
To cite this this version : Kamsu-Foguem, Bernard and 

Tchuenté Foguem, Germaine and Foguem, Clovis Conceptual 

graph operations for formal visual reasoning in the medical 

domain. (2014) IRBM, vol. 35 (n° 5). pp. 262-270. ISSN 1959-

0318

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 12272

To link to this article : DOI: 10.1016/j.irbm.2014.04.001 

http://dx.doi.org/10.1016/j.irbm.2014.04.001 

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/33663922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Conceptual graph operations for formal visual reasoning in the medical
domain

B. Kamsu-Foguem a,∗, G. Tchuenté-Foguem b, C. Foguem c

a Laboratory of Production Engineering (LGP), EA 1905, ENIT­INPT University of Toulouse, 47, avenue d’Azereix, BP 1629, 65016 Tarbes cedex, France
b MAT Laboratory, UMI 209, Unit for Mathematical and Computer Modeling of Complex Systems ­ UMMISCO, Faculty of Science, University of Yaoundé I,

PO Box 812, Yaoundé, Cameroon
c Center for Food and Taste sciences (CSGA), UMR 6265 CNRS, UMR 1324 INRA, University of Burgundy, 9 E, boulevard Jeanne­d’Arc, 21000 Dijon, France

Abstract

Objective.!–!Conceptual!graphs!(CGs)!are!used!to!represent!clinical!guidelines!because!they!support!visual!reasoning!with!a!logical!background,!
making!them!a!potentially!valuable!representation!for!guidelines.
Materials!and!methods.!–!Conceptual!graph!formalism!has!an!essential!and!basic!component:!a!formal!vocabulary! that!drives!all!of! the!other!
mechanisms,!notably!specialization!and!projection.!The!graph’s!theoretical!operations,!such!as!projection,!rules,!derivation,!constraints,!probabilities!
and!uncertainty,!support!diagrammatic!reasoning.
Results.!–!A!conceptual!graph’s!graphical!user!interface!includes!a!multilingual!vocabulary!management,!some!query!and!decision-making!facilities!
and!visual!graph!representations!that!are!simple!and!interesting!for!user!interactions.!The!described!proposition!using!the!Conceptual!Graph!user!
interface!(CoGui)!improves!the!performance!of!the!actors!in!the!diagnostic!context!of!heart!failure!with!preserved!ejection!fraction.
Discussion.!–!CGs!capture! the!essential! features!of! the!medical!processes!underlying!clinical! reasoning.!CGs!are! indeed!useful!as!a!way! for!
the!physician!to!represent!guidelines,!and!well-defined!semantic!representations!allow!users!to!have!a!maximal!understanding!of!the!knowledge!
reasoning!process.
Conclusion.!–!CG!operations!of!visual!representations!that!uncover!some!of!the!actual!complexities!of!clinicians’!reasoning!have!been!tested!in!
clinical!guideline!comprehension!and!used!to!translate!text!and!diagrammatic!guidelines!into!computer!interpretable!representations.
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1. Introduction: background and significance

Currently, computer systems are ubiquitous in the medical
domain and are important components in health information sys-
tems. Especially within the field of medical decision-making,
these systems are designed to support the decision-making
of junior and senior clinicians by providing a comprehensive
monitoring of data analysis and understandable therapy recom-
mendations [1]. Intelligent patient monitoring systems estimate
the patient’s health status with its evolution and make therapy
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management suggestions [2]. The graphical user interface sup-
ports the display of information for the native target platform
on different workstations and the transmission of commands.
These associated user interfaces can provide a clinician a dis-
crete overview of a patient’s status (through clinical phases)
with the detection of clinically meaningful abnormalities (e.g.,
a state of decreased blood volume known as hypovolemia).
In such situations, the progression of hemodynamic abnor-
mality is represented by a sequence of clinical phases, which
reflect the involved predominant physiological process (e.g.,
increased pericardial pressure, vasodilatation, and hypotension)
[3]. Clinical guidelines are a valuable means of standardizing
and improving health care. The computerization of the guide-
line execution process is a basic step towards its pervasive use



in health care systems. Therefore, some projects focus on the
direct execution of guidelines for related tasks, such as the
recognition of care providers’ intentions and assessing their
actions (for a review see [4]). These projects encompass the
description of a machine-readable language for sharing clinical
guidelines and for useful and flexible automated assistance in
the execution of these guidelines. In automation initiatives, the
guideline support architecture includes, among other modules, a
temporal-abstraction module, a task-specific reasoning module
and a domain-specific knowledge basis. As a knowledge-driven
guideline enactment, the expressiveness of modern ontology
languages is used to provide the semantics required to sup-
port the execution of clinical guidelines [5]. Meanwhile, there
are some issues that restrict their application, such as therapeu-
tic recommendations that do not illustrate very comprehensive
expressions. One of the most fundamental questions is how to
specify a visual language. Indeed, many approaches have been
used in textual logic formalisms for reasoning with a declarative
specification of control. Another option is the direct incor-
poration of visual expressions into a logical formalism, thus
connecting the reasoning capabilities of logical systems with
the expressiveness of graphical communication. The roots of
formal visual reasoning date back to Charles Sanders Peirce and
his existential graphs, which are a visual notation for first-order
logic [6]. Sowa’s work defines a formal reasoning system of
well-formed diagrams as conceptual graphs that can be used as
a valid basis of formal proofs [7]. The work of Chein and Mug-
nier extends this idea by integrating graph theory operations
into conceptual graph formalism, thus obtaining the ability to
visually specify consistent knowledge representations and for-
mal reasoning [8]. These authors formulate valid transformation
rules for reasoning with conceptual graph operations that are
defined by mapping them to predicate calculus theory. Thus,
graphical reasoning rules are just as powerful and valid as their
textual counterparts. For this reason, we are interested in using
visual expressions as a means of logical reasoning instead of
the desire to use logic for reasoning about visual expressions.
Therefore, our work is considerably concerned with the formal
syntactic specifications of diagrams that are well-founded and
complete with respect to logical semantics, precisely in the con-
text of medical knowledge representation. The remainder of this
paper is organized as follows: Section 2 presents materials and
methods with conceptual graph formalism. Section 3 provides
useful reasoning principles from effective CGP modeling appli-
cations. Sections 4 and 5 present discussions with concluding
statements about the proposed formal visual approach for the
medical domain.

2. Materials and methods

2.1. Conceptual graph formalism

2.1.1. Formal vocabulary with support

A support is a 3-tuple S = (TC, TR, I) [9]. TC and TR are
two partially ordered finite sets, respectively, of concept types
and relations types. TR is partitioned into subsets TR

1. . .TR
k of

relation types of arity 1. . .k, respectively (k ≥ 1). Both orders on

TC and TR are denoted by ≤ (x≤ y means that x is a subtype of
y). I is a countable set of individual markers describing specific
entities. TC, TR and I are pairwise disjoints. All supports also
possess the marker *, known as a generic marker describing
an unspecified entity. The set I∪ {*} is partially ordered in the
following manner: * is the greatest element and elements of I
are pairwise incomparable.

2.1.2. Definition of a simple conceptual graph

A simple conceptual graph G, defined over a support S, is a
finite bipartite multigraph (V= (VC, VR), E, L) [8]:

• VC and VR are the node sets, respectively, of the concepts
nodes and of the relations nodes;

• E is the multi-set of edges. Edges incident to a relation node
are totally ordered;

• each node has a label given by the mapping l. A relation node
r is labeled by type (r), an element of TR, and the degree of r
must be equal to the arity of type (r);

• a concept node c is labeled by a pair (type (c), marker (c)),
where type (c) is an element of TC known as its type, and
marker (c) is an element of I∪ {*}.

2.2. Conceptual graph operations

Conceptual graph operations provide operational mecha-
nisms, such as inference mechanisms, allowing for manipula-
tions to which the knowledge-based system is dedicated. For
instance, to perform automatic reasoning, the conceptual graph
operations allow for the representation of derivation rules and
for the effective application of these rules to a set of facts with
constraints. This application is useful for specifying and sharing
decision and eligibility criteria, patient state definitions, condi-
tions, and system actions.

The fundamental operation for performing these reasoning
mechanisms is the projection, which leads to a calculation in
the specialization between two graphs. Indeed, the projection
search of a graph G (request graph) in a graph H (context graph)
can be observed as the inclusion search of the knowledge repre-
sented by G in H. Intuitively, the existence of a projection from
G to H means that the knowledge represented by G is contained
in (or implied by) the knowledge represented by H, and the
projection operation is a global view of a specialization opera-
tion sequence (the elementary specialization operations [disjoint
sum, join, restrict, relation simplify and copy] that is graphi-
cally and logically defined in [10]). The reasoning processes are
logically founded because the projection is well-founded and
complete with respect to the deduction in first-order logic [11].
Another essential point is that the reasoning processes operate
directly on the defined pieces of knowledge and can be visually
explained to the end user. Within our work, the projection oper-
ation is used to search for the existence or absence of certain
states/plans in a CGP representation. In Fig. 1, a projection is
feasible because the concept “Surgical Plan” is a specialization
of the concept “Therapeutic Plan” and because the “Infected
Pancreatic Necrosis” concept is a specific type of “Disease”.
The context graph can be interpreted as “There is an Infected
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Fig. 1. Example of a projection search.

Pancreatic Necrosis revealed by a Diagnostic Plan, and a Sur-
gical Plan treats this disease (Infected Pancreatic Necrosis, the
most severe form of acute pancreatitis, which is responsible for
most cases of pancreatitis-relatedmorbidity andmortality)”. The
request can be interpreted as “is there a Therapeutic Plan treating
a disease?” The projection graph provides the response, which
can be interpreted as “There is Surgical Plan that is treating an
Infected Pancreatic Necrosis”. The current medical philosophy
is to perform surgery in a later phase of the acute necrotizing pan-
creatitis when the intensive non-surgical treatment fails [12]. An
example of a projection operation is described in the following
(Fig. 1).

This conceptual graph projection can be extended with an
implementation of a depth-attenuated distance (between types
in the vocabulary) or graph transformations, allowing for an
approximate search [13,14].

2.3. Graph rules and derivation

The conceptual graph rules allow for the addition of new
knowledge. The graph rule is composed of a hypothesis and
a conclusion and is used in the classical way. Given a simple
graph, if the hypothesis of the rule projects to the graph, then
the information contained in the conclusion is added to the graph.

Logical semantics: it has previously been demonstrated that
conceptual graph rules can be described bymeans of a first-order
logic augmentedwith temporal operators [15].A conceptual rule
R (G1 ⇒ G2) is a pair of l-abstractions (lx1,. . .,xn G1,kx1,. . .,xn

G2), where x1,. . .,xn, known as connection points, enable one
to link concept vertices of the same label of G1 and G2. The
logical interpretation of a conceptual ruleR (G1 ⇒ G2) is defined
as follows: 8 (R) =∀x1 . . . ∀xn 8 (lx1 . . . xnG1)⇒ 8 (lx1
. . . xnG2). The semantic 8 (provided in [Sowa 84]) maps each
simple conceptual graphG into a first-order logic formula8 (G).
When a rule is applied in a forward chaining to a conceptual
graph, the information of the rule is added to the conceptual
graph.

Rules are categorized as static rules and dynamic rules.

2.3.1. Static rules

Static rules express some immutable domain laws, and their
utilization completes word descriptions. For a medical knowl-
edge model to support common-sense query processing, it must
provide a set of rules of deduction, known as axioms. Some
specific mathematical relations (such as symmetry, transitiv-
ity) can be defined with static rules expressing knowledge,
which is valid every time and reflects the common sense of
the medical domain. For example, the notion of a symmetric
relation is described with the conceptual graph type, which
semantically characterizes the class of all relations that are
symmetric. For this purpose, a rewrite rule is implemented
to reflect the semantics of a symmetric relation. According
to the rule notation in conceptual graphs, the explicit repre-
sentation of this symmetry property of a relation is shown in
Fig. 2. The logical interpretation of the conceptual graph rule
R for a symmetry property of a relation is defined as fol-
lows:

8 (R) =∀x, ∀y (Concept Type (x)∧ symmetric relation (x,
y)∧ConceptType (y)⇒ConceptType (x)∧ symmetric relation
(y, x)∧Concept Type (y)).

In Fig. 3, another rule is presented in the style of the diagram-
matic representation of conceptual graphs. More formally, this
rule says: “for all treatments x, protocols y and diseases z, if y
has for object z, then x and y are pertaining to a common disease
z”.

Fig. 2. The CG rule that encodes for the symmetry property of symmetric
relations.



Fig. 3. Example of a static rule in a diagrammatic representation of CGs.

2.3.2. Dynamic rules

Dynamic rules define possible transitions from one word to
another. The successor of a valid word is obtained by a single
application of a transformation rule on this word. The condition
of an ICU patient often changes, and the medical support that
he/she requires can vary at any time. Therefore, it is vital to
review major medical measurements frequently and to change
the treatment settings accordingly with respect to the appli-
cation of a guideline. Capturing CGPs in ICUs also includes
treating time-oriented, dynamically changing, and vague infor-
mation and data due to the time critical situation, which asks for
time critical actions. Likewise, dynamic graph rules are useful
to explicitly express some temporal properties, which include
concurrent, cyclical and sequential actions (e.g., to perform his-
tory and physical examinations before ordering certain tests).
Experimental results will show the major rules according to
the efficiency of the execution devices corresponding to medi-
cal decision-making, such as a respiratory monitoring expert
system that recommends action be taken to avoid breathing
complications [16]. Rules are of the form: “If qualitative state
then action”, where qualitative state can be a symbolic represen-
tation of a change in pulmonary arterial pressure over time (e.g.,
“pressure is rising rapidly”, Fig. 4). Pulmonary hypertension
is present when the mean pulmonary artery pressure exceeds
25mm Hg (3300 Pa) at rest or 30mm Hg (4000 Pa) with exer-
cise [17]. More generally, it is possible to model the fact that (1)
a state in the guideline is active, (2) an action has been performed
or (3) the patient has a specific clinical condition.

Medical rules such as IF [Diagnosis: Infection] THEN
[Order] → (Object) → [Therapy Plan: X] certainly have a
dynamic interpretation: if at a time interval [t1 t2] a diagnosis of
a state (e.g., a qualitative state of rising fever, or a rising concen-
tration of antibodies) of infection has been reached, then the
therapy plan X for diagnostics of the infection should be started
after t2. Some specific heuristics are defined with rules express-
ing knowledge, which are valid only after a longer time period

Fig. 4. Example of a dynamic rule of the form “If a qualitative state, then action”.

and reflect very individual experiences with patients. Due to the
correspondence between conceptual graphs andRDFS (resource
description framework schema) language [18], conceptual graph
rules can also be represented in SWRL (SemanticWebRuleLan-
guage [19]) rules and vice versa without losing their semantic
meaning. Rules expressed in formalisms such as RuleML (Rule
Markup Language [20]) or SWRL additionally allow for one to
specify the actions to take, knowledge to derive, or constraints
to enforce. This approach suffers from a series of drawbacks
due to the expressiveness and visual capabilities of SWRL. In
addition, there are some mappings between subsets of CGs and
subsets of description logics (DLs) [21,22] and its different ver-
sions, including Web Ontology Language-DL (OWL-DL) [23],
because of their common ancestral existential graphs.

2.4. Positive and negative constraints

A constraint defines conditions for a simple graph to be
valid. It is composed of a conditional part and a mandatory part.
Roughly speaking, a graph satisfies a constraint if for every pro-
jection of its conditional part, its mandatory part also projects on
the graph [15]. We consider positive and negative constraints.
A positive constraint expresses a property such as “if informa-
tion A is present, then information B must also be present”. For
example, “any patient with impaired lung function must have a
medical assistance to maintain artificial oxygen and normal car-
bon dioxide levels or patients should bemanaged in the intensive
care environment if they have any cardiovascular instability, are
unable to maintain an airway, have obtundation or acute abdom-
inal symptoms” [24]. A negative constraint expresses a property
such as “if information A is present, then information B must be
absent”. An example of a negative constraint is “a patient must
not receive two incompatible treatments”. Another example is
“a therapy failure context that leads to a rather unsatisfactory
situation in which the treatment is incompatible with the current
diagnosis”. In Fig. 5, the first part of the previous example fits to
the “therapy failure context” box because it describes a situation
in which the therapeutic plan (start 2/3/2012 and end 5/6/2012)
is unsatisfactory because the disease is not regressive (no ame-
lioration in the state of a patient) and because the second part
contains an incompatibility with the current diagnosis.

More generally, conflict contexts express that data are viewed
to be inconsistent or that medical plans may raise conflicts and
that certain links between them are then not allowed due to their
characteristics. The semantic verification of a guideline repre-
sentation consists in checking that the guideline representation

Fig. 5. A negative constraint modeling an incompatibility.



respects a set of constraints given by a medical expert. This ver-
ification is performed by means of the projection operation of
conceptual graphs.

The mechanism of the semantic verification of a conceptual
graph consists of checking that a projection from any positive
constraint exists and that a projection from any negative
constraint does not exist in this conceptual graph [15]. Thus, it
becomes easy to visually show to the user where the anomalies
occur with the identification of the constraints that are not
satisfied in terms of conceptual graphs, which is very similar to
the manner CGPs are modeled. In turn, this fact simplifies the
application of our approach because the medical expert does
not have to take care of the technical details of a complex logic
formula. Additionally, it is possible to study the refinement
restoring the coherence and completeness of a conceptual graph
knowledge base, which is not semantically valid with respect
to constraints [25].

2.5. Modeling probabilities and uncertainty

Conceptual graphs support the modeling of probabilistic or
uncertain knowledge: knowledge about which we are not com-
pletely sure, or where we can only make predictive statements
based on our past observations. There are at least two differ-
ent ways to consider probabilistic situations from a knowledge
point-of-view. One is that we know for certain that the situ-
ation will exist in a certain percentage of the time. Another
is that there is some causal relationship between the situa-
tion and some other situation(s). Complex and multifactorial
metabolic changes very often lead to damage and the functional
impairment of many organs, such as blood vessels (angiopa-
thy) or the hypomagnesemia in diabetes mellitus. During
diabetes, metabolic remodeling precedes the microangiopathy
(retinopathy, neuropathy, nephropathy or cardiomyopathy) and
the hypomagnesemia that may manifest as arrhythmias, mus-
cle weakness, convulsions, stupor, and agitation. In particular,
it is possible to represent in a conceptual graph form probabilis-
tic situations, such as the “hypomagnesemia may be present in
up to 90 percent of patients with uncontrolled diabetes [26]”
(Fig. 6). Unless the patient is in renal failure, the administration
of magnesium is safe and physiological [27]. An important fea-
ture of a conceptual graph system for probabilistic reasoning is
that its active relations (computer codes with pragmatic intent)
can glean probabilities from available external sources, either
from tables, previously performed correlations or by the data
mining of relevant information from databases [28].

In addition, Thomopoulos et al. have introduced an extension
of the conceptual graph model suitable for the representation of

Fig. 6. Example of probabilistic effect modeling.

data, which are modeled using fuzzy sets [29]. This extension
introduces a new way of comparing conceptual graphs, which
uses a more flexible comparison of fuzzy conceptual graphs and
allows us to exploit the semantic similarity of knowledge in
prediction methods. From reasoning and problem solving view-
points, the resulting advantage is the ability to reach conclusions
from somemodeled situations even if some of the conditions are
not really precise or uncertain [30].

3. Results

The proposed methodology is implemented in the Concep-
tual Graph user interface (CoGui). CoGui is a user-friendly tool
for building conceptual graph knowledge bases with a semantic
query mechanism as well as an inference and verification ser-
vices, which are provided by the projection operation, inference
rules and constraints [31].

3.1. Verification of CGPs’ properties

CoGui provides a tool suite for formal specification and auto-
matic model-based verification [32]. The verification approach,
in the sense of formal evidence, consists of proving properties
by implementing a set of reasoning mechanisms (backward,
forward and consistency checking). In other words, function-
alities for proving the CGP’s logical properties will result in
the application of graph rules and constraints to other graphs
representing the process of the CGP until we obtain the graph
describing the property. The demonstration of a property is per-
formed in two steps [33]. It consists of applying the effective
rules to the graph describing a process of the CGP and then
considers domain constraints to establish the consistency of the
resulting graph. Finally, such proof shall be established because
there is a projection of the property in the last graph constructed.

3.2. Interpretation of the verification findings

The purpose of verification is to prove (or disprove) that a
CGP or its model satisfies specified properties, and it is instruc-
tive to interpret failures of proof. Failures of proof relating to the
result of a model do not satisfy a property, can highlight a failure
(redundancy, inconsistency, incompleteness) in the considered
model and can help remove undesirable situations that interfere
with a coherent approach to interventions [34]. For example,
contradictions in the model can mean some interesting ideas
about the review and update of the protocol. These contradic-
tions may reflect conflicting or infeasible specifications in the
current functioning, the confusion of terminology and objectives
or the limits of resource capacity. In the formalization of our case
studies, we considered failures resulting in proof verification as
a means to discover problems and then we acquired new knowl-
edge to supplement or redefine the description of the processes
implemented by the protocol.

3.3. Details of the implementation

The implementation of this model in the CoGui software
allows the automatic processing of reasoning that can be viewed



as graph operations: response to a question by selecting a sub-
graph, enrichment of knowledge through the insertion of a
sub-graph or verification of a knowledge base with constraints
checking. In our contextual case, trained physicians can use
the CoGui editing tool to translate structured textual form of
information into an executable model of formalized knowledge
(production rules for typical medical procedures).

Furthermore, the integration of the CoGui software tool
into the work processes of all users requires a socio-technical
approach taking into account the human, organizational and
technological factors that influence the “usability”, adoption and
ownership by clinicians.

Beyond the work processes of clinicians, the consideration of
the attributes associated to local context in the deployment of a
medical information system greatly affect the success or failure
of the system. In particular, in our context, the following factors
have a positive impact on physician performance:

• system integrationwith other applications in the clinical infor-
mation system;

• the incorporation of the objectives of quality, safety and effi-
ciency of care, useful feedback to the clinician;

• presentation by the system of elements and recommendations
that can assist the clinicians in addressing complex problems;

• their possible insertion points in the clinical work processes
through reviews, documented policies and procedures.

The semantic verification of a compliance checking between
clinical guidelines and specified requirements consists in
checking that the clinical guideline models respects a set of
specifications described in a target list of medical procedures.
This verification is done by means of the reasoning operations
of conceptual graphs (specifically semantic graph mapping).
Structure-preserving mappings between two conceptual graph
structures are the major formal procedures for different reason-
ing mechanisms with conceptual graph operations (projection,
rules and constraints), and there are based on the logical sub-
sumption when considering the logical formulas associated with
conceptual graphs.

However, the running time of conceptual graph operations is
in general exponential, for numerous special classes of graphs
(e.g. Acyclic graphs, Planar graphs, Permutation graphs), the
conceptual graph operations have polynomial-time algorithms,
and in practice it can habitually be solved efficiently [35]. It has
been showed that the query evaluation and query containment
problems of relational structures and databases are equivalent to
the fundamental reasoning (i.e. semantic graph mapping) with
conceptual graph operations, in the case of conjunctive, positive
and non-recursive queries [8].

3.4. Diagnosis of heart failure with preserved ejection

fraction

The evaluation is conducted using a conceptual graph
modelling applied to the diagnosis of Heart failure in the
Elderly. The importance of early identification of a Heart failure
in elderly patients cannot be overemphasized. Particularly,

the appropriate analysis of some features of heart failure with
preserved ejection fraction (HFpEF) is an essential health issue.
Four clinical queries have been established with a geriatric
specialist and a co-author of this document. These queries
are inspired by the diagnostic flow chart for heart failure with
preserved ejection fraction [36] and the diagnostic criteria take
account of clinical evaluation of haemodynamic and muscular
pump performances. The specific details of these queries are
inseparable from the level of complexity facing geriatricians
and cardiologists today (Table 1).

A number of nine physicians have participated in the eval-
uation of the proposed approach for semantic modelling and
visual reasoning of medical knowledge with conceptual graph
representation. The average consistency mark for query types
answered with CoGui and classical textual way are compared
with this preliminary evaluation done in the geriatric context.
This is performed on patients with HFpEF to assess diagnosis
and analysis elements to be taken into account together with
the improvement of its interpretation to adapt to various clinical
situations. CoGui has encouragingly greater consistency marks
for all types of queries when compared to classical way with
textual documents (Table 2).

According to the obtained results associatedwith the gathered
opinions of the nine participating physicians, we can conclude
the described proposition using the CoGui software improves
the performance of the actors in the diagnostic context of heart
failure with preserved ejection fraction.

Table 1
Instances of the four clinical queries used in the preliminary evaluation.

Complexity Instances of queries

Easy evaluation To find the symptoms or clinical signs of heart
failure (left-sided failure, right-sided failure or
biventricular failure)

Moderate evaluation To verify the preserved haemodynamic pump
performance in transthoracic echocardiography:
LVEF> 50%, LVEDVI > 97mL/m2

Hard evaluation To control the dysfunction of muscular pump
performance resulting in impaired relaxation,
suction and filling [blood flow Doppler, tissue
Doppler imaging, Magnetic Resonance Imaging
(MRI), invasive haemodynamic measurements and
in some instance blood biomarkers (Natriuretic
brain protein – BNP – and N-terminal pro-brain
natriuretic peptide – NT-proBNP)]

Hardest evaluation To establish a diagnosis of heart failure with
preserved ejection fraction

Table 2
Average consistency mark per query type in the evaluation.

Complexity Average consistency mark

CoGui Classical way

Easy evaluation 7/9 = 0.78 6/9 = 0.67
Moderate evaluation 8/9 = 0.89 4/9 = 0.45
Hard evaluation 8/9 = 0.89 6/9 = 0.67
Hardest evaluation 8/9 = 0.89 6/9 = 0.67



4. Discussion

In this section, we report on our observations during themod-
eling phase of the guideline. The proposed conceptual graph
approach is currently being tested in a French Hospital Center.
We have currently used this approach for guideline represen-
tation only in collaboration with the medical doctors of this
hospital. During the modeling phase with conceptual graphs,
the preliminary results observed demonstrated that end-users
have an easier time constructing usable guidelines and that this
manner of representing machine-readable guidelines is interest-
ing for enabling appropriate decision support. The formalization
of such guidelines in the conceptual graphs formalism is easily
performed by knowledge engineers in a close collaboration with
medical domain experts. This formal medical knowledge repre-
sentation enables us to provide an unambiguous scheme of the
medical decision process (causal and revision contexts), to draw
the medical domain expert’s or knowledge engineer’s attention
to data entries that do not exactly fit into the current view of
the patient’s situation (e.g., it supports reminder messages about
conflict contextswhen a graph constraint is violated), and to sup-
port the decision process by providing knowledge that is suitable
for use in a plan of action for a patient. In addition, intuitive and
visual descriptions have been shown to improve understanding
and self-management in patients with chronic diseases [37].

4.1. Comparison to alternative clinical models

The conceptual graph models have advantages over frame-
based models in expressing certain forms of modeling (e.g.
mapping properties into nested contexts) and in providing a
visual reasoning that facilitates an intuitive understanding. In
addition, conceptual graphs can be easily translated into the ter-
minology of some other approaches in knowledge engineering,
such as Resource Description Framework Schema (RDFS) [18]
and the Web Ontology Language (OWL) [19] mainly applied in
connection with the Semantic Web framework [38]. As a result,
it generates the possibility to interact and exchange the modeled
knowledge with internal and external collaborators.

In fact, modern terminologies (e.g., SNOMED-CT and NCI
Thesaurus) are being formalized usingDescriptionLogics (DLs)
[39]. Since DLs and CGs are both rooted in semantic networks
and logically founded, the question of their relationships has
often been asked. As well as similarities between DLs and CGs,
there are specific interesting features: cycles, n-ary relations,
and type-hierarchy for CGs, the style of symbolic, variable-free
formulas, variety of constructors with different levels of expres-
siveness for DLs. Besides visual reasoning facilities, the syntac-
tical possibilities of the graphs, including identity, graphs that
contain circles, graphs that are not connected, etc., allow graphs
to be constructed that do not have counterparts in DLs [40].

The work of Carloni et al. connects topic maps and concep-
tual graphs. They show that the topic maps (and especially those
describing the domain ontology and annotation base) can be
reliably linked to a subfamily of conceptual graphs [32]. The
transformation from topic maps to conceptual graphs is for-
mal and reversible, which allows, on one hand, integration of

graphical reasoning outcomes into a knowledge management
tool based on topic maps and, on the other hand, enrichment of
this tool by conceptual graph operations (constraints and rules)
for consistent verification and inference of useful knowledge.

4.2. Evaluation through experiences with clinicians

The formalized knowledge modeling approach can be imple-
mented on various parts of clinical activities (prevention,
diagnosis, treatment, medical follow-up of patients, etc.). Mean-
while, we are primarily interested in the management of acute or
chronic diseases (cardiovascular diseases, diabetes, neurodegen-
erative diseases, etc.). In the purpose to standardized practices
for doctors in the same country and across the world, medi-
cal guidelines are established to benefit from emerging medical
advances, latest discoveries in others scientific fields and soci-
etal evolution. These recommendations and guidelines based on
evidence-healthcare, quality, consistency and costs, are gener-
ated by associations of experts (“consensus conferences”) that
disseminate up-to-date knowledge and best practices.

These guidelines are not static and need to be revisitedwhen a
discovery is done or new practices from a doctor or some doctors
are approved by their colleagues during international or national
consensus conferences or diseases consortium. The continued
training of doctors allows also changes or new strategies for the
prevention, diagnosis and treatment of diseases. The process of
knowledge formalization requires the analysis, adaptation and
progressive structuring of clinical guidelines and validation of
resulting knowledge bases. This structuring process also allows
identifying the ambiguities that need to be resolved; it also helps
to identify incompleteness of guidelines on certain clinical situa-
tions. These situations already need to be carefully examined
and in many cases require explicit recommendations that per-
tain to the type of information collected and the type of clinical
guidelines being used.

For instance, with regard to conceptual graph modelling
applied on diagnosis of Heart failure in the Elderly, the contin-
uous identifications of some features of HFpEF is important.
Conceptual graphs allow us to make dynamic knowledge
modelling with visual interactions and this can contribute to
providing appropriate medical care for this disease. HFpEF is
the clinical syndrome of heart failure associated with normal
or near-normal systolic function. HFpEF is particularly com-
mon in older hypertensive women, and hypertension plays a
key role in its pathophysiology [41]. Despite these worrisome
epidemiological trends, pathophysiological mechanisms under-
lying HFpEF and diagnostic or therapeutic strategies remain
uncertain. Treatment of HFpEF remains empirical and centered
around the control of blood pressure and volume status [42].

The formal knowledge representation with conceptual graph
formalism is used to describe and understand the knowledge ele-
ments extracted from clinical recommendations or expert advice
as in the example above. In view of the reasoning operations
through conceptual graph knowledge representation, we are in a
dynamic process that invites the reader to participate in the con-
struction of semanticmodelingwhich facilitates identification of
ambiguities, inconsistencies and incompleteness. Furthermore,



the integrated management of clinical guidelines, as the man-
agement of the entire medical knowledge representation, is a
pro-active process that has to be reactivated at regular intervals
to keep up with the dynamic collaborations among the members
of the medical scientific community in order to improve certain
procedures in complex disease management.

5. Conclusion

In this document, we present an approach using the expres-
sive power of visualization within conceptual graph formalism,
and these graph operations are used as a valid basis of
formal reasoning. This process defines a formal reasoning
system ofwell-formed diagrams and specifies semantic relation-
ships between these diagrams. Reasoning with diagrammatic
representations enables a system to draw inferences from
diagrammatic information, to solve problems posed diagram-
matically, and to communicate visual findings and lessons
learned [43]. The rigorous formalization of CGPs with diagrams
of CGs is performed, and visual transformation procedures are
applied. Therefore, provable CGP properties, defined by health
care organizations, can be established using only visual proce-
dures. The proposed approach makes a casual assessment of
their potential benefit to the formal modeling of CGPs that can
assist with the detection and the explanation of new and poten-
tially threatening events. For example, the physician’s attention
can be drawn to significant changes in the patient’s clinical
signals, and the diagnostic conclusions provided by the CGP’s
recommendations can be translated into CGs according to the
particular setting (e.g. diagnosis of HFpEF). Likewise, the rea-
soning process can follow the user’s natural cognitive processes
and structures [44,45]. The advanced focus will be on the wide
spread deployment of proposed reasoning systems for the inter-
action between the CoGui tool and an intelligent monitoring
systemwith large biomedical ontologies alignment [46] in oper-
ating rooms and intensive care units. Further validation tests
should be planned before evaluating the developed user inter-
face during clinical testing in the operating theater. We are
also interested in the emerging trends impacting on electronic
healthcare reports in decision-making [47]. In addition, in other
medical applications [48,49], we have emphasized the temporal
reasoning formalization in conceptual graphs.
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