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Abstract: Model-Based Systems Engineering (MBSE) with the SysML language allows the designer to include 

requirement capture and design representation in a single model. This paper proposes a methodology to 

obtain the best design alternative, from a SysML design, by using multi-objective optimization techniques. 

A SysML model is extended with stereotypes, objective functions, variability and constraints. Then an 

integer representation of the problem can be generated and solved as a constraint satisfaction problem 

(CSP). The paper illustrates our methodology using an Embedded Cognitive Safety System (ECSS) design. 

From a component repository and redundancy alternatives, the best design alternatives are generated, to 

minimize the total cost and maximize the estimated system reliability. 

 

1 INTRODUCTION  

Embedded system design has become an 
important development activity, due to the industrial 
demands for new functions integration and design. 
These systems are mainly composed of software. 
However hardware components such as sensors, 
CPU and embedded networks have to be considered 
too.  

The designer must implement an architecture 
that fulfills the functionalities according to the 
requirements, but numerous indicators such as cost, 
weight and reliability have to be optimized too. 
These indicators typically compete with one another: 
Improving one of them often leads to degrading 
another one.  

In this context, this paper considers that the 
designer has a twofold objective: to obtain the set of 
optimal architecture designs and to obtain it using a 
Model-Based System Engineering approach that 
seamlessly unifies system modeling in SysML and 
architecture optimization. Such an optimization may 
be automated using architecture models and 
transformations. Then the designer can select the 
appropriate design alternative, according to his or 
her preferences. These activities shall be integrated 
into Model-Based System Engineering (MBSE) 

where the recommendation for engineers is to 
capture their knowledge about all aspects of the 
problem in one model. 

The expected benefits of MBSE include the 
capacity to simulate and formally verify models in 
order to detect design errors as soon as possible in 
the life cycle of systems. A great number of papers 
present tools (e.g. TOPCASED [1], TTool [2]) that 
enable SysML model simulation and verification. By 
contrast, little work has been published on SysML 
modelling as a front-end to come up and compare 
different design alternatives. Current approaches 
such as [3] and [4] address design optimization from 
SysML models but differ from our approach by 
focusing on component parameters tuning, like CPU 
frequency or memory size. In our work we propose 
to take into account the hardware component 
selection, the component redundancy level and the 
component connection, in order to optimize the 
system cost and reliability. 

The paper is organized as follows. Section 2 
introduces the methodology we propose for model-
based system design optimization in the context of 
embedded systems. Section 3 and Section 4 
respectively address SysML modeling and 
architecture optimization. Section 5 surveys related 
work. Section 6 concludes the paper and outlines 
future work.  



 

2 METHODOLOGY 

2.1 Design flow with MBSE 

We consider architecture design in the context of 
systems engineering activities with MBSE, as 
described in [5]. The output of systems engineering 
activities is a coherent model of the system (figure 
1). The model can be separated between a Platform 
Independent Model (PIM) and a Platform Specific 
Model (PSM).  

Figure 1: design flow with MBSE 

 

PIM and PSM concepts come from the Model 
Driven Architecture standard of the Object 
Management Group [6]. Figure 1 uses the system 
model to specify both hardware and software 
components requirements.  

The system model as defined in SysML (figure 
2) is a set of diagrams.  

Figure 2: system models with SysML 

 
Among these elements, the requirement diagram 

(req) describes the requirements and the activity 
diagram (act) represents the system behavior. The 
Block Definition Diagram (BDD) and Internal Block 
Diagram (IBD) describe the system’s structure. 
Finally the parametric diagram captures 

relationships among properties. An important 
activity of system engineering is to find the best 
design alternatives, for the whole system. However 
the exploration space is very large, especially, with 
current approach like [9] that does exploration on 
PSM. In this paper, we focus on system model 
optimization issue (dashed elements in figures 1 and 
2) because it comes first in the design activity and it 
will substantially restrict the design space 
exploration (DSE). With this approach, the DSE can 
be done in a stepwise manner, exploring the system 
model first, and then the software, hardware and 
allocation alternatives with current DSE approaches. 

The system structure is also a key point for 
metric evaluation (i.e. cost, weight and reliability). 
In this context, the objective for the designer using 
MBSE and SysML is to obtain the best trade-off 
system structure, in order to optimize objective 
functions such as cost and reliability. This multi-
objective optimization problem can be described in 
mathematical term as follows: 

 
 
 
 

Above, f is the objective function vector and S 
the set of constraints. Our approach is to suggest the 
best configurations to the designer, that is, to find 
the Pareto-optimal solutions. Pareto-optimal 
solutions have the lowest (or equivalently low) 
values for all objective functions. The set of 
solutions is presented to the decision-maker by the 
designer for the selection of optimal solutions. 

The methodology we propose is presented in the 
next sub-section. The requirement and structure 
model are adapted for the optimization, including 
objective function definition, variability and 
constraints. We assume that the system design is 
done using the SysML language. Also, a component 
repository is available including parameters for 
objective functions.  

All the SysML diagrams of this paper are built 
up with the Papyrus tool from CEA [7].  

2.2 Our proposal 

Figure 3 presents the methodology we propose 
for optimizing system architecture, showing the 
activities and the produced artifacts. The first stage 
is the SysML modeling for optimization, described 
in section 3.  
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Figure 3: Methodology overview. 

 
In a preliminary step, the requirements are 

captured using requirement diagrams. Architecture 
requirements are taken into account. This allows to 
express constraints and to add traceability between 
requirements and architecture elements.  

Then the SysML model is completed for 
optimization, adding objective function definitions 
in parametric diagram and adding model variability. 
The model variability expresses the different design 
alternatives that the designer wants to explore. The 
model variability is represented by several degrees 
of freedom from the model, represented by 
variability variables inserted in comments. We 
distinguish between the instance variability variable 
(IVV), meaning that we may have several instances 
of the same component in the model, and component 
variability variable (CVV), meaning that a 
component instance may be replaced..  

  The second stage, described in section 4, is the 
optimization model generation and solving. To do 
this, the variability variables of the SysML model 
are transformed into a new set of 0-1 variables in the 
optimization model. By re-using the constraints from 
the SysML model, the problem can be resolved as a 
Constraint Satisfaction Problem (CSP), using a 
standard solver. Then the designer can select among 
the trade-off solutions the ones that best fit to his or 
her needs. 

3 SYSML MODELING FOR 

OPTIMIZATION 

This section presents the Embedded Cognitive 
Safety System (ECSS, Figure 4) that serves as 
running case study throughout the paper and 
discusses each step of ECSS modeling in SysML. 

3.1 Case study 

The ECSS system can be integrated in an on-
board vehicle digital system or in aeronautics 
systems such as drones. Typical features for ECSS 
are line detection, obstacle detection and distance 
measurement with stereoscopic view.  

 

Figure 4: ECSS system 

 
The embedded hardware platform is composed 

of CMOS image sensors, processing elements and 
vehicle interface networks. These three components 
types may be redundant, for safety purposes or 
stereoscopic processing. CMOS image sensors 
support auto focus engine and image stabilization. 
Image sensors are connected to processing elements 
through Digital Video Port (DVP), a type of parallel 
bus interface. Processing elements are CPU 
supporting image processing like Cortex A9 or 
iMX35. Vehicle interface is an embedded serial bus 
like CAN High Speed or FlexRay. The vehicle 
interface is integrated into the ECSS system with a 
transceiver component, connected to the processing 
element with a digital port (DP) which is a parallel 
bus interface. 

3.2 Requirements capture 

SysML provides modeling constructs to capture 
and represent textual requirements, and to link the 
requirements to other modeling elements. The 
requirement diagram depicts requirements, but a 
requirement can also appear on other diagrams to 
show its relationship to other modeling elements. A 
standard requirement includes a unique identifier 
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and a text requirement. “Satisfy” and “Verify”  
relationships relate requirements and other model 
elements such as blocks and test cases.  

In our context of architecture optimization, 
specific requirements for the architecture, so-called 
the “architecture requirements,” are derived from 
standard requirements. To clearly identify 
architectural requirements, a stereotype 
“ArRequirement” extends the standard SysML 

requirement..  
Figure 5: requirements for optimization 

 
On the other hand, a standard requirement is 

evaluated by an objective function. The objective 
function is a stereotype extending the standard 
SysML constraint block. This objective function is 
related to a requirement with a stereotype “evaluate” 
extending the basic UML-2 dependency 
relationship. A dependency is a design-time 
relationship between definitions. In Figure 5, the 
“MaxRedundancy” architecture requirement limits 
the sensor component redundancy to two for a cost 
reason, and the system cost requirement is evaluated. 

3.3 MDO context and objective 

functions definition 

To integrate the multi-domain optimization 
(MDO) into the system model design, we propose to 
define a MDO context, a type of analysis context. 
The MDO context is represented by a BDD diagram 
and a parametric diagram, both including constraint 
blocks. The parametric diagram captures the internal 
structure of a constraint block, in term of parameters 
and connectors between parameters. The BDD is 
used to define constraint blocks and their 
relationship.  This BDD diagram contains a top-level 
constraint block, named “ECSS MDO Context” in 
Figure 6. This constraint block has a reference to the 
block representing the system under analysis and 
including the variability for alternative 
representation. The MDO context diagram contains 
also the objective functions and the optimization 
model representation. The Pareto front, a result of 
the MDO context, is used to present alternatives to 
the designer. The MDO context can be passed to an 
external optimization solver, and the result can be 
provided back as Pareto front values of the MDO 
context. The objective function block extends the 
standard SysML Constraint Block and contains an 
optimization goal parameter (i.e. maximize or 
minimize). A constraint provides a description of the 
analytical function supporting the objective function.  
Other parameters specify interactions point between 
the objective function and the system under analysis, 
and between the objective functions and the 
optimization model. 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: BDD diagram for ECSS MDO context Definition 



  
 
Figure 6 shows the MDO context definition for 

our case study, in a BDD. The MDO context is 
called ECSS MDO Context, to perform a multi-
objective optimization of the ECSS system. The 
ECSS MDO Context constraint block has two value 
vectors, /BestCost[1..*] and  /BestRel [1..*], 
representing the Pareto front. The ParetoFront 
constraint block produces these value vectors from 
the two objectives functions. It is intended in the 
analysis that the equations are solved by external 
optimization solver for these two vectors, so they are 
shown as derived. The result values obtained with an 
external CSP solver are presented later in sub-
section 4.2 and 4.3. 

As indicated by its associations, ECSS MDO 
context contains two constraint properties, both 
typed by objective function, HWCostEvaluation and 
SystemReliability. A precision to the modeling of the 
objective function is added, with a constraint. The 
two constraints describe the equation underlying the 
total cost and the reliability calculation. In this case, 
the Python language can be used as constraint 
language, because it is used by the CSP solver [13] 
in our case. For the SystemReliability function, the 
system reliability R is calculated with parameters 
coming from the system under analysis (the 
components reliability) and from the Zero One 
Model. 

The ECSS MDO context also contains one 
reference property typed by ECSS, the system under 
analysis including variability. Finally, ECSS MDO 
contains a constraints property Zero One Model, 
representing the optimization model described in 
section 4. The Zero One Model has a parameter and 
a set of constraints deduced from the ECSS system 
(see section 4, equation 2) and from the model itself. 
These constraints can be expressed using the Object 
Constraint Language (OCL). 

Figure 7 shows a parametric diagram. Its frame 
represents the ECSS MDO context constraint block. 
This diagram is similar to an internal block diagram 
butt uses binding connectors exclusively. Binding 
connectors link constraints parameters. 
  

 

 

 

 

 

 

 

 

 

 

Figure 7: Parametric diagram for MDO context definition 

3.4 System composition and 

redundancy modeling 

The architecture modeling represents the set of 
hardware resources available for the execution of the 
application, representing the hardware system.  At 
the first level, the hardware system is made up of 
several components and described by a block 
definition diagram (see Figure 8).  

Figure 8: BDD for HW composition 

 
A SysML block definition diagram defines 

features of blocks and their relationship such as 
associations. In our optimization problem, the 
composition is known, but the redundancy level of 
each component is not. The redundancy level is the 
first degree of freedom for the optimization problem. 
At this step, we specify instance variability variables 
(IVV) in comments. Each IVV is related to a 
composition association, between the top-level 
component and the low-level component. 

As depicted in Figure 8, the ECSS system 
contains between one and two sensors, processing 
elements and networks. We have three IVVs, 
respectively related to the sensor, CPU and 
Transceiver composition. Each composition satisfies 
with the maximum redundancy requirement, derived 
from the global cost requirement.  

The hardware components selection is the 
second degree of freedom for the optimization 
process. For this second degree of freedom, 
Component Variability Variable (CVV) is inserted 
in the model as a comment. CVV indicates that the 
component instance can be replaced by another 
hardware component specification. Hardware 
component specification is provided by the designer, 
and belongs to a component repository. The 
repository includes a set of tables. Each table is 
associated to one component of the block definition 



 

diagram. In our example, we define three tables and 
three CVV, respectively associated with the sensor, 
the processing element and the network block. Each 
table contains the list of available components, with 
their cost and reliability (See Table 2). These tables 
are provided by the user, in addition to the SysML 
model. 

3.5 Component interface modeling 

Component interface modeling is useful for the 
optimization problem, because new constraints arise 
during this stage. These constraints will be added to 
the computational model for the problem solving. 
The Internal Block Diagram in SysML captures the 
internal structure of a block in terms of properties 
and connectors between properties. If we consider 
the IBD depicted by Figure 9, we have one or two 
sensors with one output DVP port connected to one 
or two processing elements for video data 
transmission.  

Figure 9: Interface modeling using IBD 

 
At this step we do not specify a connection 

matrix between components. The goal is to retain the 
valid configurations with a constraint used by the 
optimization process. In our case and for the digital 
video port (DVP), the sum of input ports for 
processing elements shall be greater than the sum of 
output port for video sensors. This constraint may be 
expressed in OCL and attached to the VideoData 
connection.   

3.6 Application modeling  

An application represents the functionality that 
the modeled system will accomplish during its 
execution time. The activity diagram in Figure 10 
represents workflows of stepwise activities. With the 
allocation concept, it is possible to allocate 
individual actions to hardware components 
represented by blocks. 

 An activity diagram combined with allocation to 
blocks is used to generate a reliability block 
diagram, in order to estimate the application 
reliability.  
 

 
Figure 10: Activity diagram 

4 OPTIMIZATION  MODEL  

Previous section has shown how the SysML 
model could be prepared for optimization. But a 
mathematical representation is required to perform 
the optimization with suitable algorithms. In this 
section we propose a representation and show how 
to obtain it from the SysML model. This 
representation is based on zero-one variables, and 
can be solved as a constraint satisfaction problem. 

4.1 Problem statement 

Optimization models have been developed to 
select software or hardware components and 
redundancy levels. Most of them are formulated 
using zero-one variables. The system (see Figure 11) 
consists of independent subsystem Si. Si is associated 
to a given block with instance variability (the 
VideoSensors aggregation in Figure 11). Subsystem 
Si is composed of components selected in a 
repository of components Ci. Cij represents the 
component number j in the repository Ci. Each 
selected component has a position k in the final 
subsystem Si, after the problem resolution. Figure 11 
shows there exists two possible positions for a 
selected component in the final subsystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: from BDD to problem formulation 
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We define the following sets and parameters: 

· Si the set of components with position k. Ci 

the set of component available in the 

component repository 

· cij the cost of component Cij and θi an 

interconnection cost for any component  

· rij the reliability of component Cij 

· eij and sij  the input and output port numbers 

of component Cij. For sensors ( the first 

block) we have no input port and one 

output port, so we have : e1j=0 and s1j=1 

Table 1 gives the association with SysML model 
elements: 

Sets and 

parameters 

SysML model element 

S and Si  S is the system, modeled by the top-level 

block in the BDD. The ECSS block in 

Figure 10 represents the system. 

One sub-system Si  per sub-block in the 

BDD with instance variability variable 

(IVV).  
Ci, eij and sij   One Ci per block associated to 

component variability variable (CVV), 

from BDD diagram. In Figure 10, C1 is 

the set of video sensor components, with 

cost and reliability in video sensor table 

(Table 2). 

eij and sij  are deduced from the IBD 

diagram 

Table 1: Association between SysML model elements and 

optimization model 

The range of k is given by the SysML 
aggregation multiplicity in BDD (Figure 11), the 
range of i by the system composition in the BDD 
and the range of j by the component table size. A 
zero-one programming formulation of this problem 
is as follow, by defining decision variables: 

 
 

(1) 

Regarding as constraints applied to the system, 
the first set of constraints comes from the decision 
variable definition. At any position of the final 
subsystem Si we can have only one component in 
position k : 

 

Other constraints can be expressed such as 
exclusion between components. When a CPU 
component is not compatible with a particular 
transceiver, it can be expressed as a constraint, such 
as a sum lower than one. In the same way, a sum 
comparison is used to express a component 
dependency. Connection information is given by the 
IBD diagram (see Figure 12).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 12: from IBD to connection constraints 

 
First, the place of each Si in the component flow 

is given. Then connection constraints are provided. 
At each interface we have constraints between total 
input port number and total output port number. In 
our example of Figure 12, for VideoData 
connection, sensors and CPUs satisfy the following 
connection constraint:  

 

 

 
For DigitalData connection, each transceiver 

input is connected to CPU, and each CPU has at 
least one connected output: 
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The objective functions are included in the 
parametric diagram. In our example, the goal is to 
minimize the cost and maximize reliability. The total 
system cost including interconnection cost, is given 
by: 

 

The system reliability to be maximized, using 
serial-parallel interconnection model, can be 
calculated by: 

 

4.2 Problem solving  

The previous problem can be seen as a constraint 
satisfaction problem (CSP). A CSP requires a set of 
values, selected from a given domain, to be assigned 
to each variable. Researchers in artificial intelligence 
usually adopt CSP when they try to solve such 
problems. CSP problems are combinatorial by 
nature. These problems are NP-complete and an 
efficient algorithm (i.e with polynomial time for all 
inputs) does not exist, but some heuristics produce 
good approximate solutions. A feasible solution for 
the problem consists in an assignment of values 
from its domain to every variable, in such a way that 
each constraint is satisfiable. In this case, we may 
want to find just one solution, all solutions or an 
optimal solution. In our case an optimal solution is 
given by the objective functions defined in the 
SysML model. The selected approach in this paper 
consists in finding all solutions and then to evaluate 
the different solutions with objective functions, to 
determine the best ones. Algorithms for solving CSP 
usually search systematically through the possible 
assignments of values to find a solution. SC 
Brailsford et al. [12] shows that a simple algorithm 
is the backtracking algorithm, and others are forward 
checking and MAC algorithm. In these algorithms, a 
search tree is used, as it would be done in a branch 
and bound algorithm. In the backtracking algorithm, 
the current variable is assigned and then checked 
against the partial solution. 

4.3 Results from the case study 

We consider the case study with the following 
parameters:  
· A maximum redundancy of two for sensors, 

processing elements and transceiver 

· Four connection constraints between sensors, 
processing elements and network transceivers 

· A repository of 18 components with 
specifications in Table 2. 
 

Component Reliability 

min-max 

Cost 

min-max 

Sensor 1 to 3 0.99997-0.99998 16.9-21.5 

Sensor 4 to 6 0.999976-.999985 20.2-25.7 

CPU 1 to 3 0.99996-0.99998 12.6-28.4 

CPU 4 to 6 0.99997-0.999985 21.2-34.5 

Transceiver 1 to 3 0.9934-0.9969 12.8-13.1 

Transceiver 4 to 6 0.9971-0.9995 13.8-15.4 

Table 2: Component repository extract 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Pareto Front with CSP Solver 

 

We obtain a 36 variables problem to be solved. 
With a CSP solver using backtracking algorithm 
implemented in Python, and a posteriori objective 
function evaluation, we obtain the Pareto front 
illustrated in  Figure 13, with 13,500 solutions in 36 
minutes of computation time. That figure displays 
the Failure rate (1-Rs) instead of reliability Rs.  

 
 

Table 3: Three best trade-off configurations 

 

Sol. Sens. CPU Trans. Cost 

(€) 

FR 

10-5 

1 S1+S1 CPU1 T4+T1 30.32 1.48  

2 S1+S3 CPU1 T1+T1 35.09 1.22 

3 S1+S3 CPU1+ 

CPU1 

T1+T1 41.28 1.02 



 

For a maximum cost of 50€ and a failure rate < 
0.00002, table 3 presents the three best trade-off 
configurations selected by the user. 

5 RELATED WORK 

In recent literature, there are approaches on the 

integration of SysML with external analysis tools 

and solvers. One of them [14] is Paramagic for 

integration of SysML and Modelica, Matlab and 

Mathematica. However these approaches lack 

support of multi-criteria optimization that help 

designers to perform design space exploration and 

trade-off analysis. The approach proposed by P. Van 

Huong [3] and Spyropoulos [4] allows the user to 

perform multiple analyses in the same environment. 

These approaches are adapted to the component 

parameters optimization like CPU frequency or 

memory size, not to the architecture composition 

and redundancy problem we want to address. In [8] 

an optimization technique is proposed for a micro-

wave module design, with combination of 

alternatives for part modules, but without 

redundancy constraint. In the Design Space 

Exploration (DSE) approach ([9]), the problem to 

solve is related to the hardware/software partitioning 

and the mapping of application onto hardware 

elements. Our approach comes earlier in the design 

flow and is complementary, providing a limitation of 

the design space exploration.  

 The redundancy allocation problem (RAP, [10], 

[11]) deals with component selection, for cost and 

reliability optimization at system level. In these 

approaches (DSE, RAP), the problem is formalized 

as an optimization problem, and not with the MBSE 

approach. Similarly, the RAP formulation does not 

take into account heterogeneous component 

selection and the connection topology is fixed as a 

serial-parallel model. 

6 CONCLUSIONS AND FUTURE 

WORK 

The paper presents a methodology for multi-
objective optimization of system architecture. 
Starting from a SysML model, we add information 
concerning objective functions, variability and 
architecture constraints. The redundancy level and 
the component alternatives are tagged with variables 
that describe variability. Then the SysML model can 
be further exploited to generate a mathematical 
representation, based on: integer variables, linear 

constraints and objective functions. The problem can 
be solved using a CSP solver. Finally, the ECSS 
case study shows there exists three best 
configurations, minimizing cost and maximizing 
reliability, from a repository of 18 components.  

Ongoing work includes the design of an 
algorithm to generate the optimization model 
instance from the system model. This representation 
will be compatible with CSP solvers. In addition to 
instance and component variability, the value 
variability, relative to component parameters, will be 
integrated too. 
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