

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13596

To link to this article : DOI :10.1007/978-3-662-44750-5_6
URL : http://dx.doi.org/10.1007/978-3-662-44750-5_6

To cite this version : Sellami, Zied and Camps, Valérie An Adaptative
Multi-Agent System to Co-Construct an Ontology from Texts with an
Ontologist. (2014) In: Transactions on Computational Collective
Intelligence. (Lecture Notes in Computer Science). Springer Berlin
Heidelberg, Berlin, pp. 101-132. ISBN 978-3-662-44749-9

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/33664012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13596/
http://oatao.univ-toulouse.fr/13596/
http://oatao.univ-toulouse.fr/13596/
http://dx.doi.org/10.1007/978-3-662-44750-5_6
mailto:staff-oatao@listes-diff.inp-toulouse.fr

An Adaptative Multi-Agent System to Co-Construct an
Ontology from Texts with an Ontologist

Zied Sellami and Valérie Camps

IRIT, Université de Toulouse, France
email: {sellami, camps}@irit.fr

Abstract. Ontologies are one of the most used representations to model the do-
main knowledge. An ontology consists of a set of concepts connected by semantic
relations. The construction and evolution of an ontology are complex and time-
consuming tasks. This paper presents DYNAMO-MAS, an Adaptive Multi-Agent
System (AMAS) that automates these tasks by co-constructing an ontology from
texts with an ontologist. Terms and concepts of a given domain are agentified
and they act, according to the AMAS approach, by solving the non cooperative
situations they locally perceive at runtime. These agents cooperate to determine
their position in the AMAS (that is the ontology) thanks to (i) lexical relations
between terms, (ii) some adaptive mechanisms enabling addition, removing or
moving of new terms, of concepts and of relations in the ontology as well as
(iii) feedbacks from the ontologist about the propositions given by the AMAS.
This paper focuses on the instantiation of the AMAS approach to this difficult
problem. It presents the architecture of DYNAMO-MAS, and details the coop-
erative behaviors of the two types of agents we defined for ontology evolution.
Finally evaluations made on three different ontologies are given in order to show
the genericity of our solution.

1 Introduction

In the last ten years, ontology engineering from texts has emerged as a promising
way to save time and to gain efficiency for the construction or the evolution of
ontologies [10]. But texts do not cover all the required information to construct or
evolve a relevant domain model, and human interpretation and validation are re-
quired at several stages in this process. That is why ontology engineering remains
a particularly complex task [29].
Our contribution in this paper completes a previous work [38] that proposes an
AMAS named DYNAMO-MAS1 enabling to construct an ontology from texts.
DYNAMO-MAS automatically proposes new concepts and/or terms to be eval-
uated by an ontologist. This paper presents the design and the evaluation of
DYNAMO-MAS, an interactive software based on an AMAS that aims at evolv-
ing ontologies from text. Section 2 describes related works regarding existing
tools for evolving ontologies from text. It also analyses the links between Multi-
Agent Systems (MAS) and ontologies. Section 3 is devoted to the presentation of
the AMAS approach that we used to implement DYNAMO-MAS. The overview

1DYNAMO: DYNAMic Ontology for information retrieval; http://www.irit.fr/
DYNAMO/; MAS: Multi-Agent System

of the DYNAMO project, the defined architecture as well as our approach for
ontology evolution are detailed in section 4. Section 5 expounds the cooperative
behaviors of the two types of agents we defined. Section 6 contains the experi-
ments of ontology evolution that were carried out with DYNAMO-MAS and an
analysis of their results. We conclude and plan some future works in section 7.

2 Related Works

This section gives a brief overview of systems dealing with automatic ontolo-
gies evolution from texts. A more general state of the art on ontologies evolution
from texts can be seen in [37]. As this paper is devoted to the presentation of the
core of DYNAMO-MAS, the related works section focuses on the links between
ontologies and multi-agent systems.

2.1 Ontologies Evolution from Texts

Few existing works deal with the automatic evolution of ontologies from texts.
Most of them focus on the construction of ontologies; if there is a need of updat-
ing the ontology, another ontology is built from scratch (Text Onto Miner [19],
OntoLearn [45], Text-To-Onto [14] and DOGMA [33]). Some works concern the
management of the ontology evolution process (usually manual) or the manage-
ment and the comparison of different versions of an ontology [25], [17], [43,16].
Other works focus on the propagation of ontology modifications on some artifacts
(other ontologies, applications, data, ...) [43], [25].
To our knowledge, only two systems propose automatic ontology evolution from
texts. The first one, EVOLVA [49] uses results of terms extraction from texts as
well as other ontologies to identify new concepts to include to the ontology. For
each concept to add, it tries to retrieve if there is a relation between this concept
and a concept already present in the current ontology. EVOLVA is only useful
for evolving English ontologies. When the domain modeled by the ontology is
very specific, EVOLVA has difficulties to detect relations between a new concept
and current concepts of the ontology. A more detailed experiment and comparai-
son between DYNAMO-MAS and EVOLVA is given in [50]. The second system
is a first prototype of DYNAMO [31]. It is only able to construct an ontology
from scratch but not to make it evolving. The agents of the MAS implement a
distributed clustering algorithm that identifies clusters of terms from a large text
corpus. These clusters lead to the definition of concepts as well as their organi-
zation into a hierarchy. Each agent represents a candidate term extracted from
the corpus and estimates its similarity with others thanks to statistical features.
Several evaluations conducted with this DYNAMO first prototype confirmed that
statistical approaches [23] are inefficient when texts are short (it is our case in the
context of our work).
The table 1 shows a comparaison between DYNAMO-MAS and the previously
presented tools for ontologies evolution.

– Reconstruction means that the tool evolves the ontology by the construction
from scratch of a new one;

– Incremental evolution means that the tool evolves the current version of the
ontology;

– Tool availability means that the tool is available, can be downloaded from
the Web and easily used;

– NLP Knowledge means that the person who will use the tool needs to have
knowledge in NLP;

– Processed language indicates the language of the corpus;
– Depending on corpus size means that the tool only works with large corpus;
– For multiple domains means that the tool is able to evolve ontologies com-

ing from many domains.

Table 1. Comparaison of DYNAMO-MAS and other ontologies evolution tools.

The table 1 tells us that these tools are only effective for large corpus and are not
suitable for small-volume corpus such as those of DYNAMO-MAS. Moreover,
the user of TextOntoMiner has to be strongly qualified in NLP techniques to
organize the processes of text analysis and ontology construction. Another differ-
ence is the attention given to the ontologist. In DYNAMO-MAS, we emphasize
the notion of interactive co-construction of an ontology. This means the ontolo-
gist can accept, reject, or modify the proposals made by the system; the system
has then to integrate the ontologist’ s decisions to provide new proposals that the
ontologist has then to check again, and so on. In other approaches, the tools are
less interactive or not interactive at all (only the final ontology is proposed to the
ontologist). This postpones the validation. Furthermore, these works manage in a
different way ontology construction and ontology evolution, whereas we want to
handle them uniformly. Finally, DYNAMO-MAS is a generic tool for ontology
evolution from texts. A person who uses DYNAMO-MAS does not need to have
NLP knowledge. DYNAMO-MAS can work with both small and large corpus in
French or English languages.

2.2 Ontologies and Multi-Agent Systems

The notion of ontology is often mentioned when talking about communication
and interaction between agents. Indeed, ontologies are used to allow agents to
communicate and interact. They provide a formal basis for modeling languages
communications between agents. By sharing the same ontology, that is to say
the same vocabulary, agents are able to understand the messages exchanged and
to respond efficiently. Much of researches concerning communication between
agents and MAS became interested in exploiting ontologies and reasoning about
ontologies in agents. Today, the use of ontologies and the need to evolve these
ontologies highlight new challenges especially in terms of supports and tools.
Other works have then used MAS in systems for ontologies evolution.

Ontologies for communication between agents To communicate and in-
teract appropriately, agents need to understand and share a common language.
Ontologies have been developed in this direction, to provide formal vocabularies
that depend on application domain.

Stable ontologies in agents. Several studies have integrated ontologies in
MAS especially the Semantic Web and Web Services [44] [26] [18] [21].
Jointly with MAS design, designers construct an ontology of the application do-
main (often with OWL2). This ontology then forms a knowledge support for
agents and allows them to formulate messages and to reason about messages.
Other systems include several ontologies in the MAS functioning.
Elmore et al. [15] uses a set of ontologies for the treatment of heterogeneous data
in order to unify them. Specifically they offer a MAS which aligns a view of data
from five laboratories. Each agent processes structured data of one laboratory in
XML format. It also has an ontology describing the semantics of these data. All
agents of the system have a common language of communication. Ontologies
allow them to interpret the data sent in messages in order to construct a unified
view of data.
Another system using ontologies is COMMA [8]. Each ontology is encapsulated
in an agent and, in collaboration with an interface agent, helps the user to add (or
to retrieve) documents in a knowledge base. For this, the implemented ontology
agent is an aid in order to correctly construct the metadata of the new document
or the query.

Evolving ontologies in agents. It is sometimes necessary to modify the on-
tology used by an agent or by a MAS when the application data evolve. Some
works [40] [26] [2] propose to add mechanisms to agents (such as replacing a
concept with another according to interactions with other agents) enabling them
to modify an ontology. The aim of each agent is then to continue to communicate
but not to construct a common view of a domain nor to make evolve an ontology.
Each agent then has its own point of view on the application domain. Similarly,
Gasser [47] and Viollet [46] propose ontologies alignment tools in order to ensure
communications between agents when several ontologies are used. This enables
to solve interoperability issues between heterogeneous agents.
Viollet uses ontologies to represent knowledge of agents [46]. To communicate,
these agents exchange messages using FIPA-ACL. The semantic content of these
messages is expressed using ontologies. Viollet adds then mechanisms of ontolo-
gies alignment to agents in order to relate different ontologies and therefore to
understand the semantics contained in messages [46].
More recent works have focused on the learning of new concepts using the MAS
paradigm. Afsharchi et al. [1] and Safari et al. [35] propose a MAS able to learn
new concepts in order to answer to user’s requests. The MAS is distributed over
a set of sites (several universities). Each agent manages an ontology built from
texts describing the proposed university programs (medicine, archeology, engi-
neering, etc..). Each concept is described in extension, namely by the set of in-
stances that describe it. The role of an agent is to answer to users’ requests for
university courses. To respond, the agent sometimes needs to learn a new concept
because the query contains a new knowledge. For this, a learning agent (learner

2Web Ontology Language http://www.w3.org/2004/OWL/

agent) sends a request to teacher agents (teacher agent) from other universities
that contains the unrecognized concept or instance. The aim of (teacher agents)
is to return the instances containing the words formed by the concept. Based on
these results, the (learner agent) determines the largest intersection between the
data of each (teacher agent) which corresponds to a new concept formed by in-
stances that are shared with the others (teacher agent). However, the authors do
not specify how the concept is inserted in the ontology.

Multi-agent systems for the management of ontologies Few works use
MAS for the construction or evolution of ontologies. MAS is often used as a
tool to help the ontologist to seek knowledge or to check the consistency of an
ontology. To our knowledge, only [30] used a MAS as an ontology.
Aldea et al. use a MAS within a platform for ontologies evolution [3]. This MAS
consists of two types of agents: the coordinator agent and the internet agent
whose roles consist in retrieving, weighting and ranking documents on Internet,
in order to help a user to make his ontology evolve. The coordinator agent takes
as input an ontology. This ontology is split into several parts. Each part contains
one or more concepts. Then, the coordinator agent sends each part to the inter-
net agent whose role is to retrieve pages that contain instances of these concepts.
Finally, each internet agent returns its results in the form of sorted pages. These
results are then presented to the user in order to help him to make his ontology
evolve. The MAS role is not to make the ontology evolve but rather to bring
documents that may contain new concepts or new instances.
Hadzic et al. provide a system for ontologies evolution using the agent paradigm
[22]. Four types of agents have been defined: the information agent, the data
warehouse agent, the data mining agent and the ontology agent. To make his on-
tology evolve, a user sends a request to the information agent. It is a request for
collecting information about the modeled domain. The information agent role is
to retrieve information on the current domain in databases. Then, it sends these
data to the data warehouse agent to store them. Upon receipt of new data, the
data warehouse agent asks the data mining agent to process data. The role of this
latter is to extract new knowledge by applying data mining techniques to iden-
tify concepts as well as relations between concepts. Finally, it sends the result to
the ontology agent that compares new knowledge with the current ontology. If
differences exist, the ontology agent proposes to the user a list of changes. The
user can then accept or reject the proposals. Mechanisms of this system are very
similar to those used in [49]. The difference is that [49] do not use agents and
rely on ontologies that are available on the Web rather than on databases. Never-
theless, [50] demonstrated that using external data sources becomes ineffective if
the domain knowledge are very specific.
The construction and evolution of ontologies are a teamwork involving several
people. Often these people work remotely on several versions of the same on-
tology. To manage this teamwork, several ontologies management collaborative
tools using MAS have been proposed.
Bao and Honavar use agents in a collaborative tool for the construction of ontolo-
gies [7]. They propose only one type of agent called interface agent. It represents
a user of the tool. Its role is to ensure the consistency of the modeled ontology
according to users’ concurrent modifications.
Slimani et al. propose a tool called P2OManager to manage the evolution of an
ontology using a MAS [41] [42]. The aim of this tool is to maintain the consis-

tency between an ontology and the dependent ontologies using a set of agents. An
agent can have three roles: ontology agent, initiator ontology agent and depen-
dent ontology agent. The objective of these agents is to manage the changes of an
ontology and their propagation to dependent ontologies. The role of the ontology
agent is to detect if the ontology has changed or not. It is a “listener” that per-
ceives the changes made on ontology by a user of the system. When this happens
the agent changes its role and becomes initiator ontology agent. Its objective is
then to detail all the changes that affected the ontology. Then the agent decides
to propagate these changes to other agents having the dependent ontology agent
role. For this, the initiator ontology agent checks for every change if there is a
link between a modified element in the ontology and the dependent ontologies. If
such a link exists, the agent sends a message to request the spread of change to
the dependent ontology agents. Otherwise, the change is not propagated. Slimani
et al. are interested in the propagation of ontologies changes to other dependent
ontologies [41] [42]. However, the automatic identification and extraction of new
knowledge, as well as the automatic addition of new concept in the ontology are
not available in this tool.
To summarize these works, an ontology usually enables communication between
agents. To maintain communication when the application domain evolves or when
heterogeneous agents are related, some works propose mechanisms of ontology
alignments, of replacement of concepts, or of learning of new concepts or in-
stances of concepts. The goal then is not to propose a domain ontology, but rather
to enable agents to understand themselves. Other works use MAS in tools for
evolution of ontologies. The aim of these MAS is to help a user to find new
knowledge or to maintain the consistency of ontologies. The works proposed by
[22] and [30] appear to us the most fully developed because they automate the
extraction of knowledge and their integration in an ontology. However, for our
problem of evolution of ontologies from texts (where texts are very short, with
very specific knowledge and where no external knowledge-rich data sources ex-
ist) they seem difficult to be used.

3 Adaptive Multi-Agent Systems (AMAS)

The use of Multi-Agent Systems in order to evolve an ontology from texts seems
to be a relevant idea. Indeed, a system for evolution of ontologies can be seen as
a complex problem whose environment (additions of texts, ontologist’s actions)
is dynamic and opened. This system should be able to self-adapt to this envi-
ronment. Several adaptation techniques exist but are ineffective for our particular
problem because of constraints such as the small volume of data in our texts, the
impossibility of defining the purpose of the system, etc.. That is why an innova-
tive adaptation using the concepts of emergence and self-organization seems to
be relevant.
To solve the problem of ontologies evolution from texts, we need a system whose
processings are distributed among several entities, each of which possesses a local
view of its environment and is able to interact in an autonomous way to answer
to a purpose. The dynamic environment of such a system and the complexity of
our problem put in evidence the interest of using the MAS paradigm. The AMAS
approach provides the theoretical foundations enabling the construction of such
a system.

3.1 Functional adequacy

The main asset of the AMAS approach [11], [20] is to tackle the design of com-
plex systems that can be incompletely specified and for which an a priori known
algorithmic solution does not exist. It provides an organizational approach en-
abling the construction of multi-agent systems that continuously and locally self-
adapt to the dynamics of their environment. It proposes to conceive an adaptive
system while only focusing on the interactions between the system and its envi-
ronment on the one hand and between the parts (agents) of the system on the other
hand. These interactions are based on a local processing of the information by the
components of the system that only have a local view of their environment. This
principle of locality guarantees the emergent nature of the system functioning.
In this approach, the designer has only to define when and how each agent com-
posing the system has to locally decide to change its interaction links with other
agents in order to achieve the expected overall function (from the viewpoint of
an external observer who knows its purpose). In that case, the system is said
“functionally adequate”. We showed in previous works [11], [20] that algorithms,
which do not directly depend on the overall function to be obtained, are a solution
for dynamically implementing systems able to self-adapt to their contexts. That
is why local behaviors we propose to assign to agents do not depend directly on
this expected overall function. Each agent, according to its local perception, the
local rules it pursues and its local task to be achieved, can change or adjust its
interactions with other agents of the system or the environment. The modification
of the interactions between the parts of the system will lead to the transforma-
tion of the resulting overall function of the system. So, according to interactions
between the multi-agent system and its environment, the organization between
agents emerges and constitutes an answer to unforeseeable events.

3.2 When does an agent need to self-adapt?

To reach this functional adequacy, we proved [11], [20] that each autonomous
agent, which follows a cycle composed of three steps (perception/decision/action),
has to keep relations as “cooperative” as possible with its social (other agents) and
its physical environment. The definition of cooperation we use is not conventional
(resources sharing, common work, etc.); it is a social attitude to which an agent
must comply. Our definition is based on three local meta-rules the designer has
to instantiate according to the problem to be solved:

– Meta-rule 1 (Cper): Every signal perceived by an agent must be understood
without ambiguity.

– Meta-rule 2 (Cdec): Information coming from its perceptions has to lead the
agent to produce a new decision.

– Meta-rule 3 (Cact): This reasoning must lead the agent to make actions that
have to be useful for other agents and the environment.

An agent, that simultaneously locally checks these three meta-rules, is in a co-
operative state. This means that this agent is situated at the best position in the
current organization.

Cooperation =Cper ∧Cdec∧Cact

On the contrary, an agent that does not locally check at least one of the three
previous meta-rules, is facing a “Non Cooperative Situation” (NCS).

These cooperation failures can be assimilated to “exceptions” in traditional pro-
gramming. Different generic NCSs were then highlighted: incomprehension or
ambiguity if Cper is not checked, incompetence or unproductiveness if Cdec is
not obeyed and finally uselessness or competition or conflict when Cact is not
checked. These generic NCSs have to be instantiated according to the problems
to be solved. This approach can be qualified as “proscriptive” because each agent
in the system has, first of all, to anticipate, to avoid, and to repair the NCS that
occur in its environment during the system functioning. Thus, the algorithm of
a cooperative agent can be summarized by two main steps: (i) when an agent is
facing a cooperative situation, it acts according to its partial function; (ii) when
an agent is facing a NCS, it acts in order to come back to a cooperative state.

3.3 How does an agent self-adapt?

This approach has important methodological implications: designing an AMAS
consists in defining and assigning cooperation rules to agents. Concretely, the
designer, according to the current problem to solve, has (i) to define the nominal
behavior of an agent, then (ii) to deduce the NCSs to which the agent can be
confronted with, and finally (iii) to define the actions the agent has perform to
come back to a cooperative state and to self-adapt to the environmental dynamics.
This self-adaptation of an agent is implemented by two main behaviors [9]. The
nominal behavior directly related to the partial function of the agent that con-
tributes to the overall emerging function; The cooperative behavior which in-
cludes the detection of and the resolution of NCS as well as the anticipation, the
prevention of the occurrence of NCS. This behavior, responsible of the specific
adaptation process of the system, is subdivided into three behaviors:

1. The tuning behavior consists in analyzing the nominal behavior calculation
in order to find cooperation failures. If there are some, it tries to solve these
NCS by modifying the parameters that take an active part in the nominal
behavior;

2. The reorganization behavior consists in modifying the way in which an
agent interacts with its environment and the other agents. This behavior is
usually carried out when a uselessness or an incompetence NCS is detected;

3. The evolution behavior consists in creating new agents or in suppressing the
current agent.

3.4 Methodological impacts

This approach was applied successfully to the resolution of various types of prob-
lems related to different fields (user personalization [27], collective robotic [32],
etc.). The obtained results encouraged us to promote the use of the AMAS ap-
proach and to build a methodology named ADELFE3 for designing adaptive sys-
tems. ADELFE only concerns applications in which self-organization makes the
solution emerge from the interactions of their parts. It also indicates to the de-
signer if the use of the AMAS approach is relevant for the construction of his
application. If the AMAS approach is relevant, ADELFE helps him to express
the behavior of the agents composing the system and the behavior of the society

3http://www.irit.fr/ADELFE

formed by these agents. ADELFE mainly focuses on the identification of all NCS
that may appear during the system functioning and then on the definition of the
actions the agents have to perform to come back to a cooperative state.

4 DYNAMO Overview
DYNAMO is an ANR4 funded research project. Our contribution in this project
was to propose a method and a tool that allow the construction and the evolution
of Terminological and Ontological Resource (TOR) from a corpus of documents
in order to facilitate semantic information retrieval. A TOR is a resource having
a conceptual component (an ontology) and a lexical component (a terminology)
[29], [13]. A TOR contains not only a set of domain concepts but also a set of
associated terms (their linguistic manifestations in documents: every term “de-
notes” at least one concept). These terms are used to annotate documents in order
to do semantic information retrievals. This paper does not propose a new model
for the representation of a TOR. Our TOR (called “ontology” in the rest of the
paper) is formalized using the OWL-based TOR model and was provided by a
partner of the DYNAMO project [34]. The TOR model used is a meta-model in
which the OWL ontology concepts and associated terms are OWL classes (figure
1). A “concept” class is denoted by one or more classes “terms”. Symmetrically,
a “term” class must necessarily have a denotation link toward a “concept” class.

Fig. 1. The DYNAMO TOR model.

The core of our work was the definition and the conception of an AMAS called
“DYNAMO-MAS” whose design principles follow the ADELFE methodology.
Before detailing our system, we first present the main steps of our TOR evolution
process from texts. Thereafter, we present the architecture of DYNAMO-MAS
before explaining the cooperative behaviors of agents that we have defined.

4http://www.agence-nationale-recherche.fr/

4.1 Ontology Evolution Process

According to the principle of ontological continuity [48], we assume that the
evolution of the domain knowledge does not affect the knowledge previously
modeled in a TOR. Changing a TOR (ontology) consists then in adding other
relations, other terms and/or other concepts. Our approach consists of 4 main
steps (see Fig. 2). Initially, a TOR is modeled from a corpus of text documents.
This TOR is consistent with this corpus. The addition of new documents in the
corpus triggers the process of TOR evolution.

DYNAMO Corpus
Analyzer

Extraction and filtering of terms
Extraction and selection of lexical relations

Addition of new terms
Addition of new concepts
Selection of the modifications proposals

DYNAMO-MAS

modifications

TOR

New
documents

Corpus

modification proposals

Ontologist

C

CC

C C

C

CC

C C

C

T

TT

T T

T

T

TT

T T

T

T

C

CC

C C

CT

T

TT

T T

T

Modified TOR (consistent with
the new corpus)

Step 1: enrichment of the
corpus by adding text

Step 2: extraction and filtering of
knowledge clues from new
documents

Step 3: knowledge
interpretation and TOR update

Step 4: manual management
of the TOR evolution
proposals

General
resources

Fig. 2. The proposed process for the evolution of an ontology from texts.

Step 1: enrichment of the corpus by adding new text. This step consists in
adding new documents to a corpus that will be then annotated by the TOR.
Step 2: extraction and filtering of knowledge clues from new documents of
the corpus. This step consists in extracting (from new documents) candidate
terms of the domain as well as lexical relations between these terms. This step
also consists in identifying, among all the terms and lexical relations proposed by
the NLP tools, those that are relevant to keep.
Step 3: knowledge interpretation and TOR update. This step consists in rep-
resenting the terms and lexical relations (selected in the previous step) in the
form of terms, concepts and relations between concepts, and in adding them to
the current TOR. To do this, the system uses domain knowledge. Each new term
to be proposed has to be connected (by a denotation link) to a concept (already
existing or to be created) of the TOR. When a new concept is created, it has to
be positioned in the TOR, and thus connected to one of the ontology concepts
(if necessary to the TOP concept). To do this, the system uses lexical relations
found in corpus, or uses the relations between concepts in a general ontology or
in a general structured lexicon (WordNet or Wolf). When all the extracted terms
are processed, some new concepts and new terms are selected by the system.
The TOR, thus enriched by these most relevant new concepts and terms, is then
proposed to the ontologist.
Step 4: manual management of the TOR evolution proposals. This step con-
sists in finalizing the evolution of the TOR. To do this, the ontologist analyzes
the TOR modifications proposals. He validates, modifies and / or rejects them

one by one via the TOR editor. He can also “manually” add other concepts and
other terms. He can also reorganize some parts of the ontology in order to better
structure it. The system takes into account these modifications in order to update
its internal representation of the TOR. This process ends when the ontologist is
satisfied by the modified TOR and when, from his viewpoint, the TOR considered
as “consistent” with the new corpus.
We propose to automate the second and the third steps of this process.

4.2 TOR evolution Architecture

Proposition

Manager

Ontological term

Candidate term

Concept Agent (present

in the ontology)

Term Agent (present in

the ontology)

Corpora

Ontologist

Ontology

DYNAMO-MAS

Concept Agent (candidate

but no present in the

ontology)

Term Agent (candidate

but no present in the

ontology)

Term extractor

Lexical relations generator

Term and lexical relations

selector
DYNAMO Corpus Analyser

Fig. 3. DYNAMO architecture.

The DYNAMO architecture (fig. 3) consists of (i) a corpus analyzer, (ii) an Adap-
tive Multi-Agent System (DYNAMO-MAS) and (iii) a graphical user interface
(GUI). The input of DYNAMO is a corpus of documents. The output of DY-
NAMO is an OWL ontology. The goal of this paper is to focus on the instantiation
of the AMAS approach to the ontology evolution issue. That is why only the main
characteristics of the Corpus Analyzer and the GUI are given. More information
about the corpus analyzer are available in [37].
The goal of the corpus analyzer is to identify relevant candidate terms as well
as relevant lexical relations that will be later agentified; it prepares the inputs for

MAS. It includes a terms extractor named YaTeA [4] a lexical relations generator
and a term and lexical relations selector. In this project, we are interested in four
types of lexical relations: (i) Hyperonymy that expresses a generic-specific rela-
tion between terms; (ii) Meronymy that expresses a part-hood relation between
terms; (iii) Synonymy that relates semantically close terms; (iv) Other relations
(called transverse relations) that are any other kinds of lexical relations that will
lead to a specific set of semantic relations, such as causes, leads to, etc..
These lexical relations are extracted by three ways: (i) a lexico-syntactic patterns
projection [24]; (ii) a syntactic dependency analysis between terms and candidate
terms in order to extract hyperonym relations; and (iii) a similarity calculation
between terms and candidate terms with the Levenshtein distance [28] to compute
synonymy relations.
The corpus analyzer generates triplets < Ti, Rel, Tj > where Ti and Tj are candi-
date terms or terms (whether the term belongs or not to the ontology) and Rel is a
lexical relation. Each triplet has a confidence (Q, I) where Q is the quality of the
relation (value between 1 and 10) and I is the number of instances of the relations
in the corpus. The triplets are the inputs of the MAS.
The MAS receives as input, the triplets provided by the corpus analyzer and pos-
sibly an existing ontology. As output, it provides a modified ontology in the form
of an OWL file respecting the used TOR model. DYNAMO-MAS also contains
a component called Nest (not shown in fig. 3) that is rather technical (it manages
the creation of agents and their communications).
A GUI is implemented in the ontology editor Protégé5. It enables the ontologist
to visualize the ontology as well as the MAS proposals. Through this interface,
the ontologist can validate, delete or modify the DYNAMO-MAS proposals. He
can also manually add other terms, concepts or relations. They will then be added
to the MAS and they will lead to new proposals.

5 DYNAMO-MAS: an AMAS for TOR evolution

DYNAMO-MAS consists of two components: (i) a MAS that represents the cur-
rent TOR and (ii) a Proposition Manager whose role is to manage the MAS pro-
posals as well as the interactions between the ontologist and the MAS.
We used ADELFE [36] to determine and define the two types of agents compos-
ing our MAS: (i) term agents that represent the terminological component of the
TOR and (ii) concept agents that represent the conceptual part of the TOR.
The initial state of the MAS is an agentified TOR. The concepts of the TOR
are concept agents connected by conceptual relations. The terms of the TOR are
term agents connected to concept agents by denotation relations. The addition
of a new text to the corpus triggers the corpus analyzer that identifies candidate
terms and lexical relations between candidate terms and/or terms. The agentified
candidate terms as well as lexical relations to be processed are then added to
the MAS. When new term agents and new concept agents appear in the MAS,
they have to locally find their best position in the organization. It is the local
goal of every agent. To achieve this goal, each agent has a nominal behavior
and a cooperative behavior that subsumes the first one according to the AMAS
approach (sub-section 3.3).

5http://protege.stanford.edu/

5.1 Term agent behaviors

Term agents represent the terminological part of a TOR. A term agent has a status
(term or candidate term) indicating whether the agent is part of the TOR (that is
to say, a valid term agent) or is at the proposal stage (an invalid term agent). Each
term agent is linked to other term agents in accordance with the lexical relations
extracted from the corpus. It must also be linked to at least one concept agent
according to the TOR model. Each relation between term agents is tagged by the
confidence of the triplet < Ti, Rel, Tj >.

Term agent nominal behavior The goal of a term agent is to find its best
position in the MAS and to propose itself to the ontologist. To do this, it must
achieve three objectives: (i) to denote a concept agent ; (ii) to process all its out-
going lexical relations ; (iii) if the conditions are met, to propose itself to the
ontologist. During its life cycle, each term agent processes its goals and the re-
ceived requests (messages from other term agents or concept agents), from the
highest priority to the lowest priority. A Term agent process its outgoing lexi-
cal relations from the most confident (most priority) to the less confident (less
priority). Its priority objective is to denote a concept agent. Once this objective
achieved, the next one is determined according to the confidence of the relation to
be processed, the relevance of the agent for proposing itself to the ontologist and
the confidences of the requests it receives. The algorithm explaining the nominal
behavior of a term agent can be seen in [37].

To achieve its first objective, a term agent asks for the creation of a concept agent
to the Nest tool. This creation is done if, in the current MAS, a concept agent hav-
ing the same label does not exist. The Nest tool transmits thereafter the identifier
of this new concept agent to the term agent. Then, the term agent sends to the
concept agent a request for establishing a denotation relation (Ê). This request is
always accepted by the concept agent (Ë). The confidence of the denotation rela-
tion is equal to the greatest confidence of the lexical relations of the term agent.

NCS1: At its creation a term agent may be faced with a uselessness NCS. Indeed,
if a term agent is not linked to a concept agent, it cannot achieve its objectives; it
is therefore useless.
NCS1 solution: To solve this NCS, the term agent sends a request to create a
concept agent to the Nest tool. It sends then a denotation request to this concept
agent. During its lifecycle, the term agent may change again its neighborhood or
disappear if it becomes again useless.

To achieve its second objective, a term agent processes its outgoing lexical re-
lations. A lexical relation has a confidence and a status (not treated, treated or
refused). A term agent processes its relations from the most relevant (having the
greatest confidence) to the less relevant. To do this, a term agent sends a request
to its concept agent in order to transform the lexical relation Ì (fig. 4). The con-
cept agent processes the request, then notifies the term agent with a message of
acceptance or refusal Í. The term agent updates the status of the processed rela-
tion (treated or refused). If the relation is refused, a term agent may later request
to process the refused relation if its confidence increased. When a term agent asks
for a synonym relation Î processing (fig. 5), its concept agent sends a denotation

bug error

bug errorHas synonym

DenoteDenote

Fig. 4. Interactions between agents.

bug error

bug errorHas synonym

Denote
Denote

Denote

Fig. 5. Interactions between agents.

request Ï to the target term agent of this relation. If the confidence of the request
is higher than the current denotation link of the target term agent, this latter ac-
cepts the request, changes its denotation relation Ð and notifies the concept agent
by a message of acceptation Ñ. The target term agent refuses the request other-
wise. The initial term agent is then notified Ò.

NCS2: During the processing of a denotion request sent by a concept agent, a
term agent may be faced with an ambiguity NCS. The term agent cannot choose
the concept agent that it wants to denote if the confidence of the request denota-
tion (Q1; I1) is equal to its current denotation confidence (Q2; I2).
NCS2 solution: A term agent prefers a neighborhood having valid concept agents.
In this way, to solve an ambiguity NCS, it chooses to denote the valid concept
agent. When the concept agent that has sent the denotation request and the con-
cept agent that is currently denoted by the term agent are both valid or invalid,
the term agent chooses the agent having the greatest confidence (the most rele-
vant according to it). In case of a tie, the term agent refuses the denotation request.

To achieve its third objective, a term agent calculates its relevance value (a score
between 0 and 10). When this score is above a threshold (fixed to 5 but ad-
justable), a term agent proposes itself to be part of the ontology by sending a
request to the Proposition Manager. The ontologist can tune this threshold start-
ing with a low value at the beginning of the evolution process (to get a lot of
suggestions) and increasing this value when the ontology provides good annota-
tions for all the documents in the corpus. When the ontologist accepts or rejects
a proposal, the Proposition Manager notifies the term agent with a rejection or
an acceptance. The term agent updates then its status. To prevent term agents to
propose themselves again after a rejection, a high value (equal to 9) is assigned
to the ontologist’s interventions (this parameter is adjustable). Indeed, during the
ontology evolution, the ontologist can qualify a candidate term as irrelevant for
the domain and can eventually later revise his decision. In this case, a term agent
may propose itself again if its relevance value exceeds this reject value.
To summarize, a term agent tries to find its best position in the MAS organization
by processing lexical relations. It moves from a concept agent towards another
concept agent essentially by processing synonymy relations. To locally assess
the adequacy of its position, the term agent calculates its relevance:

termAgentRelevance = α1 ∗P1 +α2 ∗P2 +α3 ∗P3 +α4 ∗P4

where P1 is the maximum value of all its lexical relations; P2 is the accuracy of
its neighborhood; P3 expresses the accuracy of the term agent’s lexical relations;

P4 expresses the diversity of the term agent lexical relations and α1,α2,α3,α4
are the different weights of the Pi.

More precisely:
– P1 = MaxLexicalRelationConfidence;
– P2 = (nbTermAgentInTOR - nbTermAgentNotInTOR)/(nbTermAgentInTOR

+ nbTermAgentNotInTOR);
– P3 = (nbAcceptedLexicalRelation - nbRefusedLexicalRelation) / (nbAccept-

edLexicalRelation + nbRefusedLexicalRelation);
– P4 = nbDifferenteLexicalRelation / nbAllDifferentLexicalRelation.

After various experiments with DYNAMO-MAS we empirically fixed the val-
ues of α1 to 0.5, α2 to 2, α3 to 2 and α4 to 1. These values best weighed the
parameters of the agent relevance.

Term agent cooperative behavior The cooperative behavior of a term agent
is defined through two cooperative behaviors (according to the AMAS approach):
a reorganization behavior and an evolution behavior. The reorganization behavior
occurs when a term agent denotes a valid concept agent (or when it receives from
its concept agent a message telling it is a son of a valid concept agent).

Component
Window

Frame

Window

Frame

Component

TOP

Component

Window

Frame

Window

Frame

Component
TOP

Fig. 6. Cooperative self-organization between term agents.

For example (Fig. 6), Main Frame-term informs Frame-term that it denotes
Frame-concept (Ê). It also sends the relevance score of Frame-concept. This
information is useful to a term agent that is the target of an hyperonymy relation.

Indeed, in order to increase its confidence, frame-term may decide, when it
receives this message, to move towards another concept agent. For this, it asks
to Main Frame-concept which is its father concept agent (Ë). Main Frame-
concept then sends Window (Ì). Frame-term is then faced with three denotation
possibilities: either it can decide to not move and to remain linked to Frame-
concept, or to denote Main Frame-concept, or to denote Window-concept. Its
decision depends then on the following rule:
Rule: A term agent prefers denoting a valid concept agent than a invalid one
because this can increase its relevance.
This rule enables to eliminate Frame-concept because it is an invalid concept
agent. The term agent has then to choose between Main Frame-concept and
Window-concept. The agent uses then the following rule:
Rule: A term agent prefers to denote a concept agent whose label is equal to its.
This more semantic rule was incorporated into the term agents by considering
that a term is often mistaken with a concept. When this rule is not used by the
term agent, it then uses the more abstract following rule:
Rule: In case of the reception of a denotation request from a concept agent, a term
agent prefers to denote a concept agent whose relevance is the greatest (because
the new denotation link will have a confidence equal to the confidence of the con-
cept agent). The higher the confidence, more it maximizes the confidence of the
term agent and thus enables it to propose itself to the ontologist. As this rule is
based on confidences, an agent may be faced with a NCS.

NCS3: A term agent is facing an ambiguity NCS when it cannot choose between
the concept agents towards whom moving, because their relevance are equal.
NCS3 solution: To solve this NCS, the term agent chooses to move towards
Window-concept and not towards Main Frame-concept. This resolution is se-
mantics. Indeed, a hyperonymy relation is often assimilated to an is a relation.
In this sense, a term agent is more likely to be at a best position if it denotes
Window-concept.

In fig. 6, Frame-term decides to move to Window-concept whose relevance
(Q; I) is equal to its denotation relation with Frame-concept (Í). Window-
concept accepts the denotation request and sends an acceptance message to Frame-
term (Î). When it receives this notification and before moving, Frame-term in-
forms its neighbors that it moves towards Window-concept (Ï). This message
enables agents to update their knowledge. Finally, Frame-term removes the old
denotation relation (Ð) and creates a new denotation relation with Window-
concept (Ñ) with a confidence equal to the confidence it had with the former
concept agent (because Frame-term agent is the initiator of the denotation rela-
tion request).
The evolution behavior occurs during the detection and elimination of useless
term agents. According to the AMAS approach, all agents in a MAS must be use-
ful in order to achieve the functional adequacy of the system.

NCS4: An intermediate term agent is facing a uselessness NCS when (i) it is
linked to a concept agent denoted by other term agents; (ii) it is the target of hy-
peronymy relations and this term agent has the same frequency as the term agents
whom it is target of hyperonomy relations; (iii) it is not a target of a hyperonymy
relation.

Default Exception
DB

Exception

Exception
DB

Exception

System
Exception

System
Exception

Exception
Error

Default Exception DB
Exception

System
Exception

System
Exception

Exception
Error DB

Exception

Fig. 7. Local treatment of a uselessness NCS by a term agent.

NCS4 solution: When a term agent is facing a uselessness NCS, it disappears
from the MAS. Before disappearing, a term agent informs its neighboring agents
in order to allow them to update their knowledge (Ê) (Fig. 7).

5.2 Concept agent behaviors

Concept agents represent the conceptual part of a TOR. A concept agent has a
status (concept or candidate concept) indicating whether the agent is part of the
ontology or is at proposal stage. A concept agent is linked to other concept agents
by conceptual relations. It is also linked to term agents by denotation links. Every
relation has a status (not treated, treated or refused) and a (Q, I) confidence.

Concept agent nominal behavior : The goal of a concept agent is to find
its best position in the MAS and to propose itself to the ontologist. To do this, it
must achieve three objectives: (i) to have semantic relations with concept agents
and denotation links with term agents; (ii) to determine a preferred label and (iii)
to propose itself to the ontologist. Each concept agent processes its goals and the
received requests from the highest priority to the lowest priority. The algorithm
explaining the nominal behavior of a concept agent can be seen in [37].

To achieve its first objective, a concept agent has to consider requests from term
agents Ê) to process lexical relations, and requests from concept agents (to es-
tablish conceptual relations (Ë)). We assumed as in [39], [12] and [5] that to
each lexical relation will match a specific conceptual relation. A hyperonymy
may lead to define an is a relation between the concepts denoted by these terms;

a meronymy may lead to define a part of or an ingredient of or a member of re-
lation between the concepts denoted by these terms; a synonymy may lead to
connect the related terms to the same concept with a denote relation; other rela-
tions may lead to define specific semantic relations between the concepts denoted
by the related terms, such as causes, contributes to, affects, etc..

applet program

applet program
Has hypernym

is a

Denote Denote

Fig. 8. Establishment of a is a relation.

These principles of transformation are not generalizable to all results provided
by the Corpus Analyzer because there may be extraction errors or conflicting
lexical relations. A concept agent first operates on the basis of these principles,
but it may afterwards change its relations and/or delete them. When a concept
agent processes a request from a term agent to process a lexical relation, it sends
a request to the concept agents denoted by the term agent that is target of the
lexical relation (Ë). For example (Fig. 8), a request to process a hyperonymy is
sent to applet-concept. This message corresponds to a request to establish an
is a relation (Ë). This request is sent by applet-concept towards program-
concept agent (Ë).
According to the AMAS approach, a cooperative agent must anticipate the ap-
pearance of NCSs that may affect the agent or its neighborhood. That is why,
when a concept agent receives a request to process a lexical relation, it antici-
pates the appearance of conflicting relations:

1. A hyperonymy relation must not be processed if: (i) a concept agent is target
of a is a (resp. has part) relation with the concept agent denoted by the term
agent that is target of the hyperonymy relation and (ii) if that hyperonymy
relation has a confidence (Q1; I1) lower than the confidence (Q2; I2) of the
is a (resp. has part) relation. For example, applet-concept will not pro-
cess the hyperonymy if it is the target of a is a (resp. has part) relation with
program-concept that has a higher confidence.

2. A meronymy relation must not be processed if: (i) a concept agent is tar-
get of a is a (resp. has part) relation with the concept agent denoted by the
term agent that is target of the meronymy relation and (ii) if that meronymy
relation has a confidence (Q1; I1) lower than the confidence (Q2; I2) of the
is a (resp. has part) relation. For example, applet-concept will not pro-
cess the meronymy if it is the target of a is a (resp. has part) relation with
program-concept that has a higher confidence.

A concept agent may have to choose between two conflicting relations in order
to keep only one. When two conflicting relations have the same confidence (very

rare), the agent detects a NCS.

NCS5: A concept agent is facing an ambiguity NCS concerning two conflicting
relations R1 and R2 if the confidence of R1 is equal to the confidence of R2.
NCS5 solution: If among the relations R1 and R2 one and only one is a hyper-
onymy relation to be processed (resp. to be kept) or is an is a relation, the concept
agent will then prefer to process (resp. keep) this relation.

A concept agent prefers hierarchical relations (hyperonymy or is a) compared to
non-hierarchical relations (meronymy or has part). This rule enables to solve the
NCS. When this decision is semantically false, it will be checked again by the
concept agent if the confidences of the lexical relations processed by the term
agents that are targets of conceptual relations are reassessed when new texts are
added to the corpus.
If a concept agent refuses a request to process a lexical relation, it sends a no-
tification message to the term agent with a confidence equal to the confidence
(Q; I) of the conflicting relation. For example, in Fig. 8, applet-concept sends
to program-concept a request for the establishment of an is a conceptual rela-
tion (Ë). This latter can accept or reject it by sending a notification to the agent
(Ì). A concept agent may refuse the establishment of a conceptual relation. In-
deed, some combinations of conceptual relations are wrong and must not be es-
tablished between concept agents. For this, a concept agent has the following
knowledge: (i) an is a relation is not symmetric;(ii) a has part relation is not
symmetric; (iii) an is a relation between two concept agents cannot exist with a
has part relation between these two agents.
A request to establish a conceptual relation will be accepted only if this relation
has a confidence (Q; I) bigger than the confidence of the conflicting conceptual
relation. In case of equal confidences, a NCS is detected.

NCS6: A concept agent A1 is facing to an ambiguity NCS concerning two con-
ceptual relations (it is the target of the first relation R1 and the second relation,
R2, comes from a request for a conceptual relation establishment from a concept
agent A2), if both relations have equal confidences.
NCS6 solution: The A1 agent compares its relevance P1 with the relevance P2 of
the agent A2. If P2 is higher than P1 then the A1 agent accepts the establishment
of the relation, otherwise it refuses. When these relevance are equal, the con-
cept agent refuses the establishment of the required relation. This relation will be
asked again if the lexical relations that led to its apparition in the AMAS evolve
when new texts are added to the corpus.

When it receives a notification, the concept agent updates the status of the con-
cerned relation as well as its relations with concept agents. In our example,
applet-concept creates an is a relation with program-concept (Í). As, in our
AMAS, a concept cannot be polysemous, the establishment of an is a relation
leads to the displacement of a concept agent A of an old concept agent B towards
another concept agent C. Finally, the term agent that is target of the lexical rela-
tion is notified by the concept agent that established the conceptual relation (Î).
Finally, the processing of synonymy relations leads to the displacement of term
agents from a concept agent towards another. In this case, it is possible that a
concept agent has no denotation relation. This is a NCS, because without a term

agent a concept agent cannot pursue its objectives.

NCS7: A concept agent is facing a uselessness NCS if it has no denotation rela-
tion.
NCS7 solution: The concept agent disappears from the MAS. Before disappear-
ing, it informs the single concept agent to which it is connected with a is a rela-
tion.

To achieve its second objective (to determine a preferred label), a concept agent
choses the label of the term agent having the denotation relation with the highest
confidence. This label can evolve if new term agents denote the concept agent or
if the confidences of the denotation links evolve.

To achieve its third objective (propose itself to the ontologist), a concept agent
calculates its relevance value. When this value is above a threshold, a concept
agent proposes itself to be part of the ontology by sending a request to the Propo-
sition Manager.
An invalid concept agent considers itself as relevant if two criteria are checked:

1. The concept agent believes it is at the best position in the AMAS organiza-
tion. This criterion is estimated by the parameters P1, P2, P3, P4 ;

2. the concept agent believes that it is an interesting concept agent to add to a
TOR, that is to say it is closer to the “valid” status than the “Invalid” status.
This criterion is estimated by the parameter P5.

A concept agent processes its local relevance according to the following formula:

conceptAgentRelevance = α1 ∗P1 +α2 ∗P2 +α3 ∗P3 +α4 ∗P4 +α5 ∗P5

where P1 is the maximum confidence value of all its conceptual relations; P2 is the
accuracy of the concept agents that are in relation with; P3 expresses the accuracy
of the conceptual relations of the concept agent ; P4 is the depth in the ontology;
P5 is the proportion of relevant term agents that denote this concept agent and
α1,α2,α3,α4,α5 are the different weights of Pi. More precisely:

– P1 = MaxConceptualRelationConfidence;
– P2 = (nbRCAInTOR - nbRCANotInTOR) / (nbRCAInTOR + nbRCANotIn-

TOR) where RCA (Related Concept Agent) are concept agents in relation
with the evaluated concept agent;

– P3 = (nbAcceptedCRA - nbRejectedCRA) / (nbAcceptedCRA + nbReject-
edCRA) where CRA (Conceptual Relations of the Agent) are conceptual
relations known by the evaluated concept;

– P4 = {-1;1}: -1 if the concept agent is connected to the TOP agent of the
ontology, 1 otherwise;

– P5 = (nbRelevantTermAgent - nbNotRelevantTermAgent) / (nbRelevantTer-
mAgent + nbNotRelevantTermAgent) where the term agents are denoting
the concept agent.

After some experiments with DYNAMO-MAS we empirically fixed the values of
α1 to 0.5, α2 to 1, α3 to 1, α4 to 1 and α5 to 2.

Concept agent cooperative behavior The cooperative behavior of a concept
agent is defined through three cooperative behaviors (according to the AMAS
approach): two reorganization behaviors and an evolution behavior.

The first reorganization behavior is similar to the one of term agents. When a
concept agent is connected to a valid concept agent, it informs its neighbors of
this information. This helps term agents or concept agents to move in the AMAS.
Rule: When a concept agent is connected to another valid concept agent, it in-
forms its neighbors of this information.
The second reorganization behavior concerns concept agent moving with trans-
verse relations. To allow a concept agent to change its neighborhood thanks to
its transverse relations, we took inspiration from the differentials principles [6].
These principles enable to identify one unit (or concept), its significance accord-
ing to its identities (or similarities) and its differences with its neighbors.
In the DYNAMO project, each TOR is built around a core of stable concepts (2,
3 or 4 concepts) linked to the DomainThing concept agent by an is a relation and
connected amongst themselves by properties. So the addition of other concepts
to the core concepts leads to the evolution of the TOR. For the AMAS, the goal
of a concept agent is then to find under which core concept agent it has to be
located. For that, when a concept agent has transverse relations from which it is
the source or the target and when it is connected to the DomainThing concept
agent, it moves in order to increase its relevance. For this, it chooses its trans-
verse relation whose confidence is maximal. Then it compares this relation with
the transverse relations of the core concept agents in order to choose the agent
toward which to move. Finally, it sends a request to establish a is a relation with
a confidence equal to the confidence of the transverse relation with the concerned
concept agent (Ê) (Fig. 9). The latter accepts the establishment of the relation and
sends a notification of acceptance (Ë). Once the notification received, the concept
agent changes its neighborhood by adding this new concept agent. This behavior
can trigger a NCS if a concept agent has two or more transverse relations with
the same confidence.

Function

TOP

concerns
Component

Delete
concerns

Buttom

Function

TOP

concerns
Component

Delete
concerns

Buttom

Fig. 9. Self-organization with transverse relations.

NCS8: A concept agent is facing an ambiguity NCS if it cannot choose between
two or more transverse relations in order to change its neighborhood.
NCS8: To solve this NCS, a concept agent chooses the transverse relation whose
end is a valid concept agent. If all the concept agents are valid or invalid, it
chooses the relation with the concept agent that has the highest confidence. Fi-
nally, if all the confidences are equal, the concept agent chooses a arbitrary trans-

verse relation. Thus, by changing its neighborhood, a concept agent increases its
relevance and therefore increases its chance to propose itself to the ontologist.

The evolution behavior aims at preventing useless intermediate concept agents.

Default Exception

DB
Exception

System
Exception

Default Exception

DB
Exception

System
Exception

Fig. 10. Example of interaction for the simplification of the hierarchy.

NCS9: An intermediate concept agent is facing a uselessness NCS if it has the
same frequency6 as its father concept agent and it has the same frequency as its
son concept agent(s).
NCS9 solution: A concept agent faced with a uselessness NCS disappears from
the AMAS.

An intermediate concept agent informs its neighboring agents before disappear-
ing in order to allow them to update their knowledge (Ê) (Fig. 10). This disap-
pearance can lead to a uselessness NCS. To avoid this, the concept agent proposes
its father concept agent to its son concept agents as well as to its term agents that
denote it (Ê). Each agent then sends a request to establish a relation with this
new concept agent (Ë). The latter accepts the establishment of the relation and it
sends a acceptance notification to the concerned agent (Ì).

5.3 The Proposition Manager

The Proposition Manager enables the ontologist to visualize the ontology and the
MAS proposals as well as to interact with the MAS (Fig. 3). Its main goals are (i)
to sort out the proposals (to be displayed via the GUI) sent by the concept agents
and the term agents; and (ii) to convey the corrections made by the ontologist to
the concept and term agents with regard to their proposals.
Once the activity of the MAS is stabilized, i.e. when all the agents have pro-
cessed the requests that they received, the Proposition Manager sorts the propos-
als, deletes contradictory ones and conveys the final list to the ontologist. Some
contradictions may appear either when an agent proposes itself but later disap-
pears from the MAS, or when an agent proposes a conceptual relation and later
proposes another relation involving the same concepts with a different relation.
The system considers that the most recent one is the only one that is valid.

6The frequency of a concept agent is calculated from the sum of the frequencies of term
agents that denote it.

The Proposition Manager finally sends back to agents that made proposals, the
evaluation coming from the ontologist. This notification corresponds to a new
request sent to the agents that will process it.

6 Evaluation of the DYNAMO-MAS
The DYNAMO-MAS was implemented as a plugin in the ontology editor Protégé7

(Fig. 11). It completes TextViz [34], a tool dedicated for the semantic annotation
of documents.
When the ontologist adds new texts to the corpus, the DYNAMO-MAS is trig-
gered. The corpus analyzer extracts new candidate terms and new lexical rela-
tions. It sends them as inputs to the MAS; new term agents are created and interact
with the other agents. So most of the agents in the MAS update their knowledge,
react and communicate with each other until a stable state is reached. Then the
MAS proposes a new ontology (the initial ontology that has been enriched and
modified) to the ontologist in the GUI (Fig. 11) (Í. Changes are displayed in the
concept panel (Ê) and in the terms panel (Ë). Proposed concepts and terms are
the underlined one. A second Tab Widgets, called DYNAMO - Virtual Ontolo-
gist Proposals (Ì), has been added to Protégé. It is a tabular view of the MAS
proposals, incorporating non-hierarchical relations that cannot be seen in the two
first panels. The ontologist validates, deletes or modifies the concepts, terms and
relations proposed by DYNAMO-MAS via the Graphical User Interface (Í).

Fig. 11. The DYNAMO tool into the Protégé ontologies editor.

We tested our MAS on 3 different TOR and associated corpus provided by 3 part-
ners of the DYNAMO project: (i) an English one on software bugs reports (made

7http://protege.stanford.edu/

up of 887 terms and 582 concepts; the corpus is composed of 287 documents
bug report files provided by Artal technology), (ii) a French one on automotive

diagnosis (made up of 579 terms and 330 concepts; the corpus is composed of
710 documents files that report fault descriptions and repair procedures pro-
vided by Actia) and (iii) a French one on archaeology (made up of 733 terms and
380 concepts; the corpus is composed of 299 documents rule-based formulation
of scientific papers provided by Arkeotek).

To evaluate the quality of DYNAMO-MAS we made a comparison between
manual ontology evolution and automatic ontology evolution. The evolution is
manual if the ontologist adds by itself new terms and new concepts in the ontol-
ogy. The evolution is automatic, if the ontologist uses our tool. Obtained results
can be seen in [37].
After the addition of 21 documents in the Artal corpus, DYNAMO-MAS pro-
vided 67% of term proposals and 56% of concept proposals that are relevant.
It was also able to suggest 12 terms and 9 concepts not manually identified
by the ontologist. After the addition of 12 documents in the Arkeotek corpus,
DYNAMO-MAS provided 68.75% of relevant term proposals and 59.26% of
relevant concept proposals. It was also able to suggest 18 terms and 14 concepts
not identified. Finally, after the addition of 21 documents in the Actia corpus,
DYNAMO-MAS reached only 16.98% of relevant term proposals and 22.22% of
relevant concept proposals. It was also able to suggest 5 terms and 5 concepts not
manually identified. These results are less good because new documents added
to the corpora contained very little new knowledge. Furthermore, conversely to
Artal and Arkeotek ontologies (that are ontologies under construction), Actia on-
tology covers most of the knowledge expressed in the corpus.
However, obtained results are encouraging and the AMAS approach seems rel-
evant. Even if DYNAMO-MAS is composed of a large number of agents (more
than 1000 agents), the new concept agents and term agents, with only local and
distributed mechanisms, come up to find by themselves their best position in the
MAS organization (the ontology). Results of the quality evaluation of DYNAMO-
MAS are more precisely presented and discussed in [37].
To evaluate the performances of DYNAMO-MAS we added different numbers
of documents (4, 8, 16, 32, 64, 128, 256 and 512) to the 3 ontologies. We stud-
ied the time performance of DYNAMO-MAS to stabilize and its scalability.
Indeed, when new agents are added to the MAS, this latter becomes perturbed.
The goal of the MAS is then to solve its perturbations in order to come back to
a stable state and give rise to a new ontology. Initially, after the agentification of
the 3 ontologies, the ontology of Artal was composed of 1469 agents, the one of
Arkeotek 1328 and the one of Actia 1176.
Fig. 12 shows the time required for the MAS to self-stabilize after the addition
of new documents. The 3 curves having a X2 coefficient close to zero, the time
required for the MAS to stabilize is almost linear. The addition of 512 documents
to the Arkeotek corpus has generated the creation of 1468 new agents in the MAS
and the stabilization time took around 4 minutes and 30 seconds. The addition of
512 documents to the Artal corpus has generated the creation of 694 new agents
and the stabilization time was around 1 minute. Finally, the addition of 512 doc-
uments to the Actia corpus has generated the creation of 270 new agents and the
stabilization time was around 20 seconds. We can conclude that DYNAMO-MAS
stabilizes very quickly despite the large number of agents composing the MAS.

y = 1E-05x2 + 0,076x - 0,403

0

10

20

30

40

50

60

70

0 200 400 600 800

T
im

e
st

ab
il

iz
at

io
n

 (
se

co
n

d
)

Number of added agents in the Artal
ontology

y = 7E-05x2 + 0,080x + 0,910

0

50

100

150

200

250

300

0 500 1000 1500 2000

T
im

e
st

ab
il

iz
at

io
n

 (
se

co
n

d
)

Number of added agents in the
Arkeotek ontology

y = 5E-05x2 + 0,060x + 0,462

0

5

10

15

20

25

0 100 200 300

T
im

e
st

ab
il

iz
at

io
n

 (
se

co
n

d
)

Number of added agents in the Actia
ontology

Fig. 12. Stabilization time of the MAS and number of added agents further to the addition of new
documents.

0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100% 120%P
er

ce
n

ta
g

e
o

f
af

fe
ct

e
d

ag
en

ts

Percentage of added agents
Percentage of affected agents with Artal dataset

Percentage of affected agents with Actia dataset

Percentage of affected agents with Arkeotek dataset

Fig. 13. Perturbation diffusion inside DYNAMO-MAS.

Fig. 13 shows the percentage of perturbed agents after the introduction of new
agents. In the 3 curves, we can notice that the addition of new agents to the
MAS does not disrupt the whole system. When we added 512 documents to the
Arkeotek corpus, the 1468 new agents (representing 110,47% of the MAS) per-
turb only 755 agents (representing 56,85% of the MAS). Also, when we added
512 documents to the Artal corpus, the 694 new agents (representing 47,24% of
the MAS) perturb only 696 agents (representing 47,38% of the MAS). Finally,
when we added 512 documents to the Actia corpus, the 270 new agents (repre-
senting 23,14% of the MAS) perturb only 319 agents (representing 27,34% of
the MAS). This result shows that the disturbance can be considered as local.

As we seen, results provided by DYNAMO-MAS have a different quality de-
pending on the corpus and on the initial state of the ontology. It seems that as the
ontology construction progresses, the insertion of results supplied by DYNAMO-
MAS becomes more complex, or conversely when the conceptualization is in its
early stages, the MAS brings more help to the ontologist. In other words, the re-
sults of the qualitative evaluation of DYNAMO show that more an ontology is
unachieved, more the AMAS proposals are accepted (Artal and Arkeotek data).
Conversely, if an ontology is already built, the AMAS proposals are often re-
jected (Artal data). The completion of an ontology can be quantified thanks to the
annotations of new documents added to the corpus. These values are calculated
by TextViz and indicate the degree of annotation of a document by the ontology.

We are currently working on some improvements of DYNAMO-MAS in order
to better adapt the results provided by the MAS to the ontologist, that is to say
to personalize the system to the ontologist’s actions. The idea here is to adjust
the threshold proposals of agents depending on the state of completion of the
ontology as well as according to the ontologist’s actions.
We propose to take into account the results of annotation for the calculation of
the proposals threshold.

InitialProposalT hreshold =
∑

n
i=1 annotationValuei

n

This formula increases the proposals threshold when documents are rightly an-
notated and decreases otherwise. Thus, for the data provided by Actia, only the
term agents and the concept agents having a relevance value higher than 9 will
propose themselves to the ontologist.
Thereafter, the system has to learn how to vary this threshold according to the
interactions with the ontologist. For that, we consider that more the ontologist
accepts proposals more the un-proposed agents are potentially interesting. Thus,
the threshold has to be decreased in order to propose them to the ontologist. Con-
versely, more the ontologist refuses proposals, more it makes sense to limit the
number of proposals. The solution is then to increase the threshold. We propose
to implement this adaptation mechanism with the following formula:

ProposalT hreshold = ProposalT hreshold−ProposalT hreshold ∗Coe f

Where ProposalThreshold is the current proposals threshold and agentRelevancy
is the confidence of the accepted/refused/moved agent by the ontologist. The
value of the Coe f variable has to be different according to the ontologist’s ac-
tions. It can have a value equal to 0.5 when the ontologist accepts a proposal
(proposal at the right position in the TOR). It can have a value equal to 0.25 the
ontologist moves a proposal (proposal correct but misplaced in the TOR).
When the ontologist refuses a proposal the ProposalThreshold can be defined
with the following formula where coe f can be equal to 0.5:

ProposalT hreshold = ProposalT hreshold +ProposalT hreshold ∗Coe f

Subsequently after a given number of the ontologist’s actions, the Proposition
Manager updates the proposals made by the ontologist by eliminating those that
do not exceed the proposals threshold and by adding those that exceed it. A new
updated version of the TOR is then proposed to the ontologist. Another perspec-
tive, is to introduce an Adaptive Value Tracker (AVT) component [27] to adjust
the value of the Coe f parameter. An AVT is a software component that finds
the optimal value of a dynamic variable in a given space thanks to successive
feedbacks. In our case, feedbacks come from the ontologist. When the ontologist
rejects or accepts a set of concepts, relations and terms, the AVT will adjust Coe f .

7 Conclusion

The aim of this paper was to propose a system to automatize the co-construction
and the evolving (with an ontologist) of an ontology from texts. This issue is very

interesting because manual construction and evolution of an ontology are com-
plex and consuming tasks. The goal of our system was to automatically propose
to the ontologist new concepts and/or terms to improve the ontology after the
addition of new documents in the corpus. The ontologist can then make correc-
tions on the ontology to be taken into account at runtime by the system in order
to improve the ontology. After having proposed a state of art on this issue, and
considering the characteristics of such issue, we justified why the Multi-Agent
System paradigm and especially the Adaptive Multi-Agent System (AMAS) ap-
proach seem very relevant to resolve this problem. The AMAS approach proposes
an original solution to solve complex problems evolving in a dynamic environ-
ment and for which an a priori know solution does not exist.
The core of this paper was to present the instantiation of this approach to the prob-
lem of co-construction and evolution of an ontology from texts with an ontologist.
We gave in that sense a quick overview of the DYNAMO project in which this
work took part as well as the architecture of the proposed system (DYNAMO-
MAS). Then we focused on the cooperative behaviors we gave to the two types
of agents we defined. In accordance with the AMAS approach, we put the em-
phasize on the Non Cooperative Situations to which each type of agents can be
confronted with during the system functioning, as well as the actions they have to
implement to come back to a cooperative state. Some experiments that were car-
ried out within the project were then presented, with three ontologies more or less
achieved, expressed in two different languages (French and English), concerning
three different domains. These experiments confirmed that linguistic clues are not
sufficient to decide the content of an ontology, and that the intervention of an on-
tologist is fundamental. We proposed then some improvements that are currently
on-going in order to better co-construct the ontology, that is to say to personalize
the results provided by DYNAMO-MAS with the actions of an ontologist (who
can be more or less strict).
The originalities of our work are triple. First it enables to make evolve an ontology
when new documents are added in the corpus without restarting the process of
construction from scratch. Also, our proposition considers an ontology as a MAS
that interacts with an ontologist and self-adapts when new domain knowledge are
added. Finally our approach is independent of the language and the domain of
the handled texts and it expresses the ontology in OWL format, a standard that
makes it easily reusable.
Acknowledgments: We thank all the members of the DYNAMO project for their
contribution and especially S. Rougemaille8 and M. Mbarki9 for their contribu-
tion to the implementation and the evaluation of the DYNAMO tool.

References

1. M. Afsharchi and B. H. Far. Automated ontology evolution in a multi-agent
system. In 1st international conference on Scalable information systems,
InfoScale ’06, New York, NY, USA, 2006. ACM.

2. T. M. Akinsola. Automated Ontology Evolution. Masters of science infor-
matics, University of Edinburgh, Edinburgh, Scotland, 2008.

8Unsolved Problems for Emerging Technologies - Upetec company
9Artal Technologies company

3. A. Aldea, R. Bañares-alcántara, J. Bocio, J. Gramajo, and D. Isern. An
ontology-based knowledge management platform. In Workshop on Infor-
mation Integration on the Web associated to IJCAI, pages 177–182, 2003.

4. S. Aubin and T. Hamon. Improving term extraction with terminological re-
sources. In Advances in Natural Language Processing, 5th Int. Conf. on NLP,
FinTAL, pages 380–387, Turku, Finland, 2006. Springer.

5. N. Aussenac-Gilles and N. Hernandez. Du linguistique au conceptuel : iden-
tification de relations conceptuelles à partir de textes. In Atelier ”Acquisition
et modélisation de relations sémantiques”, Toulouse, 2009.

6. B. Bachimont. Engagement sémantique et engagement ontologique: concep-
tion et réalisation d’ontologies en ingénierie des connaissances. Ingénierie
des Connaissances: Evolutions récentes et nouveaux défis, 1:1–16, 2000.

7. J. Bao and V. Honavar. Collaborative ontology building with wiki@nt. Work-
shop on Evaluation of Ontology-Based Tools, 2004.

8. F. Bergenti, A. Poggi, G. Rimassa, and P. Turci. Comma: a multi-agent sys-
tem for corporate memory management. Int. Joint Conf. on AAMAS, pages
1039–1040, 2002.

9. C. Bernon, D. Capera, and J.-P. Mano. Engineering Self-Modeling Systems:
Application to Biology. In Int. Workshop on Engineering Societies in the
Agents World, St-Etienne, LNCS 5485, pages 236–251. Springer, 2009.

10. P. Buitelaar, P. Cimiano, and B. Magnini. Ontology Learning from Text:
Methods, Evaluation and Applications. Frontiers in Artificial Intelligence
and Applications Series. IOS Press, Amsterdam, 2005.

11. V. Camps. Vers une théorie de l’auto-organisation dans les systèmes multi-
agents basée sur la coopération : application à la recherche d’information
dans un système d’information répartie. PhD thesis, Université Paul
Sabatier, Toulouse, Janvier 1998.

12. M. Chagnoux, N. Hernandez, and N. Aussenac-Gilles. An interactive pat-
tern based approach for extracting non-taxonomic relations from texts. In
Workshop on Ontology Learning and Population (associated to ECAI 2008),
pages 1–6. University of Patras, juillet 2008.

13. P. Cimiano. Ontology Learning and Population from Text: Algorithms, Eval-
uation and Applications. Springer, 2006.

14. P. Cimiano and J. Volker. Text2onto - a framework for ontology learning
and data-driven change discovery. In 10th Int. Conference on Applications
of Natural Language to Information Systems, volume 3513 of LNCS, pages
227–238, Heidelberg, 2005. Springer.

15. M. T. Elmore, T. E. Potok, and F. T. Sheldon. Dynamic data fusion using
an ontology-based software agent system. 7th World Multiconference on
Systemics, Cybernetics and Informatics, 2003.

16. G. Flouris. On belief change and ontology evolution. PhD thesis, University
of Crete, Department of Computer Science, Heraklion, Greece, 2006.

17. G. Flouris, D. Plexousakis, and G. Antoniou. A classification of ontology
change. In CEUR-WS 201. CEUR-WS.org, 2006.

18. F. Gandon. Distributed Artificial Intelligence and Knowledge Management:
ontologies and multi-agent systems for a corporate semantic web. Thèse de
doctorat, Univ. de Nice - Sophia Antipolis, novembre 2002.

19. P. Gawrysiak, G. Protaziuk, H. Rybinski, and A. Delteil. Text onto miner -
a semi automated ontology building system. In the 17th Int. Symposium on
Methodologies for Intelligent Systems, pages 563–573, Toronto, 2008.

20. M.-P. Gleizes, V. Camps, J.-P. Georgé, and D. Capera. Engineering Systems
which Generate Emergent Functionalities. In Engineering Environment-
Mediated Multiagent Systems - associated to ECCS, Dresden, Germany,
number 5049 in LNAI, page (on line). Springer-Verlag, juillet 2008.

21. D. Greenwood, M. Lyell, A. Mallya, and H. Suguri. The IEEE FIPA Ap-
proach to Integrating Software Agents and Web Services. AAMAS, 2007.

22. M. Hadzic and D. Dillon. An agent-based data mining system for ontol-
ogy evolution. In Confederated International Workshops and Posters on the
Move to Meaningful Internet Systems, OTM ’09, pages 836–847, Berlin, Hei-
delberg, 2009. Springer-Verlag.

23. Z. S. Harris. Mathematical Structures of Language. Wiley, New York, 1968.
24. M. A. Hearst. Automatic acquisition of hyponyms from large text corpora.

In 14th Int. Conference on Computational Linguistics, pages 539–545, 1992.
25. M. Klein. Change management for distributed ontologies. PhD thesis, Dutch

Graduate School for Information and Knowledge Systems, Germany, 2004.
26. S. Leen-Kiat. Multiagent distributed ontology learning. In Workshop on

Ontologies in Agent Systems, associated to AAMAS, volume 66, pages 75–
79, Bologna, Italy, July 2002.

27. S. Lemouzy. Systèmes interactifs auto-adaptatifs par systèmes multi-
agents auto-organisateurs : application à la personnalisation de l’accès à
l’information. Thèse de doctorat, Univ. Paul Sabatier, Toulouse, juillet 2011.

28. V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady, 10:707, 1966.

29. A. Maedche. Ontology learning for the Semantic Web, volume 665. Kluwer
Academic Publisher, 2002.

30. K. Ottens. Un système multi-agent adaptatif pour la construction
d’ontologies à partir de textes. Thèse de doctorat, Univ. Paul Sabatier,
Toulouse, octobre 2007.

31. K. Ottens, N. Hernandez, M.-P. Gleizes, and N. Aussenac-Gilles. A multi-
agent system for dynamic ontologies. Journal of Logic and Computation,
Special Issue on Ontology Dynamics, 19:1–28, 2008.

32. G. Picard and M.-P. Gleizes. Cooperative Self-Organization: Designing Ro-
bust and Adaptive Robotic Collectives. In Third Eur. Workshop on Multi-
Agent Systems , Brussels, Belgium, pages 495–496, Brussel, 2005. KVAB.

33. M.-L. Reinberger and P. Spyns. Discovering knowledge in texts for the learn-
ing of dogma-inspired ontologies. In Workshop on Ontology Learning and
Population, ECAI04, pages 19–24, Valencia, 2004.

34. A. Reymonet, J. Thomas, and N. Aussenac-Gilles. Modelling ontological
and terminological resources in OWL DL. In OntoLex07 - associated to
ISWC, Busan, 2007.

35. L. Safari, M. Afsharchi, and B. H. Far. Concepts in action: Performance
study of agents learning ontology concepts from peer agents. In ICAART’09,
pages 526–532, 2009.

36. Z. Sellami. Gestion dynamique d’ontologies à partir de textes par systèmes
multi-agents adaptatifs. Thèse de doctorat, Université de Toulouse, juillet
2012.

37. Z. Sellami, V. Camps, and N. Aussenac-Gilles. DYNAMO-MAS: a multi-
agent system for ontology evolution from text. Journal on Data Semantics,
Volume 2, Issue 2(DOI 10.1007/s13740-013-0025-1):145–161, mai 2013.

38. Z. Sellami, V. Camps, N. Aussenac-Gilles, and S. Rougemaille. Ontology
Co-construction with an Adaptive Multi-Agent System: Principles and Case-
study. In Knowledge Discovery, Knowledge Engineering and Knowledge
Management, volume 128 of CCIS, pages 237–248. Springer, 2011.

39. P. Séguéla. Construction de modèles de connaissances par analyse linguis-
tique de relations lexicales dans les documents techniques. Thèse de doc-
torat, Université Paul Sabatier, Toulouse, mars 2000.

40. R. Siebes and F. van Harmelen. Ranking agent statements for building evolv-
ing ontologies. Workshop on Meaning Negotation, in conjunction with the
Eighteenth National Conference on Artificial Intelligence, July 2002.

41. S. Slimani, S. Baina, and K. Baina. A framework for ontology evolution
management in ssoa-based systems. Web Services, IEEE International Con-
ference on, 0:724–725, 2011.

42. S. Slimani, S. Baı̈na, and K. Baı̈na. Interactive ontology evolution man-
agement using mutli-agent system: A proposal for sustainability of semantic
interoperability in soa. In WETICE, pages 41–46, 2011.

43. L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, Karl-
sruhe University. Germany, 2004.

44. V. Tamma and T. Bench-Capon. An ontology model to facilitate knowledge-
sharing in multi-agent systems. Knowl. Eng. Rev., 17:41–60, March 2002.

45. P. Velardi, R. Navigli, A. Cucchiarelli, and F. Neri. Evaluation of ontolearn,
a methodology for automatic learning of domain ontologies. In Ontology
Learning from Text: Methods, Evaluation and Applications. IOS Press, Am-
sterdam, 2005.

46. A. Viollet. Un protocole entre agents pour l’alignement d’ontologies. Rap-
port de master, Université Joseph Fourier, Grenoble, 2004.

47. J. Wang and L. Les Gasser. Mutual online ontology alignment. In Workshop
on Ontologies in Agent Systems, associated to AAMAS, volume 66, pages
103–113, Bologna, Italy, July 2002.

48. D. N. Xuan, L. Bellatreche, and G. Pierra. Un modèle à base ontologique
pour la gestion de l’évolution asynchrone des entrepôts de données. In
Modélisation, Optimisation et Simulation des Systèmes : Défis et Opportu-
nités), pages 1682–1691, Rabat, Maroc, 2006.

49. F. Zablith, M. Sabou, M. d’Aquin, and E. Motta. Ontology evolution with
evolva. In 6th European Semantic Web Conference, volume LNCS 5554,
pages 908–912, Berlin, Heidelberg, 2009. Springer-Verlag.

50. F. Zablith, Z. Sellami, M. D’Aquin, N. Aussenac-Gilles, and N. Hernandez.
Vers la combinaison de deux techniques d’évolution d’ontologies à partir
de ressources générales et de ressources linguistiques. In Atelier ”Evolu-
tion d’ontologies” des 21e Journées francophones d’Ingénierie des Connais-
sances, Nı̂mes, 2010.

