds of the heat parameter.

In this interval, the correlation between the continuous version and the eigenvectors

of the Gaussian affinity matrix is maximum. So the clusters are well separated in the

spectral embedding space.



Fig. 3 (a) Data set (N D 669), (b) and (c) discretized eigenfunctions of SD , (d) correlation

! between the continuous version and its discrete approximation function of t , (e) and (f)

eigenvectors from A which provides the maximum projection coefficient with the eigenfunctions

of SD

4 Conclusion

In this paper, spectral clustering was formulated as an eigenvalue problem. From

this interpretation, a clustering property on the eigenvectors and some conditions on

the Gaussian parameter have been defined. This leads to understand how spectral

clustering works and to show how clustering results could be affected with a bad

choice of the affinity parameter. But we do not take into account the normalization

step in the whole paper but its rule is crucial for ordering largest eigenvectors for

each connected components to the first eigenvectors and should be studied.
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