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Two-input two-output port model for mechanical

systems

D. Alazard ∗, J. Alvaro Perez, †T. Loquen, C. Cumer ‡

This paper proposes a double input output port transfer to model complex mechanical
systems composed of several sub-systems. The sub-structure decomposition is revisited
from the control designer point of view. The objective is to develop modelling tools to be
used for mechanical/control co-design of large space flexible structures involving various
substructures (boom, links of robotic arm,...) connected one to each other through dy-
namics local (actuated) mechanisms inducing complex boundary conditions. The double
input output port model of each substructure is a transfer where accelerations and external
forces at the connection points are both on the model inputs and outputs. Such a model :

• allows to the boundary conditions linked to interactions with the other substructures
to be externalized outside the model,

• is defined by the only substructure own dynamic parameters,

• allows to build the dynamic model of the whole structure by just assembling the double
port models of each substructure.

The principle is first introduced on a single axis spring-mass system and then extented
to the 6 degress-of-freedom case. This generalization uses the clamped-free substructure
dynamic parameters such as finite element softwares can provide.

Nomenclature

General notations:
[X]R : model, vector or matrix X projected in the frame R.
d
−→
X
dt |R = 0 : time-derivation of the vector

−→
X w.r.t the frame R.

~u ∧ ~v : cross product of vectors ~u and ~v (~u ∧ ~v = (∗~u)~v)

~u.~v : dot product ~u and ~v (~u.~v = [~u]
T
R [~v]R , ∀R)

s : Laplace variable.

In : Identity matrix n× n.

0n×m : null matrix n×m.

AT : A transposed.

diag(ωi) : diagonal matrix N ×N : diag(ωi)(i, i) = ωi, i = 1, · · · , N .

P (s)(i : j, l : m) : subsystem of P (s) restricted to inputs l to m and to inputs i to j.

See also Figure 14 for the following notations:

A : the substructure (or body) considered for the modeling.

P : the parent substructure (or body) of A.

C : the child substructure (or body) of A.

∗Professor, University of Toulouse-ISAE, 10, Av. Edouard Belin, Toulouse- 31055 FRANCE. (Email: daniel.alazard@isae.fr)
†PhD. University of Toulouse-ISAE, 10, Av. Edouard Belin, Toulouse- 31055 FRANCE
‡Research Scientists, ONERA, 2, Av. Edouard Belin, Toulouse- 31055 FRANCE.
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Ra = (P, ~xa, ~ya, ~za) : body A reference frame, where P denotes the anchorage point between
A and P. ~xa, ~ya, ~za are unitary vectors.

A : centre of mass of body A.
−→a P : absolute linear acceleration vector of point P .
−→ω P : absolute angular velocity vector of point P .

ẍP : dual (6 components) vector of accelerations at point P .
−→
F A/P : interaction force by A on P.
−→
T A/P,P : interaction torque by A on P at point P .

FA/P,P : dual (6 components) vector of interactions at point P .
−→a C : absolute linear acceleration vector of point C.
−→ω C : absolute angular velocity vector of point C.

ẍC : dual (6 components) vector of accelerations at point C.
−→
F C/A : interaction force by C on A.
−→
T C/A,C : interaction torque by C on A at point C.

FA/P,C : dual (6 components) vector of interactions at point C.

MA
P (s) : direct dynamic model of the body A at point P .

mA : mass of body A.

I
A
A : moment of inertia tensor of body A at the point A.

τCP : kinematic model between the point C and the point P : τCP =
[

I3 (∗
−−→
CP )

03×3 I3

]

.

(∗
−−→
CP ) : antisymmetric matrix associated to the vector

−−→
CP : if

−−→
CP =






x

y

z






R

then
[

(∗
−−→
PB)

]

R
=






0 −z y

z 0 −x

−y x 0






R

∀ R.

Nm : number of mesh nodes.

Pi : (i = 1, · · · , Nm) nodes of the meshing.

q : (6Nm × 1) vector of degrees-of-freedom.

δxC : (6× 1) vector of the 6 displacements of the node C in Ra.

δx 6=C : (6 (Nm − 1)× 1) vector of displacements at the other nodes Pi 6= C.

N : number of flexible modes (N = 6Nm).

η : vector of modal coordinates.

ωi : frequency of the ith flexible mode.

ξi : modal damping ratio if the ith flexible mode.

li,P : 1× 6 modal participation factor of the ith flexible mode flexible at point
P .

LP : matrix N × 6 of modal participation factors at point P (LP =
[lT1,P , l

T
2,P , · · · , l

T
N,P ]

T ).

Φ : (N ×N) modal shape matrix.

ΦC : (6×N) projection of the n modal shapes on the 6 d.o.f δxC (ΦC = Φ(1 :
6, :)).

Φ 6=C : ((N − 6)×N) projection of the n modal shapes on the other d.o.f.

~ra : unit vector along the revolute joint axis (if present): ~ra = [xra yra zra ]
T
Ra

.
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I. Introduction

Space system engineering requires some tools to manage main trade-off as soon as possible in the space-
craft design process. The classical process where the control engineer has to design a control law meeting
some specifications for a given mechanical and avionics architecture can bring some time-consuming itera-
tions with the overall system designer. Designing main mechanical parameters, main avionics characteristics
and the associated control law in one shot could save lots of time. Today some tools are available to optimize
the parameters of a fixed-structure control system and it seems interesting to include in the set of decision
variables some parameters characterizing the mechanical or avionics design. In,1 some methods and tools
were proposed for control/avionics co-design. The model was based on previous developments2 to build
the overall model of the spacecraft composed of a main body and various flexible appendages connected to
the main body through clamped or revolute joints. Such a method is restricted to open-chain mechanical
systems where flexible bodies are the ending bodies (leaves) of the various chains (or branches). Indeed,
any open-chain mechanical system can be describe by a tree where each node corresponds to a body (or
substructure) and each edge corresponds to a joint between two bodies. Thus, classical tree terminology will
be used in this paper (root, leaf, parent, child).

In the scope to perform mechanical/control co-design, for instance for sizing the main mechanical param-
eters of a space robotics arms and for designing the control laws to meet some specifications (bandwitdh,
accuracy) at the end-effector level, some modelling tools are still required to model arbitrary open-chain
mechanical systems composed of flexible bodies. Such a model must be able to be augmented with the
model of local mechanisms (actuator, gear stiffness,...) lumped at the connecting points between the various
substructures or bodies. These mechanisms induce complex boundary conditions (between free and clamped
boundary conditions) which are more determinant on the dynamic behavior of the overall system than a too
rich (and too high order) representation of the internal flexible modes of the each substructure.

With this scope in mind, the proposed approach aims to develop a double input output port transfer
to model each substructure. This double input output port model is a multi-input multi-output transfer
with two channels. The first one represents the inverse dynamic model (forces on input and accelerations
on output) at the connecting point between the substructure and the child structure. The second channel
represents the direct dynamic model (accelerations on input and forces on output) at the connecting point
between the substructure and parent structure. The state-space representation of the double-port model
is minimal such that there is no extra state variables to represent the direct and the inverse dynamic
models. There are some strong links between this approach and the Graig-Bampton substructure coupling
approach3,4 more generally known in the field of finite element method applied to structure dynamics.
Taking into account that, for the considered space applications, the boundary degrees-of-freedom of the
Graig-Bampton approach are reduced to the 6 degrees-of-freedoom (3 translations and 3 rotations) of the
connection point, one can externalize the accelerations and external forces at this point to plug any kind
of boundary conditions (free, clamped, or more complex boundary conditions provided by a dynamic local
mechanism). There are also some links with the port-hamiltonian representation of complex physical systems
involving interconnected sub-systems, lumped or distributed parameters.5–7

In the first section, an introductive single-axis example is presented to highlifht the basic principle.
In the second section the generalization to the 6 degres of freedom case for any kinds of mechanical

substructure is derived from the output data commonly provided by F.E (Finite Elements) softwares (i.e.:
pulsations, damping ratios, modal participation factors, and modal shapes of the substructure) and commonly
used in space engineering.

II. An introductive example

The objective is to model any kind of open-chain mechanical systems composed of spring-mass subsys-
tems all working along the same axis −→x . An example of such a system is depicted in Figure 1.

Mechanical engineers often debate the question:

Who, between the force
−→
f and the acceleration −→γ , is the cause or the effect in the well-known relationship

−→
f = m−→γ ?.

The two port approach will put anyone agree !!: a double port dynamic model Zi(s) is developped to represent
the elementary spring-mass system presented in Figure 3. The block-diagram representation of this dynamic
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−→x

k1

k2

k3

k4

k5

m1

m2

m3

m4

m5

Figure 1. An open-chain mechanical system composed of 5 spring-mass subsystems.

model (also called quadripole a because it is a 2 × 2 transfer) is presented in Figure 2 and highlights that
acceleration and force are both on the inputs or the outputs of Zi(s):

[

Ẍi(s)

Fi/i−1(s)

]

= Zi(s)

[

Fi+1/i(s)

Ẍi−1(s)

]

• Fi/i−1(s) = L[fi/i−1(t)] is the force applied by the i-th spring-mass system on the parent b (or left-hand
side) substructure (X(s) = L[x(t)] is the Laplace transform of x(t)),

• Fi+1/i(s) = L[fi+1/i(t)] is the force applied by the child (or right-hand side) sub-structure on the i-th
spring-mass system,

• Ẍi−1(s) = L[ẍi−1(t)] is the inertial acceleration of the connecting point (interface) between i-th spring-
mass system and the parent substructure,

• Ẍi(s) = L[ẍi(t)] is the inertial acceleration of the connecting point between i-th spring-mass system
and the child substructure.

Zi(s)
fi/i−1

fi+1/i ẍi

ẍi−1

Figure 2. Double port dynamic model Zi(s) of the elementary spring mass system.

ki

mi

xi−1 xi

fi/i−1

fi+1/i

−→x

Figure 3. The elementary spring-mass system.

From the Newton principle, one can easily derive the following equations that govern the dynamical
behavior of the elementary spring-mass system:

miẍi = fi+1/i − fi/i−1 (1)

fi/i−1 = ki(xi − xi−1) . (2)

These equations can be represented by the block diagram depicted in Figure 4.

aIndeed, there is a link with quadripoles or impedance models used in electrical engineering or in mechanical engineering
but the particularity of this double-port model is that it considers accelerations instead of velocities.

bIn this context, the parent sense is towards the inertial and fixed frame.
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fi+1/i

fi/i−1

ẍi

ẍi−1

+
−

+
−

1

s
1

s
1

1

2

2

1/mi

ki

Figure 4. Block-diagram représentation of Zi(s).

Thus, Zi(s) is a second order transfer and can be represented by:

• the state space representation associated to the state x = [δxi
˙δxi]

T with δxi = xi − xi−1 (i.e.: the
outputs of integrators in Figure 4):








˙δxi

δ̈xi

ẍi

fi/i−1







=








0 1 0 0

−ki/mi 0 1/mi −1

−ki/mi 0 1/mi 0

ki 0 0 0















δxi

˙δxi

fi+1/i

ẍi−1








. (3)

• the matrix of transfers:

Zi(s) =







s2 ki
ki −miki







mis2+ki
. (4)

The upper channel of Zi(s) (from fi+1/i to ẍi) is homegeneous to a inverse dynamic model and can be
expressed in Kg−1 and the lower channel of Zi(s) (from ẍi−1 to fi/i−1) is homegeneous to a direct dynamic
model and can be expressed in Kg.

From the block diagram depicted in Figure 4, one can create a subsystem block Zi(s) completely char-
acterized by the 2 dynamical parameters mi and ki (see Figure 5).

fi+1/i

fi/i−1

ẍi

ẍi−1

1 1

22

Zi(s)

Figure 5. The subsystem Zi(s).

Then, the model of the example presented in Figure 1 can be directly described by a block diagram
(see Figure 6) involving 5 blocks Zi, i = 1, · · · , 5 and the interactions between these 5 blocks are directly
translated by lines between the blocks. These interactions are in fact the constraints or boundary conditions
on the inputs of the Zi blocks which are summarized in Table 1 (left).

One can also defined some inputs and ouputs for the whole system. For instance, Figure 7 represents the
same system with an actuated force u between masses 1 and 2. The boundary conditions are then displayed
in Table 1 (right) and the transfer between u and the position x3 of the third mass can be described by the
block diagram presented in Figure 8.

Now we consider the classical 2 masses + 1 string system depicted in Figure 9.
The objective is now to compute the new elementary transfer, noted Z(s,mi−1, ki,mi) between fi+1/i,

ẍi−1 on the inputs and xi, fi/i−1 on the outputs. The definition of these variables is the same than in the
previous case and it can be noticed that the transfer Zi(s) defined for the elementary spring-mass system
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i fi+1/i ẍi−1

1 f2/1 + f3/1 0

2 f4/2 + f5/2 ẍ1

3 0 ẍ1

4 0 ẍ2

5 0 ẍ2

i fi+1/i ẍi−1

1 f2/1 + f3/1 − u 0

2 f4/2 + f5/2 + u ẍ1

3 0 ẍ1

4 0 ẍ2

5 0 ẍ2

Table 1. Boundary conditions on the 5 blocks Zi for the examples of Figure 1 (left) and Figure 7 (right).

+

+

+

+

fi+1/i

fi/i−1

ẍi

ẍi−1

Zi(s), i = 1

fi+1/i

fi/i−1

ẍi

ẍi−1

Zi(s), i = 2

fi+1/i

fi/i−1

ẍi

ẍi−1

Zi(s), i = 4

fi+1/i

fi/i−1

ẍi

ẍi−1

Zi(s), i = 3

fi+1/i

fi/i−1

ẍi

ẍi−1

Zi(s), i = 5

Figure 6. Block diagram corresponding to the example of Figure 1.

−→x

k1

k2

k3

k4

k5

m1

m2

m3

m4

m5
u

Figure 7. An open-chain mechanical system composed of 5 spring-mass systems with a force actuator between masses
1 and 2.
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+

+

+

+

fi+1/i

fi/i−1

ẍi

ẍi−1

Zi(s), i = 1

fi+1/i

fi/i−1

ẍi

ẍi−1

Zi(s), i = 2

fi+1/i

fi/i−1

ẍi

ẍi−1

Zi(s), i = 4

fi+1/i

fi/i−1

ẍi

ẍi−1

Zi(s), i = 3

fi+1/i

fi/i−1

ẍi

ẍi−1

Zi(s), i = 5

1

s
1

s

+

−

+

+
u

x3

Figure 8. The block-diagram corresponding to the example of Figure 7.

ki

mi

xi

fi/i−1
fi+1/i

−→x

xi−1

mi−1

Figure 9. The spring mass system.
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(Figure 3) reads Zi(s) = Z(s, 0, ki,mi). From Newton principle applied to the mass mi−1, the new transfer
Z(s,mi−1, ki,mi) can be described by the block diagram depicted in Figure 10 and represented by:

• the state space representation associated to the state x = [δxi
˙δxi]

T with δxi = xi − xi−1:








˙δxi

δ̈xi

ẍi

fi/i−1







=








0 1 0 0

−ki/mi 0 1/mi −1

−ki/mi 0 1/mi 0

ki 0 0 −mi−1















δxi

˙δxi

fi+1/i

ẍi−1








(5)

• the matrix of transfers:

Z(s,mi−1, ki,mi) =







s2 ki
ki −mimi−1(s

2 + ω2
f )







mi(s2+ω2
c,p)

. (6)

where ωf =
√

ki(mi−1+mi)
mi−1mi

is the free pulsation of the spring-mass system and ωc,p =
√

ki

mi
is the

“parent cantilevered” frequency (that is, when the mass mi−1 is clamped on the inertial frame),

• the port-Hamiltoian representation, involving the “free” hamiltonian function H = 1
2mi

˙δx
2

i +
1
2kiδx

2
i

(i.e.: the sum of kinematic and potential energies when inputs fi+1/i and ẍi−1 are null):







q̇ = ∂H
∂p

ṗ = −∂H
∂q + [1 −mi]

[

fi+1/i

ẍi−1

]

[

ẍi

fi

]

=

[
1
mi

−1

]

ṗ+

[

0 1

1 −(mi−1 +mi)

][

fi+1/i

ẍi−1

]
(7)

where q = δxi and p = mi
˙δxi.

Zi(s)

fi−1/i

fi+1/i ẍi

ẍi−1

mi−1

+

−

Z(s,mi−1, ki,mi)

Figure 10. Double port model Z(s,mi−1, ki,mi) of the spring-mass system.

The main interest of Z(s,mi−1, ki,mi) w.r.t. Zi(s) is that it is invertible:

Z−1(s,mi−1, ki,mi) /








˙δxi

δ̈xi

fi+1/i

ẍi−1







=








0 1 0 0

−ki/mi−1 0 1 1/mi−1

ki 0 mi 0

ki/mi−1 0 0 −1/mi−1















δxi

˙δxi

ẍi

fi/i1








The upper channel is also invertible. Let Z−1u , the operation corresponding to the inversion of the upper
channel of Z only:

Z−1u(s,mi−1, ki,mi) /








˙δxi

δ̈xi

fi+1/i

fi/i−1







=








0 1 0 0

0 0 1 −1

ki 0 mi 0

ki 0 0 −mi−1















δxi

˙δxi

ẍi

ẍi−1








.
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The lower channel is also invertible. Let Z−1l , the operation corresponding to the inversion of the lower
channel of Z only:

Z−1l(s,mi−1, ki,mi) /








˙δxi

δ̈xi

ẍi

ẍi−1







=








0 1 0 0

−ω2
f 0 1/mi 1/mi−1

−ki/mi 0 1/mi 0

ki/mi−1 0 0 −1/mi−1















δxi

˙δxi

fi+1/i

fi/i−1








.

This lower channel inversion can also be represented by the block-diagram depicted in Figure 11 where the
lower channel of Zi(s) acts as a feedback on the inverse dynamic model of the mass mi−1. One can recognize
in this diagram the general approach presented in2,9 to model a flexible appendage on a main body. The
interest of this new approach is that the double port appendage model (here Zi(s)) can be used to connect
input port fi+1/i and output port ẍi to another appendage in series connection with Zi(s).

Zi(s)
fi+1/i ẍi

Z−1l(s,mi−1, ki,mi)

fi/i−1 ẍi−11/mi−1

+

−

Figure 11. Block-diagram description of Z−1l (s,mi−1, ki,mi).

From the control design point of view, this last inversion is the most well-known: if we consider external
forces applied on the spring-mass system, i.e.: u1 = fi+1/i (child side) and u2 = −fi/i−1 (parent side), the
transfer between accelerations (output) and forces (input) reads:

[

ẍi

ẍi−1

]

=

[

mi−1(s
2 + ω2

c,c) miω
2
c,p

mi−1ω
2
c,c mi(s

2 + ω2
c,p)

]

mimi−1(s2 + ω2
f )

︸ ︷︷ ︸

G(s)

[

u1

u2

]

where ωc,c =
√

ki

mi−1

is the “child cantilevered” frequency (that is, when the mass mi is clamped on the

inertial frame). One can recognize the free frequency ωf in the denominator of G(s), the “child cantilevered”
frequency ωc,c in the collocated upper left-hand transfer (G(1, 1)) and the “parent cantilevered” frequency
ωc,p in the collocated lower right-hand transfer (G(2, 2)).

These inversion operations on the double-port model allow to handle various constraints and bound-
ary conditions. Indeed, these constraints and boundary conditions must be specified on the inputs of the
subsystem model. It is thus now possible to specify that:

• the parent mass mi−1 of a subsystem i is free to move and submitted to an external force u using
Z−1l(s,mi−1, ki,mi) and setting fi/i−1 = −u (ẍi−1 is now a free output),

• the child mass mj of a subsystem j is locked using Z−1u(s,mj−1, kj ,mj) and setting ẍj = 0 (fj+1/j is
now a free output and represents the lock force),

• if j = i (mi−1 is free and submitted to an external force, mi is locked) then Z−1(s,mi−1, ki,mi) must
be used to specify both boundary conditions on ẍi and fi/i−1.

For instance, considering the actuated system depicted in Figure 12 and composed of 2 subsystems (i = 1, 2).
The transfer between u and the 3 outputs ẍ0, ẍ1 and f3/2 (the force locking m2) can be described by the
block diagram presented in Figure 13. The various boundary conditions for this example are summarized in
Table 2.
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i fi/i−1 ẍi fi+1/i ẍi−1

1 −u free f2/1 free

2 free 0 free ẍ1

Table 2. Boundary conditions relative to the example depicted in Figure 12.

k1

m1

u f3/2

−→x

m0 m2

k2

x0
x1 x2

Figure 12. Another example.

f3/2

u ẍ0

ẍ1
ẍ2

f1/0 f2/1
−1

Z−1l(s,m0, k1,m1) Z−1
u

(s, 0, k2,m2)

Figure 13. Block-diagram model of example depicted in Figure 12.

More generally, the following properties can easily be shown.
Properties:

•
[
Z−1l

]−1
=

[
Z−1

]−1l = Z−1u ,

•
[
Z−1u

]−1
=

[
Z−1

]−1u

= Z−1l ,

•

[

0 −1

1 0

]

Z−1(s,mi−1, ki,mi)

[

0 −1

1 0

]

= Z(s,mi, ki,mi−1).

III. Generalization

III.A. Objective

As shown in Figure 14, this section considers an intermediate flexible body (appendage or link) A linked to
the parent structure P at the point P and to the child structure C at the point C. It is assumed that the only
external forces and torques applied to A are the interactions with P and C at point P and C, respectively.

In the same spirit than the approach developped in the single-axis case, the objective is to build the
double port model (12× 12) of the body A such that:

[

ẍC
FA/P,P

]

= MA
P,C(s)

[

FC/A,C

ẍP

]

. (8)

III.B. Principle

III.B.1. Clamped-free model

The modeling of the clamped (at point P ) / free (at point C) body A using a finite-element approach is first
considered (i.e.: FC/A,C = 0). Let Nm the number of mesh nodes, considering the 3 translations and the 3
rotations of each nodes, the size of the vector q of the ”flexible” degrees-of-freedom (d.o.f.) is N = 6Nm.
Then, the finite element method:3
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FA/P ,P =





−→
F A/P
−→
T A/P ,P





ẍP =





−→
a P
−→
ω̇ P





ẍC =





−→
a C
−→
ω̇ C



 FC/A,C =





−→
F C/A
−→
T C/A,C





P1

P2

P3

P4

P

~xa

~ya

~za

A
A

C

P

C

Figure 14. The intermediate body A in the structure.

• computes the dynamic model of the clamped-free body under the form of a the generalized 2nd-order
differential equation:

[

Mrr Mrf

MT
rf Mff

][

ẍP

q̈

]

+

[

06×6 06×N

0N×6 K

][

δxP

q

]

=

[

FP/A,P

0N×1

]

=

[

−FA/P,P

0N×1

]

(9)

where Mrr = DA
P is the direct dynamic model, at point P , of the body A assumed rigid:2

DA
P = τTAP

[

mAI3 03×3

03×3 I
A
A

]

τAP ,

Mff , Mrf are the mass submatrices associated to the flexible d.o.f. q and the rigid-flexible cross-
coupling terms, respectively. K is the stifness matrix associated to the vector q.

• performs the modal analysis of the pair (Mff , K), i.e.: computes the modal shape matrix Φ (N ×N)
and the flexible mode frequencies ωi, i = 1, · · · , N such that:

(Mffω
2
i −K)Φ(:, i) = 0, ΦTMffΦ = IN , ΦTKΦ = diag(ω2

i ) .

The modal coordinate transformation q = Φη in equation (9) leads to:

[

DA
P LT

P

LP IN

][

ẍP
η̈

]

+

[

06×6 06×N

0N×6 diag(ω2
i )

][

δxP
η

]

=

[

−FA/P,P

0N×1

]

, (10)

where LP = ΦTMT
rf is the matrix (N ×6) of the modal participation factors. The i-th row of Lp, noted li,P ,

can be interpreted as the contribution of the i-th mode “acceleration” (η̈i) to the force (3 components) and
the torque (3 components) created inside the clamped joint located at point P , or by duality, how the i-th
mode is “accelerated” due to an acceleration of the clamped joint located at point P .

A standard damping ratio ξi can then be taken into account on each modal coordinate. Then, equation
(10) can be also expressed under:

• the hybrid-cantilever form:
−FA/P,P = DA

P ẍP + LT
P η̈

η̈ + diag(2ξiωi)η̇ + diag(ω2
i )η = −LP ẍP

11 of 18



• a state-space realization:




η̇

η̈



 =




0N×N IN

−diag(ω2
i ) −diag(2ξiωi)








η

η̇



+




0N×6

−LP



 ẍP

FA/P,P =
[

LT
P diag(ω2

i ) LT
P diag(2ξiωi)

]




η

η̇



− (DA
P − LT

PLP )
︸ ︷︷ ︸

DA
P0

ẍP .

DA
P0

is the residual mass of A rigidly attached to P at point P .

• or the block diagram representation depicted in Figure 15 where the characteristic parameters ωi, ξi,
Lp and DA

P0
appear with a minimal occurence.

1

s

1

s

[LP ]
T
Ra

[

D
A
P0

]

Ra

+

+

−

−

+

−

η̈η̇η

−
[

M
A
P

]

Ra

(s)

diag(ωi) diag(ωi)

diag(2ξi)
[LP ]Ra

[ẍP ]Ra

=





−→
a P
−→
ω̇ P





Ra

[

FA/P,P

]

Ra

=





−→
F A/P
−→
T A/P,P





Ra

N

6

Figure 15. Block diagram representation of the cantilever-free model projected in the frame Ra.

This is the model commonly used in space engineering to connect a flexible appendage on a rigd body
(see also2). But in this model, the displacements of the various mesh nodes (particularly at the point C) are
lost.

III.B.2. 2-port model

It is now assumed that:

• the meshing of A includes the point C,

• q is ordered such that the first 6 components correspond to the 6 displacements δxC of the node C
(w.r.t. the equilibrium position in Ra).

The modal coordinate transformation q = Φη can be written:

q =

[

δxC
δx 6=C

]

=

[

ΦC

Φ 6=C

]

η

where:
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• δxC is the (6× 1) vector of the 6 displacements of the node C in Ra,

• δx 6=C is the (6 (Nm − 1)× 1) vector of displacements at the other nodes Pi 6= C,

• ΦC is the (6×N) projection matrix of the N modal shapes on the 6 d.o.f δxC (ΦC = Φ(1 : 6, :)),

• Φ 6=C is the ((N − 6)×N) projection matrix of the N modal shapes on the other d.o.f.

Under the linearity assumption (the second order terms are neglected in the composition of accelerations),
it is now possible to express the acceleration at point C considering the 2 contributions:

• the acceleration due to the deformation of A: ΦC η̈ (to be projected in Ra),

• the acceleration due to “whole” acceleration of A at point P , translated to C through the kinematic
model τCP : τCP ẍP (to be projected in Ra):

ẍc = τCP ẍP +ΦC η̈ = [τCP ΦC ]

[

ẍP
η̈

]

. (11)

It is also possible to take into account that the body A is submitted to an external force FC/A,C at point
C, thanks to virtual work principle. The left-hand term of model (9) must be completed by the generalized
force due to the work of FC/A,C which reads:

W(FC/A,C) = (τCP δxP + δxC)
TFC/A,C =

[

δxP
η

]T

[τCP ΦC ]
T
FC/A,C .

Then model (9) becomes:

[

Mrr Mrf

MT
rf Mff

][

ẍP
q̈

]

+

[

06×6 06×N

0N×6 K

][

δxP
q

]

=






−FA/P,P + τTCPFC/A,C[

FC/A,C

0(N−6)×1

]




 (12)

and, through the modal coordinate transformation, model (10) reads:

[

DA
P LT

P

LP IN

][

ẍP

η̈

]

+

[

06×6 06×N

0N×6 diag(ω2
i )

][

δxP

η

]

=

[

−FA/P,P + τTCPFC/A,C

ΦT
CFC/A,C

]

. (13)

From equations (11) and (13), the double port model MA
PC(s) of the body A defined in equation (8) can

be expressed (modal damping ratios are now considered):

• by the extented hybrid cantilever form:

−FA/P,P = DA
P ẍP + LT

P η̈ − τTCPFC/A,C

η̈ + diag(2ξiωi)η̇ + diag(ω2
i )η = −LP ẍP +ΦT

CFC/A,C ,

• by the state-space realization:











η̇

η̈

ẍC

FA/P,P











=











0N×N IN 0N×6 0N×6

−diag(ω2

i ) −diag(2ξiωi) ΦT
C −LP

−ΦC diag(ω2

i ) −ΦC diag(2ξiωi) ΦCΦ
T
C (τCP − ΦC LP )

LT
P diag(ω2

i ) LT
P diag(2ξiωi) (τCP − ΦC LP )

T
−DA

P0





















η

η̇

FC/A,C

ẍP











(14)

where DA
P0

= DA
P − LT

p LP .

• by the block diagram representation depicted in Figure 16 where the characteristic parameters ωi, ξi,
Lp, D

A
P0
, ΦC and τCP appear with a minimal occurence. These parameters can be provided by finite

element softwares.
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1

s

1

s

[LP ]
T
Ra

[

D
A
P0

]

Ra

+

+

−

−

+

−

η̈η̇η

[

M
A
PC

]

Ra

(s)

diag(ωi) diag(ωi)

diag(2ξi)
[LP ]Ra

[ẍP ]Ra

=





−→
a P
−→
ω̇ P





Ra

[

FA/P,P

]

Ra

=





−→
F A/P
−→
T A/P,P





Ra

N

6

[

FC/A,C

]

Ra

=





−→
F C/A
−→
T C/A,C





Ra

[ẍC ]Ra

=





−→
a C
−→
ω̇ C





Ra

[ΦC ]Ra

[ΦC ]
T
Ra

[τCP ]Ra

[τCP ]
T
Ra

+

+

+

−

+

Figure 16. Block diagram representation of the two-port model MA

PC(s) projected in the frame Ra.
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• by a port-hamiltonian representation. Equation (12), taking into account the damping matrix D, and
equation (11) can be rewriten:

[

Mrr Mrf

MT
rf Mff

][

ẍP

q̈

]

+

[

06×6 06×N

0N×6 D

][

∗

q̇

]

+

[

06×6 06×N

0N×6 K

][

∗

q

]

=

[

−FA/P,P + τT
CPFC/A,C

STFC/A,C

]

(15)

and
ẍC = τCP ẍP + Sq̈ . (16)

where S is a N × 6 selection matrix (with 0 or 1 elements) of the 6 d.o.fs of the meshing node where
is applied FC/A,C (S = ΦC Φ−1). Then, the port-hamiltonian representation reads:







q̇ = ∂H
∂p

ṗ = −∂H
∂q −Dq̇ +

[

ST −MT
rf

]
[

FC/A,C

ẍP

]

[

ẍC
FA/P,P

]

=

[

S

−Mrf

]

M−1
ff ṗ+

[

0 τCP

τTCP −Mrr

][

FC/A,C

ẍP

]
(17)

where H = 1
2p

TM−1
ff p+ 1

2q
TKq and p = Mff q̇.

In the notation MA
PC(s):

• P (the first indice) stands for the clamped point used to build the model. The lower channel is the
6× 6 direct dynamic model of A at point P ,

• C (the second indice) stands for the free point which can be loaded by a child substructure. The upper
channel is the 6× 6 inverse dynamic model of A at point C.

By setting its inputs to 0, MA
PC(s) represents the clamped (at P ) - free (at C) model of A. In the same

way,
[
MA

PC

]−1
(s) represents the free (at P ) - clamped (at C) model of A.

Both channels are invertible. Exactly as in the single-axis case, the inverse models:

•
[
MA

PC

]−1u

(s) such that:
[

FC/A,C

FA/P,P

]

=
[
MA

PC

]−1u

(s)

[

ẍC

ẍP

]

,

•
[
MA

PC

]−1l (s) such that:
[

ẍC
ẍP

]

=
[
MA

PC

]−1l
(s)

[

FC/A,C

FA/P,P

]

,

can be used to take into account boundary conditions.
[
MA

PC

]−1u

(s) represents the clamped (at P ) - clamped

(at C) model of A and
[
MA

PC

]−1l (s) represents the free (at P ) - free (at C) model of A.
It is also possible to take into account a second (or more) child substructure(s) C′ connected to A at

point C ′ by augmenting the model by another 6× 6 upper channel. The model MA
PCC′(s) is then associated

to the following state-space realization:















η̇

η̈

ẍC′

ẍC

FA/P,P















=

















0N×N IN 0N×6 0N×6 0N×6

−diag(ω2

i ) −diag(2ξiωi) ΦT
C′ ΦT

C −LP

−ΦC′ diag(ω2

i ) −ΦC′ diag(2ξiωi) ΦC′ΦT
C′ ΦC′ΦT

C (τC′P − ΦC′ LP )

−ΦC diag(ω2

i ) −ΦC diag(2ξiωi) ΦCΦT
C′ ΦCΦT

C (τCP − ΦC LP )

LT
P diag(ω2

i ) LT
P diag(2ξiωi) (τC′P − ΦC′ LP )T (τCP − ΦC LP )T −DA

P0

































η

η̇

FC′/A,C′

FC/A,C

ẍP

















.

For instance the structure depicted in Figure 17 is composed of a main body B and two appendages A1

and A2, connected to B in points C1 and C2, respectively. The body B is submitted to an external force
(dual) vector U at point P . The transfer, from U (6 inputs) to the acceleration dual vector ẍP at point P
of B and the 2 acceleration dual vectors ẍF1

and ẍF2
at ending points F1 and F2 of A1 and A2 (18 outputs),
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Fext/B,P = U

ẍP =





−→
a P
−→
ω̇ P





B

C1

P

~xa1

~ya1

~za1

~xa2

~ya2

~za2

C2

A2

A1

F1

F2

~xb

~yb

~zb

Figure 17. A system with 3 flexible bodies.




Tba2

03×3

03×3 Tba2








Tba2

03×3

03×3 Tba2





T [ẍC2
]Ra2

[ẍF2
]Ra2

[
FA2/B,C2

]

Ra2

[

M
A2

C2F2

]

Ra2

(s)

[ẍP ]Rb

[
FA2/B,C2

]

Rb

[ẍC1
]Rb

[ẍC2
]Rb

[U]Rb

[
FA1/B,C1

]

Rb

[
M

B
PC1C2

]−1l

Rb

(s)




Tba1

03×3

03×3 Tba1








Tba1

03×3

03×3 Tba1





T
[ẍC1

]Ra1

[ẍF1
]Ra1

[
FA1/B,C1

]

Ra1

[

M
A1

C1F1

]

Ra1

(s)

Figure 18. The block-diagram model of example depicted in Figure 17.
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can be represented by the block-diagram of Figure 18 where Tbai (i = 1, 2) is the direction cosine matrix
between frames Rb and Rai (i.e.: the matrix of components of unitary vectors ~xai , ~yai , ~zai in Rb).

In comparison with the approach presented in,2,9 this new approach allows the modeling of open-chain of
flexible bodies. Note that the possibility, presented in,2 to take into account a revolute joint at the connection
point P between bodies A and P (see Figure 19) is still possible.

FA/P ,P =





−→
F A/P
−→
T A/P ,P





ẍP =





−→
a P
−→
ω̇ P





ẍC =





−→
a C
−→
ω̇ C



 FC/A,C =





−→
F C/A
−→
T C/A,C





P

~xa

~ya

~za

A
A

C

P
θ̈

Cm

C

~ra

Figure 19. Appendage A in connection with P through a revolute joint along ~ra.

Indeed, one can express the augmented (13×13) double port model
[
GA

PC

]

Ra
(s) of the body A projected

in the frame Ra: let ~ra =






xra

yra
zra






Ra

be a unit vector along the revolute joint axis, then:






[

ẍC

FA/P,P

]

Ra

Cm




 =





I12
0 · · · 0
︸ ︷︷ ︸

× 9

xra yra zra




[
MA

P,C

]

Ra
(s)














I12

0
...

0







× 9

xra

yra
zra














︸ ︷︷ ︸

[GA
PC ]Ra

(s)






[

FC/A,C

ẍP

]

Ra

θ̈




 .

(18)
[
GA

PC

]

Ra
(s) is the 2-port model augmented with a 13th input: θ̈, the angular acceleration inside the revolute

joint and a 13th output: Cm the torque applied by an actuator located inside the revolute joint.
That’s make possible to free some degrees-of-freedom (setting Cm = 0) or to take into account the model

K(s) of a local mechanism (gear-box, ...) inside an actuated revolute joint (for instance, for space robotic
arm modelling) according to Figure 20. In this case, one will have to inverse the system

[
GA

PC

]

Ra
(s) between

its 13-th input and its 13-th output and one can define a new inversion operation: let
[
GA

PC

]−1p

Ra
(s) be the

operation corresponding to the inversion of the 13-th input output channel of
[
GA

PC

]

Ra
(s) such that:






[

ẍC
FA/P,P

]

Ra

θ̈




 =

[
GA

PC

]−1p

Ra
(s)






[

FC/A,C

ẍP

]

Ra

Cm




 .
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[
GA

PC

]−1p

Ra

(s)ẍP

FC/A,C

θ̇θ̈ θCm 1

s
1

s

K(s)

ẍC

FA/P,P

Figure 20. Taking into account a local mechanism model K(s) in the 2-port model of a body A.

IV. Conclusions and Perspectives

The main contribution of this work is to proposed a general formalism to model mechanical systems
composed of various sub-systems with lumped boundary conditions. This formalism is linked to port-
Hamiltonian systems in the sense that the 2-port model of each substructures can be described by a port-
Hamiltonian model but mainly in the sense that the definition of the inputs and the outputs of the sub-system
are completely revisited and not a priori defined. The 2-port model considers transfer linking forces and
accelerations in both senses. The main property of the 2-port model is that it can be inverted channel
by channel. It was also shown that finite element methods can be used to provide a 2-port model, easily
implementable under common Matlabr working environment. The approacch can be used to build a
structured dynamic model of complex mechanical system where the parameters of local mechanisms between
substructures can be easily isolated in order to be optimized in a co-design procedure.

Some further works are still required to:

• extend and validate the proposed approach to mechanical system with closed kinematic chains,

• extend the approach to handle distributed boundary conditions.

Considering a lumped approximation of the distributed boundary conditions, these 2 extensions are linked
and one of the objective must be to develop practical tools to handle infinite-dimension port-Hamiltonian
systems with not a so huge finite-dimension numerical models.
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