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ABSTRACT: In-situ combustion (ISC) is the process of injecting air into oil reservoirs to oxidize part of the crude oil and has
been utilized for both light oil and heavy oil. The viscosity of the remaining crude oil is reduced by the significant heat generated
from combustion reactions, which contributes to enhanced oil recovery. In the first paper in this series [Lapene et al., Energy Fuels
2011, 25, 4886−4895], we developed a new method to interpret ramped temperature oxidation (RTO) experiments, using a
reactor model based on a compositional and full equation-of-state approach. In this work, we use this RTO reactor model,
coupled with an optimization tool, to determine the optimal kinetic parameters for an extra heavy oil reservoir. Kinetic
parameters are commonly determined using analytical methods and limited data. Typically, only one type of observational data
(for example, oxygen consumption) is used from one experiment. Here, we use two series of experiments datanamely, CO2
and O2 concentrationsand a multiobjective approach to obtain kinetic parameters for the different combustion reactions.
Finally, we obtain a set of possible kinetic schemes, accouting for all mechanisms, such as reactions, phase changes, and transport
processes.

■ INTRODUCTION

The reaction kinetics for heavy oil combustion has been studied
for several decades. In early work, the reaction models were
derived mostly based on the controlled heating and combustion
of a small sample of oil,1−4 either under constant temperature
or in ramped temperature oxidation (RTO). The flue gas is
analyzed to determine the concentrations of carbon dioxide,
carbon monoxide, and oxygen from which kinetic parameters
can be deduced. Most early studies limited the oxidation
reactions to low-temperature oxidation (LTO) and high-
temperature oxidation (HTO).5−7 Improved understanding of
LTO and HTO reactions was provided in the report by
Moore.8 Oxidation reactions were shown to be oil-dependent,
and a clear separation between LTO and HTO was observed, in
terms of temperature range, with an observed decreased oxygen
consumption between the LTO and HTO temperature regions,
which is now known as the negative temperature gradient
region.
The LTO reactions, in most cases, produce oxygenated

compounds, such as carboxylic acids, aldehydes, ketones,
alcohols and hyperoxides,5 but they can also give carbon
oxide gases and water. The HTO reactions essentially produce
carbon monoxide, carbon dioxide, and water through the
combustion of fuel deposited in lower-temperature regimes.
Bousaid and Ramey1 considered this fuel to be a solid
resembling carbon (i.e, coke), formed via the pyrolysis of crude
oil. Other researchers7,9 believed that the fuel mainly consists of
heavy low-volatility hydrocarbon fractions that are left behind
by distillation. The exact reaction mechanisms are still under
strong debate, complicated by the fact that the ISC combustion
behavior strongly varies between oils, as well as reservoir

conditions, such as the presence of clay or metallic salt in the
reservoir rock.10

Recently, we classified and analyzed all kinetic experiments
available in the literature, and we argued that kinetic cell
experiments are well-suited to guide the selection of kinetic
parameters.11 However, the optimal way to derive kinetic
parameters from the experiments is still an open question. In
1984, Fassihi et al.12 proposed using an analytical model. Under
various assumptions and experimental conditions that are not
always possible to realize, kinetic parameters can be found by
graphic integration. Apart from the challenge in meeting all
necessary conditions, classical methods also involve just the
oxygen signal in just one experimental setting. The isoconver-
sional method proposed by Cinar et al.13 offers an approach to
effectively include more than one experimental setup (varying
heating rates) and gives the apparent activation energy as a
function of temperature, which is an improvement. But classical
methods also do not take into account the behavior of other
gases, which is often necessary (see, for instance, Khansari et
al.14). For instance, reactions occurring during oil combustion
involve oxygen addition reactions as well as classical oxidation
reactions. The only way to distinguish oxygen addition
reactions from classical oxidation reactions is to look at carbon
monoxide and carbon dioxide production, because these are
not produced by oxygen addition reactions.
In this work, our objective is to develop a more general

approach that uses multiobjective optimization to examine a
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variety of experimental data, as well as experimental settings,
which we believe is necessary to improve the quality of the
kinetic models. In the examples presented, we take into account
oxygen production data and carbon dioxide production data.
Both data sources provide unique information about the
kinetics. Therefore, the optimization approach must include
two independent objective functions. Because the objective
functions may have opposing gradient directions, the solution
cannot be expected to be unique. Instead, a set of optimal
solutions will be found, each leading to a different kinetic
model, yet all fitting the given data.
The present study builds on the work presented in our earlier

work,11 in which a new simulator was described that is specially
designed for kinetic cell experiments. Here, we use this
simulator in a multiobjective genetic algorithm to derive
optimal kinetic parameters. As an example of its efficiency, we
applied the new proposed method on a real case. Two objective
functions built with oxygen and carbon dioxide evolution are
chosen. Experimental data are provided from a previous
paper.15

■ MULTIOBJECTIVE GENETIC ALGORITHM FOR
KINETIC STUDY

Multiobjective Optimization. Historically, optimization
techniques first treated multiobjective problems by combining
the individual objectives into one, either through a weighted
sum16 or, when possible, by transforming one of the objective
functions into a single response function constrained by the
others. This allows for the use of a classical single-objective
optimization algorithm to treat the multiobjective problem.
However, such approaches provide only one solution, whereas
in the case of multiobjective optimization, more solutions may
exist. Another complication is that the optimal solutions for the
individual objective functions may vary. Therefore, the best
solution, or solutions, are not optimal for each and every
objective function. In this work, we find solutions that are
optimal in the sense of Pareto. A solution (x*) is a Pareto
optimum for a k-objective optimization problem, if, for I = {1,
2, ..., k} and for all x,

∀ ∈ = * ∃ ∈ | > *i I f x f x i I f x f x, ( ) ( ) or ( ) ( )i i i i (1)

The optimization process gives rise to a set of optimal
solutions. Each solution of this set is optimal: no improvement
can be found in one criterion without degrading another. This
set of optimal solutions is called the Pareto front. All of these
solutions are said to be nondominated. Here, a solution A
dominates a solution B if and only if

∀ ∈ ≤ ∃ ∈ | <i I f f i I f f, (A) (B) and (A) (B)i i i i (2)

Figure 1 is an illustration of a Pareto front for a generic two-
objective problem.
Earlier, several multiobjective optimization problems in

chemical engineering were studied, in the areas of reactions
engineering17 and mass transfers.18 A detailed review is given in
the work of Bhaskar et al.19 Evolutionary algorithms are the
most popular, because the objective functions can be built using
black-box numerical codes. In this work, we focus on genetic
algorithms. Genetic algorithms are attractive because they do
not require gradient information, which means they can be
applied to a large range of objective functions and constraints
(also see the review of algorithms for multiobjective
optimization in the report by Marler and Arora20). For a

one-objective optimization problem, a gradient-based method
could be used. However, we prefer genetic algorithms, because
the optimization problems studied here, which rely on
experimental and numerical data, typically lead to rough
response surfaces. Gradient-based optimization methods do not
work well with such surfaces. Besides, gradient-based
optimization algorithms are at higher risk of not reaching a
global solution, because they can get stuck in local minima.
Finally, genetic algorithms are also attractive, because they are
inherently parallel.
All genetic algorithms, for both single-objective and multi-

objective problems, follow the same global structure:

(1) A population of N individuals is randomly generated.
The individuals are characterized by the variables of the
problem(s).

(2) The objective function(s) is (are) evaluated for each
individual.

(3) Some individuals in the population are selected for the
next generation. All of them or only a few are modified
by crossing-over operations and mutations.

(4) The process is repeated from step 2, or stopped if a
convergence criterion or a given maximum number of
generations is reached.

One of the earliest multiobjective genetic algorithms is
VEGA (Vector Evaluated Genetic Algorithm).21 In this
approach, for a k-objective problem, a population of N
individuals is divided in k subpopulations, and each
subpopulation is associated with one objective. Populations
are then aggregated and crossing-over and mutation operators
are applied. To improve on VEGA, and to determine a better
coverage of the Pareto front, many other multiobjectives
algorithms have been developed, such as the niched Pareto
genetic algorithms (NPGA),22 the strength Pareto evolutionary
algorithms (SPEA and SPEA2),23,24 the nondominated sorting
genetic algorithm (NSGA),25 and the NSGA-II proposed by
Deb et al.26

NSGA-II is the algorithm that has found the widest
application and has undergone the deepest investigation.
Compared to its predecessor (NSGA), NSGA-II is more
efficient. It uses an elitist approach that allows the best
solutions between two generations to be preserved. A special
sorting procedure makes it faster and more reliable. Selection is
done considering a crowding distance in order to promote odd
solutions and avoid niching. Finally, compared to other
algorithms, NSGA-II does not require any parameter tweaking.
For these reasons, NSGA-II is selected for this study.

Figure 1. Example of Pareto front on a two-objective problem.
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Algorithm Structure. We choose to use real coding, rather
than binary coding, because it is more convenient for data
handling and has improved robustness, provided that
appropriate crossing-over and mutation operators are used.27

The algorithm that we proposed to use for this study is
structured as below.

(1) A population of N individuals is randomly generated. It is
characterized by kinetic parameters.

(2) Objective functions for each individual are evaluated by a
comparison between experimental and numerical kinetic
cell results.

(3) Sorting and crowding distance calculation are performed
as described in Deb et al.26

(4) The best N/2 individuals of the population are kept for
the next generation, based on previous sorting and
crowding distance values.

(5) Two individuals are selected from the remaining
population, according to a predefined selection operator,
and crossed over to provide two new offsprings.
According to a given probability, each offspring may
mutate. Step 5 is repeated until the population is again at
N individuals.

(6) The process is repeated from step 2, unless the maximum
number of iterations is reached.

In the Deb et al. paper,26 the first generation is produced in a
special way, different from the later generations. Here, this is
unnecessary, and, hence, we leave it out. An extra advantage of
leaving this out is that the algorithm is more versatile: it can
address single-objective problems easily by modifying the
selection operator and setting the size of the elitist population
to one.
Objective Function. The objective functions are built

considering experimental data (DE) and numerical results (DN)
for a given set of parameters (x). For instance, the set of
parameters can represent kinetic parameters such as pre-
exponential factors and/or activation energies for each reaction.
The Euclidian norm is chosen, and so the objective function is
defined as

∑= −x D t D t( ) [ ( ) ( )]i i
t

E N 2

(3)

with Nm is the dimension of DE and DN, Di
E ∈ DE, Di

N ∈ DN

and t = [t0, ..., tf]. Here, t0 and tf are, respectively, the start and
end time of the experiment.
In a classical kinetic cell experiment, the experimental results

typically show two peaks in the flue gas composition profiles,
corresponding to LTO and HTO, respectively. For heavy oil,
the LTO peak is usually lower than the HTO peak. If the
objective functions are based on the variation of the flue gas
composition and defined by eq 3, the first peak may be
penalized. However, from a physical point of view, it is
important to consider both peaks with equal importance. If the
experimental solution involves Np peaks, the nth peak is located
in In = [tn, ..., tn+1]. Then, if we define Mn as maxIn (D

E), the
objective function is redefined as

∑ ∑* =
−

=

⎡
⎣⎢

⎤
⎦⎥x

D t D t
M

( )
( ) ( )

n

N

I

i i

n1

E N 2

n

p

(4)

Sorting and Crowding Distance. Sorting and crowding
are done according to Deb et al.26 The multiobjective genetic

algorithm implemented is the nondominated sorting. We order
the population into a hierarchy of nondominated Pareto fronts.
Then, we calculate the average distance between members of
each front on the front itself.

Crossing-Over Operator. For convenience, we use the
same crossing-over operator as that in binary coding. If A and B
are two individuals and A′ and B′ are their offspring, we can
transform A and B as follows:
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Here, xi and yi are the genes of A and B, respectively, and they
characterize the variables of the optimization problem. This
crossing-over operator is called the binary simple-point
operator, because only one point is used to switch genes.
Multipoint operators can be also used.
For real coding genetic algorithms, the binary approach is not

exactly applicable, because, in real coding, the nick occurs
between two variables, whereas in the binary case, bits are used,
which means that the nick can be located in the middle of a
gene. Thus, for real coding, this type of operator does not
create new variables but simply permutes them. Specific
operators have been created for real coding genetic algorithm
in order to overcome this problem. Most of them are based on
a linear combination of several variables. One of the most used
is the arithmetical crossing-over operator introduced by
Eshelman and Schaffer.28 For two genes x and y, the operator
transforms them to x′ and y′ as follows:

α α

α α

′ = + −

′ = + −⎪

⎪⎧⎨
⎩

x x y

y y x

(1 )

(1 ) (6)

where α is a random number in [0,1]. However, if x < y then x′
and y′ are always in [x, y]. This restriction is not present in the
binary coding operator. To alleviate this shortcoming, Sefrioui29

proposed a new operator. For two genes x and y, the operator
transforms them to x′ and y′ as
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α

α
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λ
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with

min( , ) max( , ) min( , )

max( , ) max( , ) min( , ) (7)

where λ is a constant value set by the user. Here, if x < y, then
x′ and y′ are in [m,M] while m < x and M > y. Because our
problem is constrained, m and M are eventually adjusted. For
the rest of this paper, λ is set to 0.3666, according to Sefrioui.29

The crossing-over operator is applied to all the genes of the
parents.
Mutation Operator. In binary coding genetic algorithms,

the mutation operator just converts one or several bits. Because
a gene is characterized by a large number of bits, the changes
are not large and, compared to the crossing-over operator, the
mutation operator does not play an important role. For the real
coding algorithm, the mutation operator is still the cornerstone
of the exploration process, although important efforts have
been made on crossing-over operator in order to enhance its
exploration capability.30 Its structure is more complex than that
observed for binary coding algorithms. We decided to select a
mutation operator presented by Janikow and Michalewicz.31 If
a gene y undergoes a mutation, its new value would be in [Miny,
Maxy], which corresponds to the constraints on the variable y.
This new value is calculated as

′ =
+ Δ − Γ =

−Δ − Γ =⎪
⎪⎧⎨
⎩

y
y t y

t y

( , Max ) if   0

( , Min ) if   1

y

y (8)

where t is the generation number for the genetic algorithm and
Γ a boolean. The parameter Δ(t,y) is defined as

Δ = −⎜ ⎟
⎛
⎝

⎞
⎠t y yr

t
T

( , ) 1
b

(9)

where r is a random number in [0,1], T the maximum number
of generations, and b a refinement parameter. The Δ function is
built in such a way that it tends to 0 as t tends to T in order to
enhance exploration for first generations and to narrow it for
last generations. Parameter b controls the impact of the
mutation. The larger it is, the more the mutation creates values
far away from the original value. Preliminary tests have shown
that a value of b = 5 is a good compromise.

■ EVALUATION OF KINETIC PARAMETERS FROM
KINETIC CELL EXPERIMENTS

The experimental data used for this study come from Lapene et
al.15 Several kinetic cell experiments have been performed;
however, in this paper, we only use the experiments labeled as
RUN 10 and RUN 12. In all of the experiments used for the
purpose of this work, the temperature controller is trimmed to
reach 650 °C in 250 min at a constant rate of increase. RUN 10
is a two-stage experiment. First, the oil is heated to crack all the
residue into solid coke. Then, a classical kinetic experiment is
performed to burn the resulting coke sample. RUN 12 is a
classical kinetic cell experiment performed on the original heavy
oil component without any pretreatment. More details can be
found in Lapene et al.15

The kinetic cell simulator developed in our previous report in
this series11 is used to build the objective functions (see eq 4).

Table 1. Review of the Reaction Mechanismsa Presented in the Literature

CL POL OOC CR CCG CI CC CO CH CO2O

Verma et al.36 × × × ×
Crookston et al.38 × × × ×
Adegbesan et al.,39 only for LTO × ×
Kumar40 × × × ×
Akin et al.37 × × × × × ×
Kuhlman32 × × × ×
Freitag and Verkoczy,33 Freitag and Exelby,41 and Ren et al.42 × × × × ×

aTable legend: CL, combustion of lights; POL, partial oxidation of lights; OOC, oxidation of oxidized components; CR, cracking; CCG, combustion
of cracking gas; CI, combustion of intermediates; CC, combustion of coke; CO, combustion of oil; CH, combustion of heavies; and CO2O, CO2
oxidation.

Table 2. Properties of Oxidized Components

component Mw (g/mol) Pc (bar) Tc (K) ω

C2−C11ox 687.75 13 900 1
C12−C16ox 925.66 12 930 1
C17−C21ox 1244.04 10 950 1
C22−C27ox 15914.01 7 1050 1.5
C28−C35ox 2037.67 6.1 1120 1.6
C36−C49ox 2712.89 6 1160 1.6

Figure 2. Comparison between experimental results and numerical
results from the genetic algorithm.
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We note that temperature profiles generated by the laboratory
experiments are given to the simulator as inputs. That is,
temperature is not solved for explicitly, nor is it matched as part
of the multiobjective algorithm. This has two advantages. The
first advantage is that the numerics track the experiments
closely: any deviations from the linear temperature profile
during the experiments are taken into account. The second
advantage is that the number of degrees of freedom in the

optimization problem does not further increase, making the
problem more computationally tractable.
In our previous work,11 we recommended performing one-

dimension simulations and using real flash calculations for
phase equilibria. According to mesh sensitivity tests, and as a
good compromise between accuracy and decent computation
times, we decided to use a three-block mesh. During the
optimization process, the kinetic cell code is called several
times; this represents the main computational cost.
In the literature, there is no agreement about which reaction

mechanism most reliably describes the ISC processes. Indeed,

Figure 3. Kinetic parameters (α, activation energy (E), and pre-exponential factor (A)) versus generation.

Table 3. Final Kinetic Parameters (Relative to Figure 3)

parameter value

activation energy, E 108 969 J/mol
pre-exponential factor, A 5.00928 × 104 s−1

α 0.390294

Figure 4. Comparison between numerical and experimental results.

Figure 5. Kinetic parameters (activation energy (E) and pre-
exponential factor (A)) versus generation.

Table 4. Final Kinetic Parameters (Relative to Figure 5)

parameter value

activation energy, E 129 993 J/mol
pre-exponential factor, A 2.230453 × 106 m3/(mol/s)

http://dx.doi.org/10.1021/ef501392k


many different reaction mechanisms are proposed, and the
most popular ones are listed in Table 1. However, there are
similarities. First, all of them include a cracking reaction. Fuel
formation reactions transform a heavy component to coke or
light components or both. It is typically followed by a coke
combustion reaction, except in the work by Kuhlman.32 In
addition to the coke combustion, which occurs at high
temperature, most of the authors proposed the combustion
of the heavy components. For LTO, there is no clear trend.
Some of the reaction mechanisms include the combustion of
light components, whereas Freitag and Verkoczy,33 Freitag and
Exelby,34 and Ren et al.35 described the LTO reactions as a
two-step reaction with partial oxidation of light components in

the first step, followed by the oxidation of the products. This
choice was motivated by observations in the work of Burger
and Sahuquet5 and Mamora et al.7 Finally, Verma et al.36 and
Akin et al.37 take into account the homogeneous combustion of
cracking gases.
For the oil used in our experiments, we propose the

following reaction mechanisms:
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This mechanism incorporates the main reactions found in the
literature. We chose to adopt the atomic description for
components, as opposed to the SARA description, because it is
compatible with the thermodynamic characterization of the oil.
Indeed, it is difficult to attribute critical properties to SARA
components. The heavy oil is characterized by eight lumped
components as C1, C2−C11, C12−C16, C17−C21, C22−C27, C28−
C35, C36−C49, and C50+. Details are given in the first paper in
this series.11 We note that C50+ is introduced as a heavy end
component, necessary for representing the heavy oil in these
experiments. As explained in the earlier work,11 it is the heaviest
component for which we can get thermodynamics properties
from the literature. Modeling heavier components is not useful,
since the corresponding properties would be highly uncertain.
We assume all reactions are first order with respect to [O2].

The reaction rates for the oxidation reactions are given by the
Arrhenius law:

Figure 6. Evolution of objective function built on oxygen (O2) data
versus objective function build on carbon dioxide (CO2) data.
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τ = −⎜ ⎟⎛
⎝

⎞
⎠A

E
RT

exp [O ][F]a
2

(11)

where τ is the reaction rate, A the pre-exponential factor, Ea the
activation energy, R the gas constant, T the temperature, [O2]
the oxygen concentration, and [F] the fuel concentration. All

the concentrations are defined over the system volume,
including solid and pore space. For the reaction that does
not involve oxygen, the reaction rate is expressed as

τ = −⎜ ⎟⎛
⎝

⎞
⎠A

E
RT

exp [F]a

(12)

Figure 7. Comparison between experimental results and numerical results from genetic algorithm for both objective functions: (a) solution 1,
oxygen consumption; (b) solution 1, carbon dioxide production ; (c) solution 2, oxygen consumption; (d) solution 2, carbon dioxide production ;
(e) solution 58, oxygen consumption; and (f) solution 58, carbon dioxide production.
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The first reaction we consider is the cracking reaction. A
portion of the C50+ component, called C50+(c), is transformed to
methane and solid coke. The second reaction is the coke
combustion. The third set of reactions represents the
combustion of the light components. Light components are
components up to C50+. The fourth set of reactions
corresponds to the partial oxidation of light components.
This reaction leads to new oxidized components: C2ox−C11ox,
C12ox−C16ox, C17ox−C21ox, C22ox−C27ox, C28ox−C35ox, and C36ox−
C49ox. The fifth set of reaction is the combustion of the light
oxidized components (C50+). Finally, the sixth set of reactions
depicts the oxidation of heavy components (C50+(c).
Compared to the initial oil description coming from the

thermodynamic analysis, the final oil composition includes
seven more components. We decide to set the properties of
C50+(c) as the properties of C50+. We consider that C50+(c) is the
fraction of the original C50+ that can be cracked. Also, oxidized

components are known to be less volatile than the nonoxidized
counterparts. Because of the lack of data on such components,
critical properties and acentric factors are tuned to ensure that
they are nonvolatile. We are aware that simulations result could
be quite sensitive to these properties. However, as far as we
know, it is impossible to measure such properties for such polar
components that temporarily take place in the oil. On the other
hand, as simplest approach, we could have considered those
components as solid components. But, because we know they
play an important role by modifying fluid properties, such as
increasing the viscosity,43 we think it is important to include
them as fluid components. The properties are presented in
Table 2.
Stoichiometry is calculated according to the atomic

description of each component. For oxidation reaction, the
ratio between CO2 and CO concentration is given as a constant
parameter, according to experimental observations. Kinetic
parameters of this reaction mechanism and the methodology
are presented in the next sections.

Modeling the Cracking Reaction. The so-called reaction
R1 is a cracking reaction. In addition to the original oil
description, component C50+(c) has been introduced. Since
C50+(c) is defined from the original C50+, we assume that

α α= ∈
+ +

z z with [0, 1]C C50 (c) 50 (c) (13)

where zβ is the mole fraction of component β.

Figure 8. Activation energy versus pre-exponential factor for (a) reaction R3, (b) reaction R4, (c) reaction R5, and (d) reaction R6.

Table 5. Ranges of Kinetic Parameters for Oxidation
Reactions

reaction activation energy, E (J/mol) pre-exponential factor, A (1/s)

R3 81100−81160 760−840
R4 107550−107750 6 × 105−8.5 × 105

R5 80820−80850 6 × 103−1.6 × 104

R6 80000−125000 102−106
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In order to get kinetic parameters for these reactions,
experimental data from RUN 10 are used. Recall that RUN 10
is a two-stage experiment. The first stage is performed under
nitrogen in order to crack the oil into solid coke. Then, a new
classical experiment under oxygen is made by using the
resulting coke sample.
We only consider the one-objective function built on

methane production for R1 characterization. We are looking
for the pre-exponential factor (A), the activation energy (E),
and α. We use the one-objective version of the genetic
algorithm. We use a population size of 25 and 50 generations. A
comparison between experimental results and numerical results
is shown in Figure 2. The numerical results reproduce the
experimental results fairly well. The amplitude and the position
of the main peak are conserved, which is important physically.
Despite this good match, the genetic algorithm did not return
kinetic parameters that lead to a close match in the first and
final part of the peak, which probably indicates that the kinetic
model is missing some sensitive features.
Figure 3 shows the evolution of the parameters over the

generations. We can see that the algorithm obtains the final
parameters at the 21st iteration. The final values are
summarized in Table 3.
Modeling the Coke Combustion Reaction. Reaction R2

is the coke combustion reaction. The second stage of the RUN
10 experiment is used to build the objective function. We
assume that the initial quantity of coke corresponds to the final
quantity of coke produced from the previous numerical
optimization. We also suppose that the reactivity of coke
formed under nitrogen is essentially the same as the reactivity
of coke formed under oxygen. In reality, coke production is
dependent on the thermochemical conditions. The coke surface
may differ, depending on the atmosphere under which it was
formed. Hence, the reactivity of coke could change, because the
oxidation coke is a heterogeneous reaction, as discussed
elsewhere.44 Some authors go so far as to incorporate different
coke species in their reaction sequences (see, for instance, the
work of Wu and Fulton45 and Castanier and Brigham46). For
this analysis, the inclusion of different coke species is not
expected to produce significantly different results. However, the
proposed work flow allows such assumptions.
Since carbon dioxide does not bring additional information

to the optimization (the O2 and CO2 signals are perfectly
aligned), we can use the single-objective version of the genetic
algorithm. Accordingly, we only consider one objective function
built on oxygen consumption for R2 characterization. We are
attempting to determine the pre-exponential factor (A) and the
activation energy (E). According to the experiment, we assume
that [CO2]/[CO] = 5.
Again, population sizes of 25 and 50 generations are used.

The comparison between experimental and numerical results is
shown in Figure 4. The genetic algorithm finds kinetic
parameters that lead to a good match between experimental
and numerical results. The shape of the peak is not fully
captured, but the main features (such as the amplitude and the
position) are fairly well reproduced. The numerical solution
slightly underestimates the oxygen consumption.
Figure 5 depicts the evolution of parameters versus the

genetic algorithm generations. The algorithm finds reasonable
magnitudes for the parameters within just five generations. The
final values are given in Table 4.
Modeling the Oxidation Reactions. The goal of the last

stage is to determine the kinetic parameters, i.e., activation

energies and pre-exponential factors for reactions R3−R6.
Experimental data from RUN 12 are used. This experiment is a
regular kinetic cell experiment performed under oxygen.
We consider oxygen and carbon dioxide gas analyses to build

the kinetic model. The idea is to distinguish between partial
and full oxidation reactions. Partial oxidation reactions consume
oxygen without producing carbon dioxide and carbon
monoxide, whereas full oxidation reactions produce both of
them. We think it is important to consider both, because,
otherwise, it is impossible to generate a comprehensive model
that would include all the existing oxidation reactions.
Accordingly, we perform the optimization based on two
objective functions: the first is based on oxygen consumption
and the other is based on carbon dioxide production. We
assume, according to the experiments, that [CO2]/[CO] = 2.5
for R3 and R5, and [CO2]/[CO] = 3.5 for R6 and R7.
The multiobjective version of the genetic algorithm is used.

We consider a population of 125 and compute 3000
generations. Figure 6 shows the value of the oxygen objective
function versus the carbon dioxide objective function for
different generations.
The convergence history shows several stages. First, the

randomly generated first generation evolves to more localized
and spotted solutions (100th generation). Then, the quality of
the population gradually improves and a few members reach
the desired Pareto front. At the same time, the population starts
to spread, to give a more diversified population (500th
generation). Finally, the population covers the Pareto front
by spreading along it. At the 2000th generation, the population
occupies a large part of the front and then again spreads along
it, until the final generation. This last stage corresponds to an
improvement of the extremes. The solution could have been
improved again at the expense of the computation time. Indeed,
the difference between the 2000th generation and the 3000th
generation is small, but comes at great cost, in terms of
computational time.
Figure 6 represents different generations in the plane

objective function for O2; Figure 6b represents a closer view
of the Pareto front. The numbers 1, 2 and 58, correspond to
members of the population. Figure 7 shows the comparison
between experimental and numerical results for those members.
The so-called solution 1 is the best solution, relative to oxygen
data. Figure 7a shows a very good match between numerical
and experimental results, whereas the same set of parameters
does not give a good match for carbon dioxide data, as shown
in Figure 7b. Solution 2 is the opposite; it provides a very good
match for carbon dioxide (Figure 7d), but a poor match for
oxygen (Figure 7e). From the Pareto perspective, both
solutions are acceptable, as well as all the other solutions on
the Pareto front. However, from the scientific perspective, a
good comprise solution is preferred, and solutions that penalize
any one of the objectives too much are discarded. Thus, we
examine solutions that are not located at or near the front
extremes. Solution 58 is one of these solutions. Figures 7e and
7f show that this solution is a good compromise. It gives a fair
match for both solutions and is an acceptable solution.
Obviously, other sets of parameters are also acceptable.
Theoretically, there is an infinite number of acceptable
solutions.
Figure 8 depicts the kinetic parameters for the different

reactions. Although kinetic parameters are very close to each
other for reactions R3, R4, and R5, and the parameters of
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reaction R6 are relatively spread along a quasi-straight line.
Table 5 gives an overview of the solution ranges.
Reaction R6, in this specific optimization problem, plays the

role of an adjustment variable. The biggest differences among
all the solutions, in terms of objective function, mainly come
from the difference between the parameters of reaction R6. This
might appear surprising initially; however, this is a direct result
of the modeling approach and multiobjective optimization. The
system we are trying to model is exceedingly complex. To make
it computationally tractable, we must limit ourselves to a
relatively small number of pseudo-components, each modeled
to roughly capture the mean behavior of thousands of
hydrocarbons and to a relatively small number (six) of
reactions. Compared to the most commonly used models in
the literature, we include more components and reactions,
which we hope will help to better capture the reactions.
Another improvement is that we use not only oxygen
consumption but also the CO2 response. These two sources
of information complement each other, and, at times, may be
contradictory. This means that it is very possible for two
different solutions to reach the same total optimal value: one
can be slightly better in matching oxygen, whereas the other is
slightly better in matching CO2. One global optimal solution
can only be expected if the computational model captures the
physics exactly (which is not the case). Therefore, the set of
solutions, represented by the Pareto front, is to be expected.
Overall, this approach leads to improved insight into the
kinetics and the oil under study. Our recommendation to the
user is to not select one of the solutions for reservoir
simulations, but, instead, consider the set as representing
uncertainty: multiple models can be implemented, tested, and
integrated to give a range of possible reservoir behaviors. When
more reservoir information become available, this range may be
narrowed further.

■ CONCLUSION
In a previous paper,11 we proposed to model the kinetic cell
experiment by using a new simulator that is able to, among
other things, take into account all of the couplings, spatial
effects, and phase changes.
In this study, we described an original way to determine

kinetic parameters from kinetic cell experiments by using the
kinetic cell simulator. We decided to couple it with a
multiobjective genetic algorithm derived from the NSGA-II.
This method allows us to consider many types of data, instead
of just oxygen data, as is usually done (so far), and remove
some experimental constraints, such as the linear temperature
rise.
As an example, we applied the method to a kinetic cell

experiment. We proposed an original six-reaction mechanism,
based on a literature review and our experience. The kinetics
are then built on oxygen and carbon dioxide data from previous
observations. Based on genetic algorithm results, we provide set
of solutions to characterize the kinetics. We clearly show the
existence of many solutions, depending on the multiobjective
criteria.
In future work, it is necessary to investigate why objective

functions built on oxygen data compete with those built on
carbon dioxide data. We speculate that this is a consequence of
either an incomplete reaction mechanism and/or the mass-
transport model. To fully understand this situation, detailed
comparisons between numerical simulations and combustion
tube experiments are needed. The combustion tube simulator

must contain a full set of equations that takes into account all of
the possible mechanisms, multiphase and multicomponent flow
and transport, and heat and mass transfers, relative to phase
changes.
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