
 

To cite this document: Hugues, Jérôme Tighter Integration of Drivers and Protocols in a 

AADL-based Code Generation Process. (2014) In: 5th Analytic Virtual Integration of 

Cyber-Physical Systems Workshop (AVICPS), 2 December 2014 - 2 December 2014 

(Roma, Italy). 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 13515 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/33663975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr


Tighter integration of drivers and protocols

in a AADL-based code generation process

Jérôme Hugues1

1Université de Toulouse, ISAE

10, Avenue E. Belin 31055 Toulouse Cedex 4, France

jerome.hugues@isae.fr

Abstract

Model-based engineering provides an appealing frame-

work for the precise modeling and analysis of embed-

ded systems. Architecture Description Languages provide

a clear and precise semantics to address multiple analy-

sis dimensions: scheduling, fault, resource accounting, etc.

This is completed by code generation tools that generate all

required glue code to enable intercommunication between

components and associated configuration mechanisms.

The diversity of embedded targets requires extended con-

figuration to support multiple devices, operating systems

but also compilation toolchains. Yet, those are usually hard-

wired in the code generation process.

In this paper, we propose several patterns to support model-

level configuration of the target, but also increased analysis

capabilities in the context of the AADLv2.

Keywords AADL, REAL, device driver and RTOS inte-

gration

1. Introduction

Model-based engineering provides an appealing frame-

work for the precise modeling and analysis of embed-

ded systems. Architecture Description Languages provide

a clear and precise semantics to address multiple analy-

sis dimensions: scheduling, fault, resource accounting, etc.

This is completed by code generation tools that generate all

required glue code to enable intercommunication between

components and associated configuration mechanisms.

Even-though there are modeling patterns for decoupling

platform specific concerns from the logic of the system

(PIM/PSM decoupling), there is still a strong need for

patterns to integrate configuration parameters of the tar-

get environment, but also implicit execution resources –

tasks, buffers, etc. – used by the execution runtime. Higher

precision in modeling patterns and associated information

would bring more confidence in analysis results.

Besides, the diversity of embedded targets requires ex-

tended configuration to support multiple devices, OS but

also compilation toolchains. Still, we note those are usu-

ally hard-wired in the code generation process.

In this paper, we consider the AADLv2 language [9].

This architecture description language promoted by SAE

aims at the precise description of embedded systems for

analysis and generation purposes. In [6], we underlined

the fact that the AADL ecosystem is rich of many diverse

analysis tools, covering most steps in a typical engineering

cycle. We also underlined the fact that precise modeling is

a key asset to be further addressed.

In the following, we consider precise modeling from the

perspective of code generation. We present contributions to

model precisely runtime elements such as interrupts, device

drivers. Those are central for embedded systems, but are

seldom contemplated in an inclusive and extensive code

generation strategies. We introduce both modeling patterns

and code generation artifacts to support them.

In section 2, we briefly introduce AADLv2; in section 3

we introduce AADLib, a library of reusable building blocks

for AADLv2; section 4 introduces modeling patterns for

platform elements: interrupt handlers and drivers. Then,

we tackle the issue of code integration in section 5 and

conclude.

2. An overview of AADLv2

The “Architecture Analysis and Design Language” AADL

is a textual and graphical language for model-based engi-

neering of embedded real-time systems. It has been pub-

lished as an SAE Standard AS-5506B [9]. AADL is used

to design and analyze software and hardware architectures

of embedded real-time systems.

The AADL allows for the description of both software

and hardware parts of a system. It focuses on the defini-

tion of clear block interfaces, and separates the implemen-

tations from these interfaces. It can be expressed using both

a graphical and a textual syntax. From the description of

these blocks, one can build an assembly of blocks that rep-

resent the full system. To take into account the multiple

way to connect components, the AADL defines different



connection patterns: between subcomponents, across com-

ponents and binding of software blocks to hardware.

An AADL model can incorporate non-architectural ele-

ments: embedded or real-time characteristics of the compo-

nents (execution time, memory footprint, . . . ), behavioral

descriptions. Hence it is possible to use AADL as a back-

bone to describe all the aspects of a system. Let us review

all these elements:

An AADL description is a set of components. The

AADL standard defines software components (data, thread,

thread group, subprogram, process) and execution

platform components (memory, bus, processor, device,

virtual processor, virtual bus) and hybrid compo-

nents (system).

Each Component category describes well identified ele-

ments of the actual architecture, using the same vocabulary

of system or software engineering:

• Subprograms model procedures like in C or Ada. Threads

model the active part of an application (such as POSIX

threads). AADL threads may have multiple operational

modes. Each mode may describe a different behaviour

and property values for the thread. Processes are mem-

ory spaces that contain the threads. Thread groups are

used to create a hierarchy among threads.

• Processors model micro-processors and a minimal op-

erating system (mainly a scheduler). Memories model

hard disks, RAMs, buses model all kinds of networks,

wires, devices model sensors, . . .

• Virtual bus and Virtual processor models “virtual” hard-

ware components. A virtual bus is a communication

channel on top of a physical bus (e.g. TCP/IP over Eth-

ernet); a virtual processor denotes a dedicated schedul-

ing domain inside a processor (e.g. an ARINC653 par-

tition running on a processor).

• Unlike other components, Systems do not represent any-

thing concrete; they combine building blocks to help

structure the description as a set of nested components.

Packages add the notion of namespaces to help structur-

ing the models. Abstracts model partially defined com-

ponents, to be refined during the modeling process.

Component declarations have to be instantiated into

subcomponents of other components in order to model

architecture. At the top-level, a system contains all the

component instances. Most components can have subcom-

ponents, so that an AADL description is hierarchical. A

complete AADL description must provide a top-most level

system that contains certain kind of components (proces-

sor, process, bus, device, abstract and memory), thus pro-

viding the root of the architecture tree. The architecture in

itself is the instantiation of this system, which is called the

root system.

The interface of a component is called component type.

It provides features (e.g. communication ports). Compo-

nents communicate one with another by connecting their

features. Each component type can receive zero or sev-

eral implementations. Each of them describes the internals

Figure 1. Ravenscar case study

of the components: subcomponents, connections between

those subcomponents, . . .

An implementation of a thread or a subprogram can

specify call sequences to other subprograms, thus describ-

ing the execution flows in the architecture. Since there can

be different implementations of a given component type,

it is possible to select the actual components to put into

the architecture, without having to change the other com-

ponents, thus providing a convenient approach to configure

applications.

The AADL defines the notion of properties that can

be attached to most elements (components, connections,

features, . . . ). Properties are typed attributes that specify

constraints or characteristics that apply to the elements of

the architecture: clock frequency of a processor, execution

time of a thread, bandwidth of a bus, . . . Some standard

properties are defined, e.g. for timing aspects; but it is

possible to define new properties for different analysis (e.g.

to define particular security policies).

AADL is a language, with different representations. A

textual representation provides a comprehensive view of all

details of a system, and graphical provide a higher level of

abstraction, and allow for a quick navigation in multiple

dimensions. In the following, we illustrate both notations.

Let us note that AADL can also be expressed as a UML

model following the MARTE profile [4].

The concepts behind AADL are those typical to the con-

struction of embedded systems, following a component-

based approach: blocks with clear interfaces and proper-

ties are defined, and compose to form the complete system.

Besides, the language is defined by a companion standard

document that documents legality rules for component as-

semblies, with its static and execution semantics.

The figure 1 is derived from [3] is a case study for

illustrating the concepts of the Ravenscar computational

model, applied in AADL. It illustrates on an instance model

how a set of tasks can be connected, packaged in a process

and finally bound to a processor that abstracts away the

system’s execution resources.

AADL is rich of many projects that address analysis di-

mensions: scheduling, fault, resource accounting, etc. This

is completed by code generation tools that generate all re-

quired glue code to enable intercommunication between

components and associated configuration mechanisms.



• Ocarina [8] is a model processing framework, support-

ing code generation towards C and Ada. It acts as a

compiler, generating code in one pass. Configuration

parameters are limited to one parameter defining the tar-

get RTOS, and configuration of transport endpoints for

communication layers.

• RAMSES [1] is a code generation framework based on

ATL, and an extension of OSATE2. It operates through

successive refinement of the initial AADL models, mak-

ing explicit all system calls (buffer and queue manage-

ment, task creation, etc). It targets two operating sys-

tems: OSEK and ARINC653/POK.

These two projects share common patterns for model-

ing and then generating code. Yet, the support of the target

platform is imprecise, and reduced to the configuration of

the scheduling parameters (scheduler, priority only). Com-

munication mechanisms are hard-coded in the model trans-

formation, relying on a restricted set of libraries.

As we mentioned earlier, AADL, or others like MARTE

and EAST-ADL provide similar constructs, and are con-

ceptually really closed as underlined in [7]. A natural ques-

tion is thus to review missing blocks for precise system

modeling. In particular, how to define a library of reusable

blocks? How one would model interrupts, bus and asso-

ciated protocol stacks? how to support seamless integra-

tion of associated code blocks in the generated code? All

those particular concerns are important to propose a com-

plete view of the system, and to provide accurate analysis.

In the following, we review each concern separately, and

discuss solutions implemented in the Ocarina project1.

3. AADLib: Extended property sets and

reusable models

Like most MDE notations, AADL has a rich ecosystem of

tools supporting a wide range of concerns (safety, schedul-

ing, budget analysis, etc.). This may be overwhelming for

newcomers.

The general objective of this library is to provide a

central repository of AADL models geared towards the

community. To be effective, this library should be easily

integrated with existing AADL modeling environment, but

also provide a large variety of examples.

To support these objectives, we initiated a project on the

GitHub forge codenamed “AADLib” for AADL Library.

This project provides AADL models freely reusable, under

a Free/Libre Software license.

3.1 Extended property sets

AADLv2 supports a wide set of non-functional properties.

Yet, to our surprise, some key properties are not present in

the current standard, and could be of great help to provide

a clear description of blocks. AADLib provides additional

properties. We list here the additional concerns modeled:

• processor_properties.aadl: this property set com-

pletes the properties applicable to processors with endi-

1 All models presented in this paper are available on-line.

See http://www.openaadl.org for more details.

anness, frequency, MIPS, FPU or multi-core concerns,

see listing 1 for an example,

• bus_properties.aadl: adds bandwidth and channel

type (duplex, half-duplex) considerations,

• data_sheet.aadl: connects AADL model entities to

data sheets or bill of materials for physical implementa-

tion,

• electricity_properties.aadl: covers energy con-

verters and electric units. This is useful for characteriz-

ing devices or processor consumptions.

• physical_properties.aadl: adds other units for

power, mass, etc.

• memory_segments.aadl: extends the description of

memory components with fine-grained definition of

segment or page descriptors.

These properties help providing a full description of

a system, and it is used intensively to model the blocks

forming the library of reusable AADL elements provided

by AADLib.

property set Processor_Proper t ies is

Processor_Family : enumeration

(ARM, AVR, SPARC, PowerPC , x86 , x86_64 ) applies to ( processor ) ;

Frequency : type aadlinteger 0 Hz . . 2#1#e32 Hz units

(Hz , KHz => Hz ∗ 1000 , MHz => KHz ∗ 1000 , GHz => MHz ∗ 1000) ;

−− Frequency o f a processor

Processor_Frequency : Processor_Proper t ies : : Frequency

applies to ( processor ) ;

Endianess : enumeration ( L i t t l e_End ian , Big_Endian , Bi_Endian )

applies to ( processor )

Word_Length : Size applies to ( processor ) ;

−− Length o f a word f o r t h i s processor a r c h i t e c t u r e

FPU_Present : aadlboolean applies to ( processor ) ;

MIPS : aadlinteger 0 . . Max_Aadl integer applies to ( processor ) ;

Core_Id : aadlinteger 0 . . Max_Aadl integer

applies to ( v i r t u a l processor ) ;

end Processor_Proper t ies ;

Listing 1. Property set for processor

3.2 Reusable building blocks

In addition to extended property sets, AADLib proposes

a set of building blocks. These blocks provide a valuable

asset to start new models. The library is built following

AADL model hierarchy of elements:

• Processors: various ARM, AVR, PowerPC, SPARC,

x86 processors are available, with endianess, frequency,

ports modeled;

• Buses: typical network interfaces are modeled, cover-

ing AFDX, ARINC429, CAN, Ethernet, I2C, MIL-STD

1553, PCI, SpaceWire, UART, USB, with known limits

in bandwidth, packet size, etc.,

• Miscellaneous devices: battery, GPS, accelerometers,

inertial measurement units, etc. Those are modeled after



with Buses : : UART, Buses : : Ethernet , −− . .

−− Set o f imported elements

system GR_XC3S_1500

features

UART_Bus_0 : requires bus access UART. impl ;

UART_Bus_1 : requires bus access UART. impl ;

Eth_Bus_0 : requires bus access Ethernet . impl ;

end GR_XC3S_1500 ;

system implementation GR_XC3S_1500 . impl

subcomponents

LEON_Core : processor Processors : : SPARC : : LEON2;

SRAM : memory SRAM

{ Memory_size => 64 MByte ; } ;

Eth_0 : device Gener ic_Ethernet ;

UART_1 : device Generic_UART ;

UART_2 : device Generic_UART ;

end GR_XC3S_1500 . impl ;

Figure 2. Graphical and textual representation of GR-

XC3S board (subset)

components we use for teaching real-time or embedded

systems in our classes at ISAE,

• Full systems, modeled after known reference design:

Arduino, Aeroflex Gaisler boards, Wind River SBCs.

In the following example, a full system based on Aeroflex-

Gaisler reference design for a LEON2 single-board-computer

GR-XC3S-1500 is presented. It aggregates other blocks

like UART and Ethernet devices, processors and memo-

ries. Each subcomponent comes with a full set of prop-

erties, specifying endianness, supported bandwidth range,

size of memory, etc.

4. Modeling device drivers

An important aspect of embedded systems is their capa-

bility to associate physical events to software reactions.

Such functions have a significant impact on software per-

formance: bus usage, associated CPU overhead for copy-

ing data, specific memory mappings, etc. Thus, one needs

to model the software blocks in charge of processing in-

put/outputs.

AADL provides some concepts for attaching subpro-

grams to devices, thus modeling associated device drivers.

Yet, they are not precise enough to lead to code generation.

In this section, we review additions supported by Ocarina

to attach code representing an Interrupt Service Routine (or

ISR) and drivers to AADL models.

thread ISR

properties

Dispatch_Protoco l => I n t e r r u p t ;

−− This i s an ISR bound

Deployment : : Con f i gu ra t i on => "SIGUSR1 " ;

−− to " i n t e r r u p t " SIGUSR1

Compute_Entrypoint => c l a s s i f i e r (SIGUSR1_ISR . impl ) ;

−− ac tua l ISR code

P r i o r i t y => 253;

−− and assoc iated p r i o r i t y −l e v e l

end ISR ;

Figure 3. Modeling an Interrupt Service Routine in AADL

4.1 Modeling Interrupts

An interrupt service routine can be seen as a particular

kind of thread, attached to one interrupt line in a system.

Its modeling is thus reduced to an extension of existing

dispatch protocols supported by AADLv2.

We took advantage of some liberty provided by the lan-

guage to extend the list of supported dispatch protocol,

specified in the AADL_Project property set. This set de-

fines the list of available enumerators for some properties,

like the concurrency control protocol, queuing discipline,

etc. Let us note similar allowance exists for Ada, it is thus

typical.

The list of supported dispatch protocol has been ex-

tended with the “Interrupt” enumerator for specifying a

new dispatch protocol. It is associated with an extended

property definition Deployment::Configuration that

represents the name of the associated interrupt. Depending

on the target operating system or language, a tool genera-

tor like Ocarina will map this string to the corresponding

type definition. In the context of Ada, it has to conform to

one of the names defined in the Ada.Interrupts.Names

package.

Several restrictions are put on this category of threads:

• To respect constraints on ISR (short time, no blocking,

etc), ISR threads cannot have ports for communicating.

This would require complex support from the underly-

ing AADL runtime;

• in ports are also forbidden, which have no sense: ISR

is triggered by an interrupt, external to the thread inter-

face;

• out ports would require protected object for communi-

cating, and thus could incur blocking.

Let us note that, should an ISR need to communicate

and store information, it has to use global variables with

associated concurrency protocol. This is supported through

“required data access” mechanism in AADL.

Supporting this modeling pattern for code generation is

straightforward in Ada: we take advantage of existing lan-

guage features to bind the ISR subprograms to an interrupt

handler represented as an Ada protected object. This is be-

ing defined as a particular task archetype in our Ada AADL

runtime “PolyORB-HI/Ada”: PolyORB_HI.ISR_Task. This

archetype follows typical pattern documented in [3].



Figure 4. Modeling communication stack

4.2 Modeling drivers

In addition to modeling drivers for interrupt-driven devices,

we need to express the relationship between a logical con-

nection between two processes, and the associated runtime

support through an actual communication stack.

From a modeling perspective (see figure 4), only AADL

processes can interact with remote processes through logi-

cal connections. Thread would ultimately send an event on

their outgoing ports to one of the outbound port of a pro-

cess.

Supporting hardware devices (marked as (1) in the fig-

ure) are attached to AADL processor components, model-

ing the fact that the device is known by the support oper-

ating system (3). The device has also access to a bus (2),

representing the physical connection. AADL “virtual bus”

elements, subcomponents of the bus can be added to model

actual communication protocols.

Finally, the logical connection is bound to the physical

one to indicate which resources can be used to supporting

the interaction between the two processes.

This modeling pattern is actually a faithful interpreta-

tion of AADL concepts; it provides all information re-

quired to map logical interactions to actual support re-

sources (bus and devices). In order to complete this models,

one needs additional patterns for modeling resources used

by the devices, namely internal buffers, threads for process-

ing incoming requests, links to actual protocol routines, etc.

To achieve separation of concerns, we take advantage of

the Device_Driver property to model all associated re-

sources, see figure 5 for all details.

In this model, we indicate the device is accessing an Eth-

ernet bus, the abstract entity Driver_TCP_IP_Protocol

provides two resources to send and receive packets. We

use a dedicated subprogram for the emission of mes-

sages, and a thread for processing incoming requests. We

need a separate thread to wait, due to the semantics of

TCP/IP protocol,while we can use the user thread to per-

form the actual sending as part of its execution. The ini-

tialization is performed by the subprogram attach to the

Initialize_Entrypoint property.

Actual configuration of the device is done when instan-

tiating one component of this type, through the use of the

Deployment::Location property.

Similarly to the interrupt-modeling pattern, several re-

strictions must be enforced:

• The receiving thread must use a background or time-

dependent dispatch protocol, and cannot be dependent

on a model-level event: its dispatch is triggered form

device TCP_IP_Device

features

Ethernet_Wire : requires bus access Ethernet . impl ;

properties

Device_Dr iver =>

c l a s s i f i e r ( TCP_IP_Protocol : : Dr iver_TCP_IP_Protocol . impl ) ;

I n i t i a l i z e _ E n t r y p o i n t => c l a s s i f i e r ( TCP_IP_Protocol : : I n i t i a l i z e ) ;

end TCP_IP_Device ;

−− In AADLv2 , we can model the ac tua l implementat ion o f a d r i v e r

−− using an abs t rac t component .

abstract Driver_TCP_IP_Protocol end Driver_TCP_IP_Protocol ;

abstract implementation Driver_TCP_IP_Protocol . impl

subcomponents

r ec e i ve r : thread Driver_TCP_IP_Protocol_ thread_receiver . impl ;

sender : subprogram Send ;

end Driver_TCP_IP_Protocol . impl ;

−− Actua l usage and c o n f i g u r a t i o n

system implementation A_System . impl

subcomponents

TCP_IP_Cnx_1 : device TCP_IP_Protocol : : TCP_IP_Device . impl

{ Deployment : : Locat ion => " i p 127.0 .0 .1 1233"; } ;

end A_system . impl ;

Figure 5. Modeling a driver in AADL

the arrival of a message (e.g. TCP/IP) and/or specific

time;

• Priority of receiving thread must be compatible with the

overall schedulability objective of the system, e.g. to

avoid risk of priority inversion in case a sender thread

blocks a receiver ones.

This list is to be completed by the user with all platform-

specific considerations, like level of priorities, restrictions

for concurrent accesses to the bus, etc.

Ocarina code generation strategies, detailed in [8] have

been enriched to support this new modeling pattern. Code

generation takes advantage of the enriched model to

• add to the task set defined by the user the additional

threads required by the device drivers;

• connect send/receive functions provided by the driver to

the minimalist middleware generated from the architec-

tural model;

• configuration parameters are passed to the initialization

function of the device, and enforced during the partition

elaboration.

The user has to respect a minimal set of conventions

for the driver code: the signature of the Send function is

derived from the AADL model, and holds the message and

destination. It has all relevant information for sending the

message.

On the receiving side, the user code has to unmarshall

the request, and then make usage of one internal API to

route the message to the receiving thread.

This modeling pattern has been implemented in Oca-

rina, and declined for various protocols, namely: UART

based on GNAT.Serial, TCP/IP based on GNAT.Sockets,

SpaceWire and UART based on ORK+ runtime [2].



5. From model patterns to correct

integration of code

In the previous sections, we introduced modeling patterns

for supporting interrupts and communication protocols

through AADL devices. We also listed several restrictions

to be respected.

In this section, we detail how these restrictions are

checked at architecture level using the REAL language.

5.1 Validation of architectural constraints

An AADL architectural model is a combination of blocks.

Its correctness is asserted in multiple dimensions: through

the type systems, external tools for specific analysis. Yet,

there is a gap in-between, e.g. assessing a device driver

is compatible with a given processor/OS couple, or that a

models fulfills a given set of patterns (e.g. synchronous,

Ravenscar, . . . ).

These considerations lead us to define an AADL lan-

guage annex: REAL. REAL (Requirement Enforcement

Analysis Language) aims at checking constraints enforce-

ment on architectural descriptions at the specification step,

saving significant time over verification at execution time.

In this section, we describe the main features of this lan-

guage. REAL pursues multiple design goals:

• Enabling easy navigation through AADL meta-model

elements, yet being at a high-level abstraction. To do

so, we discarded the use of the UML Object Constraint

Language (OCL) and decided to define a specific DSL

based on AADL meta-model concepts to ease writing

of constraints.

• Allowing to define generic rules. We note that mathe-

matics universal quantifiers (∀, ∃) notation is interest-

ing to define metrics that can apply to a wide range of

models, not just specific instances.

• Allowing for modularity through definition of separate

constraints that can be later combined.

• Being integrated to the AADL as an annex language, so

that constraints are coupled to models.

From these goals, we defined REAL with the following

design decisions: REAL is based on set theory and associ-

ated mathematical notations. The basic unit of REAL is a

theorem. A theorem verifies an expression over all the ele-

ments of a set that is called the range set. It allows one to

build sets whose elements are AADL entities (connections,

components or subprogram calls). Verification or computa-

tions can then be performed on either a set or its elements

by stating Boolean expressions.

In order to write complex expressions, one can use pre-

defined sets, which contain the instances of the AADL

model of a given type, or build intermediary sets, using re-

lations between elements of sets (e.g. returns the elements

of the set A which are subcomponents of any elements of

the set B). Listing 2 shows how to assess all threads are

cyclic.
theorem a l l _ t a s k s _ c y c l i c

foreach t in Thread_Set do

−− This system drags advanced AADL l e g a l i t y r u l es f o r d r i ve rs ,

p ro toco ls , e tc .

system AADL_System

annex r e a l _ s p e c i f i c a t i o n {∗∗

theorem check_a l l

foreach s in l o c a l _ s e t do

requires ( check_aadl ) ;

−− meta−theorem , checking a l l r u l es

end check_a l l ;

∗∗} ;

end AADL_System ;

Figure 6. Applying REAL constraints at model level

check ( ( Get_Property_Value ( t , " D ispatch_Protoco l " ) = " p e r i o d i c " ) or

( Get_Property_Value ( t , " D ispatch_Protoco l " ) = " sporad ic " ) ) ;

end a l l _ t a s k s _ c y c l i c ;

Listing 2. REAL example

REAL [5] has been integrated as an annex language in

Ocarina, our AADL toolsuite. We present full examples of

REAL in the next sections and show how it can help com-

puting metrics of AADL models to drive an optimization

process. It has been successfully applied to assess a model

conforms to the Ravenscar, MILS or ARINC653 architec-

tural profiles.

As part of the modeling of drivers and interrupts han-

dlers, we defined in the previous sections a set of additional

constraints to be met. These were encoded as a set of REAL

predicates that are then bound to a model using AADL an-

nex clauses and checked on the model during model analy-

sis, and code generation.

We then apply one theorem at the top node of the hier-

archy of components. This theorem has two objectives:

1. calls all subtheorem provided as external library;

2. apply recursively to all its subcomponents (process, bus,

device, . . . )

As defined, this theorem serves as an architectural con-

tract the subsequent implementation has to fulfill. Subse-

quently, we can check all constraints to be met by a set of

blocks.

5.2 Integrating last bits: inclusion of user code

The last step towards full inclusion of model patterns and

code is to instruct code generator, but also model builders

how to link code to models, and ensure the code is valid for

the model assembly.

We defined two additional sets of enrichments for the

AADL library of models:

1. Constraints a model entity (e.g. a device) must met

towards integration. For instance, a given driver can

work only for a given operating system/runtime

2. Additional properties for configuring the build system

These two elements rely on a specific property set

geared towards the Ada compilation system we use (GNAT

in our case), and additional REAL constraints.

In the following example, we use a GNAT-specific

project file for setting name of the compiler (following



processor LEON

properties

Deployment : : Execut ion_Plat form => (LEON_ORK) ;

−− Usink ORK+ Kernel

GNAT: : Compiler_Name => ‘ ‘ sparc−e l f − ’ ’ ;

−− Name of the compi ler

GNAT: : R e s t r i c t i o n s => ( ‘ ‘ ravenscar . adc ’ ’ , ‘ ‘ h i . adc ’ ’ ) ;

−− R e s t r i c t i o n s to be app l ied

end LEON;

device ORK_UART extends Generic_UART

properties

Deployment : : Supported_Execut ion_Plat form => (LEON_ORK) ;

−− Requires ORK+

GNAT: : P r o j e c t _ F i l e => ( ‘ ‘ ork . gpr ’ ’ ) ;

−− GNAT p r o j e c t f i l e f o r l i b r a r y i n c l u s i o n

end ORK_UART;

Figure 7. Deployment-specific constraints (AADL side)

theorem check_deployment

foreach d in Device_Set do

CPU = { p in Processor_Set | Is_Bound_To ( p , d ) } ;

−− Processors d i s bound−to

check ( I s_ In ( p roper ty ( d , " Supported_Execut ion_Plat form " ) ,

p roper ty (CPU, " Execut ion_Plat form " ) ) ) ;

end check_deployment ;

Figure 8. Deployment-specific constraints (REAL-side)

GNU conventions), but also specific restrictions to be en-

forced during compilation phases.

Then, we specify that the device ORK_UART can only

operates when bound to a processor with the same exe-

cution platform. This additional check is performed using

specific REAL constraints that ensure supported execution

platforms match the execution platform of the processor

(see below).

From these properties, Ocarina now has all elements

to generate from the architectural model, but also the ac-

companying set of makefile and GNAT project files that

will compile user-code for both the functional part and the

platform-specific part.

6. Conclusion

In this paper, we considered precise modeling from the

perspective of code generation. We presented contributions

to model precisely runtime elements such as interrupts,

device drivers. Those are central for embedded systems,

but are seldom contemplated in an inclusive and extensive

code generation strategies. We introduced both modeling

patterns, and code generation artifacts integrated in Ocarina

that support them. Our contribution is two-fold:

First, we introduced a systematic way to model library

of components using AADL, focusing on extended prop-

erty sets so as to extend the coverage of concerns a system

has to embrace.

Then, we introduced model patterns for supporting in-

terrupts and device drivers for supporting communication

across partitions. We emphasized the need to extend the

set of legality rules to platform-specific constraints. We

take advantage of the REAL constraint language to express

them, and check them at model-level. This ensures the path

towards code generation is clean.

Finally, we introduced patterns to capture compilation-

specific concerns: compilation chain, configuration, link to

user code.

By combining all those elements, we provide all build-

ing blocks to prepare for library of reusable model assets

that match platform needs and associated code. We also, as

part of the AADLib project, provide a ready-made set of

such blocks.

Future direction will consider 1) the extension of this

work to support more operating systems, but also languages

targetting C, 2) moving from code generation towards more

precise resource analysis (e.g. memory or scheduling).

References

[1] Fabien Cadoret, Etienne Borde, Sébasient Gardoll, and Lau-

rent Pautet. Design patterns for rule-based refinement of

safety critical embedded systems models. In Engineering of

Complex Computer Systems (ICECCS), 2012 17th Interna-

tional Conference on, pages 67–76, 2012.

[2] Juan Antonio de la Puente, José F. Ruiz, and Juan Zamorano.

An open ravenscar real-time kernel for gnat. In Hubert B.

Keller and Erhard Plödereder, editors, Ada-Europe, volume

1845 of Lecture Notes in Computer Science, pages 5–15.

Springer, 2000.

[3] Brian Dobbing, Alan Burns, and Tullio Vardanega. Guide

for the use of the of the Ravenscar Profile in High Integrity

Systems. Technical report, 2003.

[4] Madeleine Faugere, Thimothee Bourbeau, Robert de Simone,

and Sebastien Gerard. MARTE: Also an UML Profile for

Modeling AADL Applications. Engineering of Complex

Computer Systems, IEEE International Conference on,

0:359–364, 2007.

[5] Olivier Gilles and Jerome Hugues. Expressing and enforcing

user-defined constraints of AADL models. In Proceedings of

the 5th UML& AADL Workshop (UML&AADL 2010), pages

337–342, University of Oxford, UK, March 2010.

[6] Jérôme Hugues. Analytic virtual integration of cyber-

physical systems & AADL: challenges, threats and oppor-

tunities. In Proceedings of the second Analytic Virtual

Integration of Cyber-Physical Systems Workshop, Vienna,

Austria, November 2011.

[7] Andreas Johnsen and Kristina Lundqvist. Developing

Dependable Software-Intensive Systems: AADL vs. EAST-

ADL. In A. Romanovsky and T. Vardanega, editors, Ada-

Europe 2011, pages 103–117. Springer-Verlag, June 2011.

[8] Gilles Lasnier, Bechir Zalila, Laurent Pautet, and Jérôme

Hugues. OCARINA: An Environment for AADL Models

Analysis and Automatic Code Generation for High Integrity

Applications. In Reliable Software Technologies’09 - Ada

Europe, volume LNCS, pages 237–250, Brest, France, June

2009.

[9] SAE. Architecture Analysis and Design Language (AADL)

AS-5506B. Technical report, The Engineering Society For

Advancing Mobility Land Sea Air and Space, Aerospace

Information Report, Version 2.1, January 2011.


