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A Comparison of Various Methods for the Numerical

Evaluation of Porous Media Permeability Tensors

from Pore-Scale Geometry

Romain Guibert · Pierre Horgue ·
Gérald Debenest · Michel Quintard

Abstract In this work, several boundary value problems used to numerically eval-

uate the absolute permeability tensors of porous media using core-scale images are 
compared and discussed. The various configurations differ by the type of boundary 
conditions used to compute the flow at the micro-scale. The issue is the ability of the 
method to capture anisotropy correctly and to avoid possible percolation artifacts. 
This study is carried on two-dimensional synthetic, isotropic or anisotropic, porous 
media that are chosen to illustrate the various difficulties mentioned above. A new 
method is proposed which consists in embedding the porous medium in question in a 
homoge-nized one. Using an iterative optimization procedure on the surrounding 
permeability, the method determines the absolute permeability tensor of the original 
medium. The equivalent permeability tensor that minimizes the effect on the 
surrounding porous medium is, unlike that of classical methods, de facto symmetrical 
due to the use of periodic boundary conditions and exhibits significantly lower 
permeabilities. The way in which non-diagonal terms of the permeability tensor are 
obtained with the various methods is thoroughly discussed.
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1 Introduction

Following the recent progress and increased availability of X-ray computed tomog-

raphy, together with the development of high-performance computing, the recent lit-

erature provides a variety of studies concerning the determination of rock proper-

ties from micro-scale imaging (Petrasch et al. 2008; Piller et al. 2009; Khan et al.

2012; Andrä et al. 2013a, b; Blunt et al. 2013; Mostaghini et al. 2013). In particu-

lar, determination of intrinsic permeability is a key feature in petroleum engineering,

hydrogeology, geoscience and many other industrial applications. While such com-

putations have indeed accelerated recently and even reached commercial status, the

decades-old question of determining effective porous media properties knowing the

pore-scale geometry has still not been settled (Adler 1994; Anguy et al. 1994; Spanne

et al. 1994; Bogdanov et al. 2003). While there is a consensus on the form of the

macro-scale equation to be used for elementary transport processes, such as diffu-

sion or Stokes flows, the computation of the associated effective diffusion or perme-

ability tensors on real images poses several questions which are the subject of this

paper. To illustrate the discussion, the case of a one-phase creeping flow is considered

here.

The classic macroscopic equation describing the momentum balance for a porous

medium can be written using a generalized form of Darcy’s law as

U = −
K

µ
· ∇ P, (1)

where U is the average fluid velocity (filtration velocity), µ is the dynamic viscosity 
of the fluid, ∇ P is the macro-scale pressure gradient including the hydrostatic field 
for sake of simplicity and K is the permeability tensor, which can be reduced to a 
scalar for an isotropic medium. Darcy’s law is valid for steady-state, single-phase and 
low Reynolds number. While it has been determined experimentally and proposed in a 
relatively heuristic way (Darcy 1856), its theoretical basis has already been rigorously 
demonstrated using various upscaling techniques (Sanchez-Palencia 1982; Whitaker 
1986) and does not raise questions, at least for stationary porous media far from singu-

larities or boundaries. The macro-scale permeability tensor is related to the micro-scale 
geometry through the resolution of a closure problem, which has the structure of a 
Stokes problem and makes use of periodic boundary conditions for the velocity and 
the pressure deviation of the linear macro-scale pressure field. If the medium is truly 
periodic, which may be the case for some manufactured or reconstructed media, the 
application of the theory is straightforward and requires resolution only over the peri-

odic unit cell. For a given sample of a real porous medium, this is in general not the 
case since the sample external surface necessarily intersects solid and fluid phases in 
a non-periodic fashion and, therefore, periodic boundary conditions cannot be applied 
directly.

Moreover, the validity of the permeability, determined numerically or experimen-

tally, is linked with the question of the representativeness of the considered sam-

ple. This is connected with the estimation of a representative elementary volume 
(REV) which is the minimal volume characterized by the emergence of an equivalent



permeability which will remain constant if calculated on larger volumes. The first

condition to be satisfied is to deal with percolating samples and this is not guar-

anteed for small images of media with low porosity values, even if the medium

is permeable at the investigated core scale. If this percolation condition is satis-

fied, the determination of permeability using a permeameter configuration (Renard

et al. 2001), for example, is then possible. Increasing the sample size under such

conditions should lead to a robust estimation of the effective permeability of the

medium. Intuitively, one assumes that the REV should be much larger than the cor-

relation length associated with the phase indicator. Unfortunately, this is not a suf-

ficient condition since the choice of the boundary conditions on the REV surface

may pose problems. For instance, the use of periodic conditions will, in fact, change

the statistical properties of the original medium by reproducing the REV structure

periodically, thus affecting the semi-variogram of the phase indicator, or even, in

some cases, leading to a non-percolating structure. This situation may have a dras-

tic impact on the computed effective permeability as will be discussed later in this

paper.

The determination of a representative medium may proceed in different ways: com-

putation of permeability for different samples of different sizes, for subsamples of big

enough samples. Whatever the strategy, the requirement is to estimate a permeability

from a given image and to do so with minimum biases. The most common solution

to numerically determine the components of the permeability tensor on such objects

is to solve the fluid flow equations at the pore-scale on the sample using the classi-

cal conservation and momentum equations, and then deduce the upscaled properties

by averaging the micro-scale fields. For that purpose, the set of bulk equations must

be completed with appropriate boundary conditions and this is where different con-

figurations are possible. Discussing this choice of boundary conditions is the main

contribution of this paper.

The first approach considers that the sample is surrounded by other identical samples

and, consequently, that periodic boundary conditions can be imposed. This approach

fits very well with the use of periodic conditions in the theoretical framework dis-

cussed above (Sanchez-Palencia 1982; Whitaker 1986). Unfortunately, as previously

mentioned, the use of periodicity is likely to change the statistical features of the media

studied, at least in principle. This is discussed more specifically below.

Two possible procedures (translation or symmetry) have been devised to make the

medium periodic as illustrated in Fig. 1. Periodization by translation is the most com-

monly used (Whitaker 1986) as it looks a priori attractive a priori: it does not seem

to affect the orientation of the geometrical features, at least. However, this proce-

dure may create non-percolating media as illustrated in Fig. 1a, which can indeed be

considered as a drastic bias in the permeability determination process. This risk of

non-percolation is less probable for a three-dimensional porous medium, but cannot

be completely neglected, particularly for porous media with low porosity. The second

procedure proposed and discussed in this study, periodization by symmetry (Fig. 1b),

allows periodic and percolating samples to be constructed. However, this increases

the computational domain and also potentially changes the statistical properties of

the medium. In Fig. 1, it is easy to visualize transverse flows being annihilated by



Fig. 1 Sketch of periodization: a by translation and b by symmetry

the symmetry operation, thus killing most of the anisotropy features of the resulting 
effective permeability tensor which can also be considered as a serious bias.

In an attempt not to change the medium geometry, a second approach consists in 
imposing pressure on inlet and outlet sample boundaries (pressure, velocity or flux 
imposed depending on the method, see Sect. 2). These conditions, denoted pressure-

imposed configurations (sometimes called permeameter conditions by reference to the 
measurement of permeability), are widely used in upscaling studies (Long et al. 1982; 
Renard and de Marsily 1997; Bailly et al. 2009; Pouya and Fouché 2009) over various 
types of media and are also widely applied for the treatment of micro-scale images 
(Mostaghini et al. 2013 for example).

In this work, these different methods, classified as pressure imposed or periodic con-

figurations, are compared. Our aim is (i) to compare the main permeabilities (diagonal 
terms of the tensors) and (ii) to investigate the potential loss of non-diagonal terms 
of the permeability tensor. To clearly understand these effects and benchmark all the 
proposed methods, simple idealized porous media are chosen to enhance the features 
of particular interest for our discussion. In addition to the more conventional methods, 
a new approach is proposed for the permeability evaluation, inspired from the effec-

tive medium approach (EMA) (Stroud 1975). This method is based on the embedding 
of the considered pore-scale structure in a controlled homogeneous porous medium 
treated at the macro-scale. This method has the advantage of enabling the use of peri-

odic conditions without a periodization procedure. Although there are still potential 
artifacts since this approach more or less tends to modify the medium statistical prop-

erties to a greater or lesser extent, it is expected to produce less severe constraints than 
the other methods.

The paper is constructed as follows: the configurations, the mathematical models 
and the numerical methods are described in Sect. 2 and in Sect. 3, the results of 
comparisons between the various methods are presented for isotropic and anisotropic 
porous media.



2 Materials and Methods

To numerically evaluate the permeability in Eq. (1), it is necessary to solve the fluid

flow equations at the micro-scale. The flow is described by Stokes equation and,

neglecting gravity (the hydrostatic pressure field can easily be included in a modified

pressure definition), the conservation and momentum equations are written as

∇ · u = 0 in Vf , (2)

µ∆u = ∇ p in Vf , (3)

where Vf is the fluid volume. A no-slip condition must be satisfied at the fluid–solid

interface Afs

u = 0 at Afs, (4)

where u(x) is the velocity field, p(x) the pressure and µ the dynamic viscosity of

the fluid. These equations must be completed with boundary conditions at Afe, rep-

resenting the entrances and exits of the fluid domain. As explained in Sect. 1, two

main approaches with several variants may be proposed, which differ in terms of the

assumptions made at the sample boundaries Afe. Furthermore, three calculations are

necessary, one for each spatial directions, to determine the complete permeability

tensor K.

These different configurations are presented in the following sub-sections. Note

that, to complete the sets of boundary conditions presented, when a Dirichlet condition

is imposed on one of the two variables, a homogeneous Neumann condition is imposed

on the other. When a periodic condition is prescribed, the periodicity is imposed on both

the two variables and a reference pressure must be assigned inside the computational

domain.

2.1 Pressure-Imposed Configurations

Here, the three pressure-imposed configurations, which will be used and compared in

Sect. 3, are summarized in Fig. 2 and detailed below.

(a) (b)

Fig. 2 Illustrations of pressure boundary conditions’ configurations: a fixed pressure and b linear pressure

boundary conditions



2.1.1 Fixed Pressure Boundary Conditions with Walls (PFW )

This set of boundary conditions (Fig. 2a) is the most common configuration used 
to characterize the absolute permeability of rocks (Spanne et al. 1994; Mostaghini 
et al. 2013). A pressure difference is imposed through the domain, fixing two different 
values for two parallel boundaries (inlet and outlet). On the other boundaries, a no-

slip velocity condition is imposed to represent walls. This configuration reproduces the 
experimental setup of a permeameter (Renard et al. 2001). Since flow is not allowed in 
the transverse direction, this method is expected to potentially kill anisotropy effects 
that are not along the computational axes.

2.1.2 Fixed Pressure Boundary Conditions with Symmetries (PFS )

This configuration is a simple variant of the previous one (Fig. 2a), where the lateral 
boundaries are symmetry planes, thus allowing for some slip over the related portion 
of Afe. Nevertheless, the transverse flow is zero and this method suffers from the same 
drawback as the previous one in terms of anisotropy effects.

2.1.3 Linear Pressure Boundary Conditions (PL)

This less common configuration imposes a linear pressure drop on the lateral faces of 
the sample in conjunction with the imposed pressures at the inlet and outlet (Fig. 2b). 
This method was first proposed by Bamberger (Bamberger 1977). Although this con-

figuration (Long et al. 1982; Pouya and Fouché 2009) is generally used for the so-called 
second upscaling procedure where Darcy’s law is used as the micro-scale equation, it 
is also possible to use it at the microscopic scale. This method models the immersion 
of the REV in a larger volume and allows for transversal flows (contrary to the previous 
methods). For the second upscaling procedure, it has been observed that this method 
reproduces some anisotropy effects blocked by the previous methods.

2.2 Periodic Configuration (P)

Another possibility is to solve the closure problem arising from Stokes equation using 
the original problems proposed by the homogenization or volume averaging theories 
(Whitaker 1986; Quintard and Whitaker 1989; Sanchez-Palencia 1982). In this case, 
periodic boundary conditions are imposed on the pressure deviation and the velocity 
fields. The medium also needs to be periodized and two procedures have been pro-

posed: by translation and by symmetrization (Fig. 1). It has already been noted that 
the periodization by translation cannot be used if this results in Afe being covered by 
the solid phase, thus creating a non-percolating medium. Even if this is not exactly 
the case, it is clear that a drastic decrease of the Afe fluid surface would decrease the 
computed permeability in an artificial way. Therefore, the symmetrization procedure 
will be used because Afe with solid parts is the most current situation. The pressure 
deviation is defined as



∇ p = ∇ p + ∇ p̃, (5)

with ∇ p an average pressure gradient and ∇ p̃ the computed deviation of the pressure

gradient. The average pressure gradient is a volume source term and the deviation

needs a pressure reference value (fixed at the outlet for example), or, more physically

understandable, but not necessary, a condition of zero average value. This procedure

is very close to the original problem proposed by Sanchez-Palencia (1982) to compute

the permeability tensor. The closure problem developed in Whitaker (1986) is slightly

different, but can be recast into a similar problem by following the indications in

Lasseux et al. (1996).

2.3 Effective Medium Approach (E)

The main idea of this method, which can be seen as a generalization of the volume

averaging approach, is to embed the medium in question in a homogenized porous

medium of thickness δ, characterized and controlled by a user-defined permeability

tensor K∗ (Fig. 3). By varying K∗, the objective of the method is to converge to the

case where the imposed permeability of the surrounding porous medium is equal to

the global permeability of the whole sample. One can then consider that this value is

very close to the permeability tensor of the sample. The procedure for optimizing the

tensor K∗, and the sensitivity to the parameter δ, is detailed in Sect. 3.2.

As for the method presented above, periodic boundary conditions are used with a

volume source term corresponding to the average pressure gradient. Due to the pres-

ence of a homogeneous porous medium around the sample, the percolating condition

is no longer necessarily contrary to usual “periodic” approaches and can, therefore,

Fig. 3 Illustration of the

effective medium approach,

involving the permeability K∗

and the thickness δ of the

surrounding porous medium



be used on any sample. This method is expected to provide less bias, in terms of

anisotropy, than the other methods.

From a mathematical point of view, the core-scale problem contains both fluid and

porous regions with different momentum equations (Stokes or Darcy). A fictitious

domain approach (Khadra et al. 2000) is chosen to obtain unique set of equations for

the whole domain. It consists in penalizing the momentum equation with a Darcy drag

term

µ

(

∆u − K∗−1

·
u

Π

)

= ∇ p, (6)

to obtain the Brinkman equation where only one viscosity µ is considered. The penal-

ization term Π is defined by

Π =

{

Π → +∞ in the fluid region

1 in the porous region.
(7)

The idea behind the proposed method is reminiscent of the ideas found in Effective

Medium Theories (EMT) (Bruggeman 1935; Landauer 1952; Stroud 1975, 1998),

which were developed for diffusive problems. The application to the problem described

by Eq. (6) or a somewhat similar problem corresponding to a medium made up of

Stokes and Darcy domains requires the macro-scale model to have the structure of

Darcy’s law. This is indeed the case, as has been demonstrated in Arbogast and Lehr

(2006), Popov et al. (2009), Huang et al. (2011), Golfier et al. (2014). Furthermore,

while the EMT original development makes use of inclusions embedded in an infinite

effective medium, the embedding domain here has a finite size. It is merely used to

relax the percolation problems discussed above and constraints will have to be verified

to avoid dependency of the resulting effective permeability tensor on the choice of the

embedding porous domain.

2.4 Determination of Permeability Tensor

For all the configurations, the Darcy velocity is reconstructed from the spatial average

of the local velocity field as follows

〈u(x)〉 =
1

Vt

∫

Vf

u(x) dV, (8)

where Vt and Vf stand for the total and fluid volumes, respectively. Then, from two

computations of velocity fields ([u1
x , u1

y] and [u2
x , u2

y]), corresponding to imposed pres-

sure gradients in the x- and y-directions (∇ p1
x and ∇ p2

y), it is possible to reconstruct

the full permeability tensor K using Darcy’s law [Eq. (1)] and solving the following

linear system

(

Kxx Kxy

K yx K yy

)





∇ p1
x ∇ p2

x

∇ p1
y ∇ p2

y



 = µ

(

〈u1
x 〉 〈u2

x 〉

〈u1
y〉 〈u2

y〉

)

, (9)



where ∇ p2
x and ∇ p1

y are the transverse pressure gradients not imposed, but computed

from simulations in the pressure-imposed configuration (PFW ,PFsand PL). Note that,

for periodic configurations (P and E), the transverse pressure gradients are equal

to zero and then the linear system can be expressed as four independent equations.

Although the fluxes across lateral faces are equal to zero in the permeameter case,

the averaged velocity field has non-zero transversal components, which implies a

non-diagonal permeability tensor. More generally, for all pressure-imposed configu-

rations, the numerically computed permeability tensor is not necessarily symmetrical

as observed by previous authors (Manwart et al. 2002; Piller et al. 2009). However,

it should be noted that periodic conditions on pressure and velocity fields lead to a

symmetrical permeability tensor (Bakhvalov and Panasenko 1989).

In any case, Eq. (1) together with the total mass balance equation allows us to write,

in the case of a constant viscosity and permeability tensor

∇ · V = 0 ⇒ K : ∇∇ P = 0. (10)

Since ∇∇ P is symmetric, this implies that

K : ∇∇ P =
1

2

(

K + KT
)

: ∇∇ P = 0, (11)

which, in turn, implies that only the symmetrical part of the permeability tensor plays

a role [which is consistent with arguments coming from the principles of the ther-

modynamics of irreversible processes (Marle 1965)]. While several procedures may

be proposed to force symmetry from non-symmetric tensors, see for example the

work of Durlofsky (2005), the most consistent method is to take the symmetrical part
1
2
(K + KT).

2.5 Porous Media Studied

Simple two-dimensional synthetic porous media were designed to compare existing

methods and test the newly proposed one. The medium domains are square and differ

simply by the structure of the solid part, with the idea of emphasizing the different

biases identified in the theoretical discussion.

The isotropic media (A1 and A2 in Fig. 4) are formed with 8 × 8 regular solid

bodies where the body width and the space between them are equal to the characteristic

length lc. The two configurations A1 and A2 illustrated in Fig. 4 correspond to the

same sample and differ simply by the region considered, in other words the boundary

regions. This sample has a width of 16 × lc and a porosity of 0.75.

The anisotropic medium B1 (Fig. 4) is constructed from the isotropic sample by

adding some supplementary solid objects, so that all symmetry axes are broken. The

sample exhibits the same correlation length and has a porosity of 0.629. Note that, the

permeability of the media A1 and A2 can be considered as a scalar whereas it will be

necessary to compute a full permeability tensor for the anisotropic medium B1.



Fig. 4 Synthetic two-dimensional porous media: isotropic media a A1, b A2, respectively, with fluid/solid 
and purely fluid boundary conditions and c anisotropic medium B1 (non-percolating by translation)

2.6 Numerical Methods

Computations are performed using the open-source finite volume CFD toolbox 
OpenFOAM®. A SIMPLE (semi-implicit method for pressure linked equations) algo-
rithm is generally used to solve Stokes or Brinkman equations. Our solver features 
some changes compared to the basic version of the simpleFoam solver provided: 
volume source terms for the pressure gradient, tensorial penalization terms and per-

meability evaluations. Concerning the effective medium approach in the tensorial 
penalization case (for an anisotropic medium), a PISO (pressure implicit with split-

ting of operator) solver is necessary to ensure convergence (based on the pisoFoam 
solver provided). Although the desired solution is stationary, the SIMPLE algorithm 
does not converge in that configuration and we assume that this is due to the disconti-

nuity between the porous and fluid regions. However, for each change in the imposed 
permeability of the surrounding porous medium, simulations start with the last known 
fields which allow fast convergence of the transient simulations.

The toolbox controls discretization schemes (second order here) and the relative 
convergence criteria on the pressure computation (10−12 in our case).

3 Results and Discussion

In this section, the results of permeability computations made on the synthetic porous 
media introduced in Sect. 2.5 are presented and discussed.

3.1 Preliminaries: Mesh Sensitivity

The same algorithm and numerical schemes are used for all configurations and the 
characteristic length lc, representing the size of the passages between two obstacles, 
is similar for all the porous media (A1, A2 and B1). For these reasons, and assuming 
that the accuracy is mainly related to the number of cells used to discretize the passage 
width, the mesh sensitivity study is performed on a single configuration PFW for 
the regular porous medium A1. The permeability values computed in that case are 
compared for three refinements (Table 1).

A relative error close to 1 %, compared to the result with the finest grid, is observed 
on the permeability for the second refinement level mesh with a dimensionless cell



Table 1 Mesh sensitivity for

the regular porous medium A1

and the configuration PFW

∆h
lc

(–) Elements Er(K ) (%)

0.1 19,200 5.00

0.05 76,800 1.35

0.025 307,200 –

size ∆h
lc

= 0.05. This refinement is used in the following to limit the computation

time.

3.2 Specific Elements of the Effective Medium Method

The effective medium approach needs to introduce three permeability tensors:

– the imposed user-defined permeability tensor K∗
i used to solve the Brinkman Eq. 6

in the surrounding porous medium.

– the equivalent permeability tensor Keq of the whole domain (the sample and the

embedded porous medium) computed as explained in Sect. 2.4.

– the measured permeability tensor K∗
m of the surrounding porous medium computed

(Eq. 9) from the average velocity in the surrounding porous medium is defined as:

〈u(x)〉p =
1

Vp

∫

Vp

u(x) dV, (12)

where Vp is the volume of the surrounding porous medium (Fig. 3).

The difference between the imposed (K∗
i ) and the effectively measured (K∗

m) per-

meability of the surrounding porous medium is due to the use of the Brinkman model

which introduces border effects between the sample and the porous medium. The

objective of the proposed method is, for a fixed thickness δ of the surrounding porous

medium, to find the tensor K∗
m that minimizes the difference with the equivalent per-

meability tensor Keq for each component. To simplify notations, the optimization

procedure is detailed below in the case of an isotropic porous medium (A1 or A2)

where the permeability sought is a scalar. The differences with respect to the tensor

optimization are then detailed.

In practice, for an isotropic case with a scalar permeability, the optimization con-

sists in minimizing the difference between K ∗
m and Keq using a minimum of two

initial guesses. Figure 5 plots the different dimensionless permeabilities (K
∗

i , K
∗

m

and K eq) made dimensionless using l2
c , as a function of the measured permeability

K
∗

m. Two interpolations (K
∗

i and K eq) are constructed from the first two simulations.

The intersection between K eq and K
∗

m gives the permeability sought, while the new

permeability to be imposed can be read on the K
∗

i interpolation (Fig. 5). The interpo-

lations can be refined by successive simulations, and in the cases presented, a series

of four simulations was necessary and sufficient to approximate the permeability and

brought the relative difference between K eq and K
∗

m to below 1 %. In the case pre-

sented, the first imposed guesses were K
∗

i = 0.045 and 0.065 which gave a new
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Fig. 5 Illustration of the optimization procedure for configuration E , corresponding to the diagonal term

of the permeability tensor for the regular medium illustrated in Fig. 4a

Fig. 6 Imposed and measured

dimensionless permeabilities

function of dimensional porous

zone thickness
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imposed value K i
∗ 

= 0.0525. Then, after refining the interpolation with the new sim-

ulation, the value to be imposed was K i
∗ 

= 0.578 which gave the sample permeability 
K eq = K ∗m = 0.0522. Appropriate initial guesses can be determined from other
configurations.

The procedure illustrated in Fig. 5 corresponds to the case of the isotropic medium 
(Fig. 4a) for which a scalar form of the permeability is expected, but the procedure 
for the tensorial case is similar. For one direction, corresponding to one column of 
the permeability tensor, the values are simultaneously optimized and also require four 
simulations to converge on the diagonal terms. The off-diagonal terms of the tensor, of 
lower magnitude, can be refined by additional simulations (two in our case). Figure 6 
reports the dependence of the imposed and measured permeabilities as a function of 
the surrounding porous medium thickness δ.



Fig. 7 Two different velocity fields obtained with configuration E for the isotropic medium A1 with a

δ/ lc = 1 and b δ/ lc = 4

When the thickness of the surrounding porous medium increases, the difference

between K
∗

m and K
∗

i tends to zero, due to the relative reduction of the Brinkman bound-

ary effects (same interface, but higher volume). This effect is emphasized in Fig. 7

which represents the velocity fields obtained using configuration E on medium A1 for

different values of δ/ lc. For the larger value of δ/ lc, the velocity heterogeneities are

restricted to a relatively small part of the surrounding homogeneous porous medium.

Considering a very large porous medium, it is probably possible to directly optimize

the equivalent permeability K eq on the imposed value K
∗

i (because K
∗

i = K
∗

m in that

case). However, the use of K
∗

m for the optimization procedure is justified because it

strongly limits the thickness δ and, therefore, the computation time. This preliminary

case shows that it is reasonable to take a minimal thickness of twice the correlation

length lc related to the sample considered and, therefore, the following numerical

simulations are performed with δ = 2 × lc.

3.3 Isotropic Medium

The velocity magnitudes for three configurations (P , PL and E) for the porous medium

A1 are presented in Fig. 8. The periodic configuration P is the reference solution. For

the configurations PL and E , some border effects appear, illustrated in Fig. 8b, c,

which affect the permeability values.

The scalar permeabilities obtained for the two similar porous media A1 and A2

with the different configurations are reported in Fig. 9. The values are normalized with

the solution obtained in the periodic configuration P , which is the exact theoretical

solution for such a periodic medium.

For the porous medium A1, where the solid part intersects the sample boundaries

(Fig. 4), all the classic methods give very close values. The configuration with a lin-

ear pressure drop PL slightly overestimates the permeability. Considering the porous

medium A2 with purely fluid boundary conditions (Fig. 4), border effects are really

marked in configuration PFW (also illustrated in Fig. 10b). The other classic configura-



Fig. 8 Velocity field magnitudes for the isotropic medium A1 and different configurations a P , b PL and

c E (the flow is horizontal from left to right)

Fig. 9 Comparisons of

permeability values obtained

with the different configurations
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tions keep the same general behavior and give results that are still close to the reference 
configuration P . We can, therefore, assume that the larger the fluid domain along the 
sample boundaries, the larger the difference of permeability induced by the no-slip 
condition (obviously, this would also be the case for the experimental permeameter).

For the effective medium approach, some non-negligible border effects appear due 
to the mathematical modeling (Figs. 8c, 10c). The relative difference in terms of 
permeability is around 6 % for the porous medium A1 and around 7 % for the porous 
medium A2, which points out that the method does not seem to be sensitive to the 
boundary conditions (fluid/solid or purely fluid). The difference with respect to the 
periodic configuration is probably mainly related to the size of the sample considered: 
increasing the fluid volume by studying a larger sample may reduce the influence of 
border effects.



Fig. 10 Velocity field magnitudes for the isotropic porous medium A2 and different configurations a P ,

b PFW
and c E (Fig. 8)

3.4 Anisotropic Medium

The anisotropic porous medium B1, illustrated in Fig. 4, is non-percolating by transla-

tion in both spatial directions (which means that, for one spatial direction, the entrance

and exit areas are not aligned). As previously discussed in Sect. 1, the direct use of

periodic boundary conditions is not possible. So, the sample is made periodic by sym-

metry (Fig. 1b) to have a percolating medium and use periodic boundary conditions.

This configuration is a variant of the periodic configuration P and is noted Ps. Veloc-

ity fields obtained with this configuration for the two flow directions are presented

in Fig. 11a, b. The figures clearly emphasize the existence of some preferential flow

paths.

Regarding this periodic configuration Ps, the permeability can be computed con-

sidering two different domains, the initial sample or the full simulation (see Fig. 1b).

To compare the different methods, the computed permeability tensor is factorized as

follows (in two dimensions)

K =

(

Kxx Kxy

K yx K yy

)

= max
i, j

(Ki j ) · K = l2
c k · K, (13)

where k̄ is the dimensionless magnitude and K is the dimensionless tensor. Moreover,

for a non-periodic random sample, existing methods systematically produce non-

symmetrical permeability tensors for which the asymmetry coefficient d can be defined

as follows

d =
|Ki j − K j i |

|Ki j + K j i |
with i 	= j. (14)

The two permeability tensors obtained from the periodic configuration Ps (full

domain and sample), as for all the other configurations, are reported in Table 2. The

permeability tensors are determined following Eq. 9 and neglecting transverse pressure

gradients. The computation of symmetrical off-diagonal terms is determined as



Fig. 11 Illustrations of velocity field magnitudes for a, b quarter of configuration Ps and c, d full config-

uration E (the flow is horizontal for a, c and vertical for b, d)

K sym =
1

2

(

K xy + K yx

)

. (15)

As, by construction, the domain symmetrization removes the transverse flow, the 
permeability tensor in the configuration Ps (full domain) has zero off-diagonal terms. 
However, averaging performed on the original sample is one possible way to compute 
a full permeability tensor with non-zero off-diagonal terms. Results in Table 2 denoted 
Ps (sample) show that, in this case, there is a significant difference between the off-

diagonal tensor components. For this clearly anisotropic case, the permeability tensors 
obtained for PFW and PFS are very close to the periodic configuration Ps (sample). 
Compared with other configurations studied, the linear imposed pressure configuration 
PL gives a permeability tensor with higher magnitude and lower off-diagonal terms. 
Note that, the sign of non-diagonal terms for configuration PL is different from that 
in the other configurations. The asymmetry of this method (d = 0.092) is of the 
same order as with the other configurations PFW , PFS and Ps. Note that, higher values 
of asymmetry can be found in the literature (Galindo-Torres et al. 2012). Then, the



Table 2 Permeability tensor components for all configurations studied (neglecting transverse pressure

gradients for B, Ps and E)

Configuration k̄ K xx K xy K yx K yy K sym d

PFW
/PFS

3.037 × 10−2 0.992 0.074 0.090 1.000 0.082 0.098

PL 3.202 × 10−2 0.974 −0.029 −0.042 1.000 −0.035 0.092

Ps (full domain) 3.038 × 10−2 0.992 0.0 0.0 1.000 0.0 –

Ps (sample) 3.038 × 10−2 0.992 0.074 0.090 1.000 0.082 0.098

E 2.443 × 10−2 0.997 0.082 0.084 1.000 0.083 0.012

Table 3 Permeability tensor components for configurations PFW
, PFS

and PL using non-zero transverse

pressure gradients

Configuration k̄ K xx K xy K yx K yy K sym d

PFW
/PFS

3.093 × 10−2 0.994 −0.099 −0.106 1.000 −0.103 0.034

PL 3.222 × 10−2 0.973 −0.089 −0.104 1.000 −0.097 0.078

effective medium approach is tested and Fig. 11c, d shows velocity magnitudes for

this configuration. The comparison with the periodic configuration highlights some

differences, mainly on the borders of the core-scale sample considered.

As explained in Sect. 3.2, the optimization of one column of the tensor is performed

simultaneously and independently for each term of the tensor. However, it is recom-

mended that the difference between the two initial guesses should be less than one

order of magnitude to ensure convergence of the optimization. For this, it is possible

to use the solution provided by one of the fixed pressure configurations. The perme-

ability tensor obtained by the effective medium approach, reported in Table 2, has a

lower magnitude k. Note that, the symmetry of the tensor (d = 0.012) is not explicitly

enforced (optimization of the off-diagonal terms is decoupled and the K∗
i tensor is

non-symmetrical), but is a result of the optimization process. Also, increase in the

number of optimization steps progressively decreases the value of d.

The mathematical computation of symmetrical off-diagonal terms K sym gives very

close results among the various usual methods except for the linear pressure boundary

configuration PL (Table 2). Moreover, the value of K sym is close to the almost sym-

metrical off-diagonal terms of the effective medium approach. In Table 3, permeability

tensors are computed taking the non-zero transverse pressure gradients into account

(Sect. 2.4). In this form, the three configurations have slightly larger prefactors k̄ than

in the previous case (Table 2) and lower asymmetry. Note that, configuration PL has

negative off-diagonal terms whereas these terms change sign for permeameter con-

figurations. However, the diagonal part of the reconstructed permeability tensors is

all relatively close. The largest differences between configurations are observed on

non-diagonal terms. At best, testing several configurations enables a range of values

to be determined for off-diagonal terms.



4 Conclusions

A comparison of different configurations, characterized by periodicity or various other

pressure boundary conditions, for the numerical evaluation of the permeability tensor

has been proposed for isotropic and anisotropic porous media. Two methods have been

introduced to apply periodic boundary conditions to a non-periodic, non-percolating

sample, which may be the case for a real rock sample. The first method consists

in symmetrizing the sample to obtain conformal boundaries suitable for applying

periodic boundary conditions. Another method, called the effective medium approach

by analogy, has been proposed to complete the set of available methods. This effective

medium approach consists in bordering the sample with a homogeneous porous layer of

a given thickness and then optimizing a permeability tensor so that the presence of the

real sample has no effect on the global permeability. The magnitude of the permeability

tensors obtained with this new method is slightly lower in both the isotropic and

anisotropic cases.

Concerning the off-diagonal terms, this method allows periodic boundary condi-

tions to be applied and, thus produces de facto a symmetrical permeability tensor

without mathematical reconstruction. This is confirmed by the low asymmetry factor,

d, obtained in that case compared to the usual configurations (PFW , PFS , PS).

Following the results of the study, the classical method PFW seems the most suitable

method for computing permeability since it produces correct results for both diagonal

and off-diagonal terms without requiring excessive computational resources (easy to

implement, no specific mesh treatment, etc.). However, these results would require

further study on real samples to confirm the observations made.
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