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SUMMARY

Glycosides are an important potential source of aroma and flavour compounds for release as volatiles in

flowers and fruit. The production of glycosides is catalysed by UDP-glycosyltransferases (UGTs) that medi-

ate the transfer of an activated nucleotide sugar to acceptor aglycones. A screen of UGTs expressed in kiwi-

fruit (Actinidia deliciosa) identified the gene AdGT4 which was highly expressed in floral tissues and whose

expression increased during fruit ripening. Recombinant AdGT4 enzyme glycosylated a range of terpenes

and primary alcohols found as glycosides in ripe kiwifruit. Two of the enzyme’s preferred alcohol aglycones,

hexanol and (Z)-hex-3-enol, contribute strongly to the ‘grassy-green’ aroma notes of ripe kiwifruit and other

fruit including tomato and olive. Transient over-expression of AdGT4 in tobacco leaves showed that enzyme

was able to glycosylate geraniol and octan-3-ol in planta whilst transient expression of an RNAi construct in

Actinidia eriantha fruit reduced accumulation of a range of terpene glycosides. Stable over-expression of

AdGT4 in transgenic petunia resulted in increased sequestration of hexanol and other alcohols in the flow-

ers. Transgenic tomato fruit stably over-expressing AdGT4 showed changes in both the sequestration and

release of a range of alcohols including 3-methylbutanol, hexanol and geraniol. Sequestration occurred at

all stages of fruit ripening. Ripe fruit sequestering high levels of glycosides were identified as having a less

intense, earthier aroma in a sensory trial. These results demonstrate the importance of UGTs in sequester-

ing key volatile compounds in planta and suggest a future approach to enhancing aromas and flavours in

flowers and during fruit ripening.
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INTRODUCTION

In plants, glycosylation typically occurs as one of the last

steps in natural product biosynthesis. Glycosides can be

found for all major classes of natural compounds including

flavonoids (Jones et al., 2003; Frydman et al., 2004), terpe-

noids (Richman et al., 2005; Nagatoshi et al., 2011), carote-

noids (Moraga et al., 2004), glucosinolates (Grubb et al.,

2004) and cyanohydrins (Thorsoe et al., 2005; Franks et al.,

2008). Glycosylation reactions are mediated by UDP-glyco-

syltransferases (UGTs) that catalyse the transfer of an acti-

vated nucleotide sugar (such as UDP-glucose) to acceptor

aglycones to form O-, S- and N-glycosides as well as sugar

esters. The addition of the sugar moiety to plant natural

products changes their solubility, chemical properties,

compartmentation, storage, and biological activity (Bowles

et al., 2005). Biochemical and molecular characterisation of

UGTs has been driven by the pharmacological and agro-

nomic importance of many glycosides, e.g. in human

health (Achnine et al., 2005; Ono et al., 2010), disease

resistance (Matros and Mock, 2004), plant development

(Jackson et al., 2001; Hou et al., 2004), and flower and fruit

colour (Fukuchi-Mizutani et al., 2003; Montefiori et al.,

2011).



Plants contain large families of UGTs with over 100

genes being described in the genomes of Arabidopsis

(A. thaliana), soybean (Glycine max), rice (Oryza sativa)

and grape (Vitis vinifera) (Yonekura-Sakakibara and Hana-

da, 2011). These genes have a common signature motif of

~44 amino acids that is thought to be involved in the bind-

ing of the UDP moiety of the activated sugar (Li et al.,

2001). Many GTs show relatively broad substrate specific-

ity (Hefner et al., 2002; Landmann et al., 2007); however,

there are examples of UGTs with quite specific activities

(Fukuchi-Mizutani et al., 2003; Jugd�e et al., 2008). UGTs

show high sequence divergence; however, phylogenetic

analysis has established the presence of distinct groups

(A–N) and families of UGT genes in plants (Ross et al.,

2001). Systematic classification has facilitated the charac-

terisation of many new activities; nevertheless, there are

still large numbers of uncharacterised UGTs and function-

ality is difficult to ascribe through phylogenetic related-

ness.

In many flowers and fruit, aroma and flavour com-

pounds accumulate as non-volatile glycosides (Loughrin

et al., 1992; Oka et al., 1999; Cabrita et al., 2006; Birtic

et al., 2009; Aurore et al., 2011; Garcia et al., 2011b). Glyco-

sidically bound compounds are often significantly more

abundant than free volatile aglycones, making glycosides

an important potential contributor to aroma and flavour. In

flowers, the release of odiferous volatile aglycones is

dependent on floral maturity, is often diurnally regulated,

and co-ordinate with increased b-glucosidase activity

(Loughrin et al., 1992; Reuveni et al., 1999; Picone et al.,

2004). In fruit, aglycones may be released from the sugar

moiety during ripening, storage, and processing. In

tomato, NON-SMOKY GLYCOSYLTRANSFERASE1 has

been shown to prevent damage-induced release of smoky

aroma-associated phenylpropanoids volatiles such guaia-

col, methyl salicylate and eugenol. NSGT1 was induced

during fruit ripening and converted cleavable diglycosides

of smoky-related volatiles into noncleavable triglycosides

(Tikunov et al., 2013). SlUGT5 has also been shown to pref-

erentially glycosylate the same substrates in vitro and the

gene mapped to chromosome I in a region containing a

QTL that affected the content of guaiacol and eugenol in

tomato crosses (Louveau et al., 2010). In Citrus species

such as grapefruit and pummelo, accumulation of flava-

none-7-O-neohesperidosides determines the bitter quality

of the fruit. The 1,2 rhamnosyltransferase Cm1,2RhaT was

shown in vitro to direct regiospecific rhamnosylation of na-

ringenin 7-O-glucoside to produce the bitter compound

(Frydman et al., 2004). In strawberry FaGT2 catalyses the

formation in vitro of glucose esters of cinnamic acid and p-

coumaric acid which are the precursors of the volatile fla-

vour compounds methyl and ethyl cinnamate. Transgenic

strawberry fruit that were down-regulated for expression

of FaGT2 showed decreased sequestration of cinnamoyl

and p-coumaroyl glucose esters. However, the effect on

methyl and ethyl cinnamate emissions could not be mea-

sured as they did not normally accumulate in the fruit of

the cultivar used for transformation (Lunkenbein et al.,

2006).

The volatile components of green-fleshed ‘Hayward’ ki-

wifruit (Actinidia deliciosa) have been well characterised

(reviewed in Garcia et al., 2011a) with the major compo-

nents being the esters methyl and ethyl butanoate and the

C-6 aldehydes and alcohols (Z)- and (E)-hex-2-enal, hex-

anal, (Z)- and (E)-hex-3-enol, and methyl benzoate. The C-6

compounds are responsible for the fresh, grassy-green

notes perceived by consumers when eating kiwifruit (Wang

et al., 2011). In comparison, there is relatively little infor-

mation on the glycosidically bound volatile components of

kiwifruit. Young and Paterson (1995) identified 29 glyco-

sides in ‘Hayward’ juice, whilst Garcia et al. (2013) identi-

fied 95 glycosides in extracts of ripe ‘Hayward’ fruit. The

major compounds identified included terpenoids and C-6

alcohols as well as 3-methylbutanol, benzyl alcohol and 2-

phenylethanol (Table S1).

In this study we describe the isolation and in vitro bio-

chemical characterisation of AdGT4, a glycosyltransferase

that utilises compounds that contribute to the aroma of

ripe green-fleshed kiwifruit. Transient expression studies

using tobacco leaf and A. eriantha fruit and analysis of sta-

ble transgenic petunia and tomato plants are used to dem-

onstrate that the enzyme sequesters ‘grassy-green,’

terpene and other volatiles in planta. Our results in tomato

demonstrate that manipulating expression of GTs can

affect the balance of volatile compound sequestration and

release thereby affecting fruit flavour and aroma.

RESULTS

Identification of putative glycosyltransferases from ripe

kiwifruit

Four contigs with homology to known UGT sequences

were identified by BLAST searches from a library of

expressed sequence tags derived from A. deliciosa ‘Hay-

ward’ ripe fruit (Crowhurst et al., 2008). Full-length cDNAs

from each contig were sequenced and designated AdGT1-4

(Actinidia deliciosa glycosyltransferase 1-4). A framework

phylogenetic tree was constructed with representative

members of an Arabidopsis UGT phylogenetic tree

described by Ross et al. (2001). This framework tree indi-

cated that AdGT1-4 were placed in four different families,

AdGT1 in UGT72, AdGT2 in UGT89, AdGT3 in UGT88 and

AdGT4 in UGT85 (Figure 1). All four kiwifruit UGTs showed

highest amino acid identity to predicted UGT proteins in

the Vitis vinifera genome (57–75%). Homology to function-

ally characterised proteins was lower, with AdGT1 showing

46% amino acid identity to UGT72E2 from Arabidopsis

thaliana capable of glycosylating coniferyl and sinapyl



alcohols and aldehydes (Lim et al., 2005). AdGT2 showed

50% identity to UGT89A2 from A. thaliana with specificity

for 3,4- and 2,5- dihydroxybenzoic acid (Lim et al., 2002)

and AdGT3 showed 63–66% identity to several UGTs with

specificity to flavonoids, flavones and coumarin (Tian

et al., 2006; Witte et al., 2009; Kim et al., 2010). AdGT4

(99598) showed highest identity (72%) to the iridoid-spe-

cific UGT85A24 from Gardenia jasminoides (Nagatoshi

et al., 2011) and 64% identity to UGT85A19 a cyanohydrin

mandelonitrile GT from Prunus dulcis (Franks et al., 2008).

More distantly AdGT4 showed homology to the cyanohy-

drin UGT85B1 from Sorghum bicolor (Hansen et al., 2003)

and UGT85C2 from Stevia rebaudiana involved in the pro-

duction of diterpene steviol glycosides (Richman et al.,

2005). All four kiwifruit ORFs encoded proteins of between

52 and 54 kDa and contained the PSPG motif of 44 amino

acids found in most plant UGTs. An alignment of AdGT1-4

with other biochemically characterised UGT enzymes is

shown in Figure S1.

Each AdUGT1-4 ORF was expressed as an N-terminal

His6-tagged recombinant protein in Escherichia coli. Par-

tially purified proteins were tested for their ability to glu-

cosylate a pool of substrates containing geraniol, linalool

and octan-3-ol or benzyl alcohol, 2-phenylethanol and hex-

anol. Only AdGT4 (designated ActdeUGT85A38 according

to the systematic GT nomenclature of Ross et al., 2001)

showed significant GT activity towards the substrate pools

and was purified by Ni2+ affinity chromatography for fur-

ther biochemical analysis.

Enzymatic activity of recombinant AdGT4 enzyme

Purification of recombinant AdGT4 protein was indicated

in SDS-PAGE and confirmed by western analysis using a

His6-specific monoclonal antibody (Figure S2). AdGT4

activity was characterised initially by deconvoluting the

original two substrate pools (described above) using

UDP-glucose as the sugar donor. AdGT4 showed signifi-

cant activity towards geraniol, hexanol and octan-3-ol,

weak activity towards 2-phenylethanol and negligible

activity towards benzyl alcohol and linalool. AdGT4 activ-

ity was then tested on a further 25 substrates selected

from a range of chemical classes (Table 1). AdGT4

showed activity against a range of alcohols in particular

nerol (the cis isomer of geraniol), a-terpineol, and (Z)-hex-

3-enol. Low but detectable activity (>5%) was measured

towards other alcohols including 2-furylmethanol, Furane-

ol� and (E)-hex-2-enol. Negligible activity was observed

towards aromatic compounds such as resorcinol and

hydroquinone and flavonoids such as quercetin and na-

ringenin. Negligible activity was also shown for several

other alcohols, e.g. butanol, and pentan-2-ol that have

been reported in A. deliciosa fruit volatile headspace and

solvent extraction analyses (Crowhurst et al., 2008; Wang

et al., 2011).
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Figure 1. Phylogenetic analysis of AdGT1-4 with other selected plant glycosyltransferases.

Actinidia deliciosa AdGT1 (GenBank KF954941), AdGT2 (KF954942), AdGT3 (KF954943), AdGT4 (KF954944); Vitis vinifera Vv323 (XP_002264323), Vv383

(XP_002268383), Vv546 (XP_002276546), Vv770 (XP_002285770); Maclura pomifera MpUGT88A4 (ABL85471); Hieracium pilosella HpUGT88A9 (ACB56925); Popu-

lus deltoides PGT3 (ACV87307); Gardenia jasminoides GjUGT85A24 (BAK55737); Prunus dulcis PdUGT85A19 (ABV68925); Sorghum bicolor SbUGT85B1

(AAF17077) and Stevia rebaudiana SrUGT85C2 (AAR06916). All other UGT sequences were from Arabidopsis thaliana and obtained from http://

www.p450.kvl.dk/UGT.shtml. Bootstrap values supporting the separation of the four highlighted families were 100% based on 1000 replicates.
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Kinetic parameters of recombinant AdGT4 in vitro

AdGT4 activity towards geraniol and UDP-glucose was

tested over a pH range of 5.0–10.0. The enzyme showed

highest activity at pH 7.5 with activity decreasing to 50% at

pH 7.0 and 9.0 but still more than 20% at pH 5.0 and 10.0

(Figure S3a). The enzyme showed similar activity over a

broad temperature range from 20–40°C, but negligible

activity at 50°C (Figure S3b). Enzyme activity was not

strictly dependent on the presence of monovalent (Na+, K+)

or divalent cations (Mg2+, Mn2+), but activity increased 1.7-

fold in the presence of 0.1–0.5 mM Mg2+ and 1.5-fold in the

presence of 10–20 lM Mn2+ (Figure S3c,d).

Kinetic parameters were determined for AdGT4 with

respect to geraniol, octan-3-ol, hexanol and (Z)-hex-3-enol.

The enzyme had similar apparent Km values for all four

substrates (57–117 lM), however the catalytic efficiency

towards geraniol was 6-17-fold higher compared with that

of the two C-6 alcohols and octan-3-ol (Table 2). This result

suggests that geraniol is the preferred sugar acceptor of

the four substrates tested. The apparent Km for UDP-glu-

cose was 44.7 � 15.2 lM.

LC-MS analysis of reaction products

Products of 16 h reactions between AdGT4 + UDP-glucose

and two substrates, geraniol and octan-3-ol were analysed

by LC-MS. Base peak plots indicated that a single glucosy-

lated product was formed with a retention time of 44.6 min

with geraniol (Figure 2a) and a product with a retention

time of 42.2 min with octan-3-ol (Figure 2c). Full scan and

MS/MS mass spectral data were used to further characte-

rise the AdGT4 enzyme reaction products. Geraniol-gluco-

side was detected predominantly as the corresponding

formate adduct, m/z 361 [M + formate]�1 in full scan mode.

MS2 on the formate adducts identified the expected

pseudo-molecular ion at m/z 315 for the geraniol-glucoside

(Figure 2e). Octan-3-ol-glucoside was also detected as the

corresponding formate adduct (m/z 337) in full scan mode

and gave the expected pseudo-molecular ion at m/z 291 for

the octan-3-ol-glucoside in MS2 (Figure 2g).

The AdGT4 enzyme was then incubated for 16 h with

geraniol and octan-3-ol in the presence of two additional

activated sugar donors, UDP-galactose and UDP-xylose.

Two peaks of similar intensity were observed in the base

peak plots for geraniol + UDP-galactose at 44.1 and

44.6 min (Figure 2b). Full scan and MS/MS mass spectral

data indicated that both peaks were consistent with a gera-

niol-glycoside (Figure 2f). The peak at 44.1 min most likely

corresponds to geraniol-galactoside, as the peak at

44.6 min has the same retention time as geraniol-glucoside

in Figure 2(a) (UDP-glucose being a minor contaminant of

the UDP-galactose). A major peak was observed in the

base peak plots for octan-3-ol + UDP-galactose at 42.2 min

with a minor peak most likely corresponding to octan-3-ol

galactoside at 41.3 min (Figure 2d). Full scan and MS/MS

mass spectral data indicated that both peaks were consis-

tent with an octan-3-ol-glycoside (Figure 2h). No reaction

products were detected with geraniol or octan-3-ol in the

presence of UDP-xylose.

Time course incubations using AdGT4 + UDP-glucose

and AdGT4 + UDP-galactose with geraniol and octan-3-ol

as substrates yielded the same reaction profiles (Table S2)

as the 16 h incubations. Together these results suggest

that, in vitro, AdGT4 acts primarily as a glucosyltransferase

with weak but detectable galactosyltransferase activity.

Expression analysis of AdGT4 in kiwifruit

The tissue-specific expression of AdGT4 mRNA was deter-

mined by quantitative RT-PCR in young leaf, vegetative

bud, mature fully-open flower and ripe fruit. Expression

was highest in flower tissue, but was also high in bud and

Table 1 Relative activity of purified recombinant AdGT4 enzyme

Compound
Relative
activity (%) Compound

Relative
activity (%)

Geraniol 100 Quercetin
dihydrate

2.7 � 0.3

Nerol 47.6 � 10.2 Propanol 2.6 � 0.2
Octan-3-ol 28.2 � 2.6 Hydroquinone 2.5 � 0.3
Hexanol 25.9 � 1.5 Linalool 2.5 � 0.1
a-Terpineol 22.9 � 1.1 Resorcinol 2.4 � 0.1
(Z)-Hex-3-enol 11.9 � 0.4 3-Methylbut-3-

enol
2.2 � 0.2

2-Phenylethanol 7.9 � 0.1 cis-Linalool oxide 2.2 � 0.2
(E)-Hex-2-enol 7.2 � 1.0 Propan-2-ol 2.0 � 0.2
Furaneol� 6.1 � 0.2 Butanol 1.6 � 0.4
2-Furylmethanol 5.0 � 0.3 Cyanidin chloride 1.2 � 0.1
Butan-2-ol 4.3 � 0.1 Naringenin 1.0 � 0.1
3-Methylbutanol 4.3 � 0.5 Chlorogenic acid 0.9 � 0.1
Pentan-2-ol 4.3 � 0.1 Caffeic acid 0.6 � 0.1
2-Methylbutanol 3.8 � 0.2 Menthol 0.6 � 0.1
Benzyl alcohol 3.3 � 0.4 Pyrogallol 0.3 � 0.1

UGT activity towards geraniol is set at 100%. Data are presented
as mean � standard error of the mean (SEM) (n = 3).

Table 2 Kinetic properties of purified recombinant AdGT4 enzyme

Substrate kcat (sec�1) Km (lM)
kcat/Km
(sec�1

M
�1)

Geraniol 11.05 � 0.42 76.2 � 11.1 14 500
Octan-3-ol 0.75 � 0.07 66.6 � 16.2 1130
Hexanol 2.72 � 0.18 116.9 � 28.1 2330
(Z)-Hex-3-enol 0.49 � 0.04 57.0 � 20.0 860
UDP-glucose 6.93 � 0.74 44.7 � 15.2 15 550

Substrate concentrations were varied from 5 mM to 2 lM with a
fixed UDP-glucose concentration of 100.27 lM ([3H]-UDP-glucose:
0.27 lM + UDP-glucose: 100 lM) and 500 ng of protein. The Km for
UDP-glucose was determined by varying the concentration of
UDP-glucose from 300 to 0.27 lM in the presence of geraniol
(500 lM) and [3H]-UDP-glucose (0.27 lM). Data are presented as
mean � standard error (SE) (n = 3).



ripe fruit (Figure 3a). By analysing floral parts dissected

from mature fully-open flowers, the high levels of AdGT4

expression in flowers appeared to be localised to sepal

and stamen but not petal and pistil (Figure 3b). During

‘Hayward’ fruit ripening, expression of AdGT4 increased

progressively as fruit softened from 100 N firmness (at har-

vest) to 20 N. A slight decrease in expression was

observed as fruit achieved eating firmness (8 N) when they

produce endogenous climacteric ethylene (Figure 3c). In ki-

wifruit, free volatile release is strongly linked to the pro-

duction of climacteric ethylene (Atkinson et al., 2011).

AdGT4 expression appears to be developmentally-regu-

lated during ripening, and not ethylene-regulated as has

been reported for flavour-related genes in kiwifruit

involved in ester production, e.g. AATs (G€unther et al.,

2011).

Transient over-expression of AdGT4 in tobacco

Transient over-expression in tobacco leaves was used to

investigate the glycoside products produced by AdGT4 in

planta. Leaves were infiltrated with pART27-AdGT4 or a

control pHEX2-GUS construct in the presence/absence of

the volatile aglycones geraniol, hexanol, (Z)-hex-3-enol,

octan-3-ol and 2-phenylethanol. Glycosides were purified,

treated with b-glucosidase and volatiles released were

extracted into solvent for GC-MS analysis. Extremely low

levels of glycosides were extracted from tobacco plants

that were not co-infiltrated with volatile aglycones and no

glycosylated hexanol was observed in either AdGT4 infil-

trated or control plants. Elevated glycoside levels were

observed in both AdGT4 infiltrated and control plants

infiltrated with each volatile aglycone, particularly (Z)-hex-

3-enol and 2-phenylethanol, suggesting the presence of

native tobacco GT enzymes capable of glycosylating these

substrates in planta. However, significantly higher levels of

octan-3-ol (40-fold) and geraniol (2.5-fold) glycosides were

observed in AdGT4 infiltrated plants (Figure 4).

Transient down-regulation of AdGT4 in kiwifruit

As transgenic kiwifruit plants take 4–5 years to produce

fruit in containment (Atkinson et al., 2011), transient down-

regulation of AdGT4 in A. eriantha fruit was used to deter-

mine the potential function of the enzyme in kiwifruit. Gly-

cosides were purified, treated with b-glucosidase and

volatiles released analysed by GC-MS. Significantly

reduced levels of volatile terpene alcohol glycosides were

observed in fruit inoculated with the pTKO27S-AdGT4

RNAi construct compared to the pHEX2-GUS control

(Figure 5a). At the individual compound level there were

significant decreases in geraniol, a-terpineol and carveol

(Figure 5b, all compounds listed in Table S3) that contrib-

ute to the flavour of ripe kiwifruit.

Stable over-expression of AdGT4 in petunia flowers

Stable transgenic petunia plants were generated to investi-

gate glycosylation by AdGT4 in flowers. Glycosides were

purified, treated with b-glucosidase and the released vola-

tiles analysed by GC-MS from three primary transformants

over-expressing AdGT4 (T3157, T3152, T3148) and a wild-

type control line. All three transformants showed signifi-

cant increases (6–8-fold) in total volatile-alcohol glycosides

(Figure 6a). At the individual compound level all three lines
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Figure 2. LC-MS analysis of AdGT4 reaction products.

LC-ESI-MS base peak plots in negative mode for (a) geraniol + UDP-glucose; (b) geraniol + UDP-galactose; (c) octan-3-ol + UDP-glucose; (d) octan-3-ol + UDP-

galactose; and (e) full scan and MS2 data for peak 1; (f) full scan and MS2 data for peak 2; (g) full scan and MS2 data for peak 3; and (h) full scan and MS2 data

for peak 4. Results from 16 h incubations are presented. Time course data are presented in Table S2.



showed significant increases in glycosides for hexanol, 3-

methylbutanol and 2-butyloctanol. Lines T3157 and T3152

also showed significant differences in glycosylated 2-

phenylethanol and octanol (Figure 6b). Levels of glyco-

sides for most other alcohols including geraniol, decanol

and benzyl alcohol (all compounds listed in Table S4) also

increased in the transgenic lines, but not at P < 0.05 signifi-

cance. Lines T3157 and T3152 also showed significant

increases in total aldehydes arising from the glycoside

fraction, with this variation being almost entirely due to an

increase in benzaldehyde.

Stable over-expression of AdGT4 in tomato fruit

Glycoside analysis. Six homozygous transgenic tomato

lines were generated (T518, T519, T528–T530 and T586) to

investigate how AdGT4 over-expression affected seques-

tration and release of flavour and aroma compounds in red

ripe fruit compared to a wildtype ‘MicroTom’ line. All six

transgenic lines showed a significant increase (5–8-fold) in

total extractable volatile-alcohol glycosides (Figure 7a). In

contrast to petunia flowers, no difference in total alde-

hydes was observed in the glycoside fractions (Figure 7a).

At the individual compound level, nearly all volatile-alco-

hol glycosides were more abundant in the transgenic lines

than the control (all compounds listed in Table S5). 3-

Methylbutanol was the most abundant volatile-alcohol gly-

coside detected in the control line and this compound was

10–30-fold more abundant as a glycoside in the AdGT4

over-expressing lines, with lines T519, T529 and T530

showing significant differences (P < 0.05). Hexanol, buta-

nol, and geraniol glycosides were significantly more abun-

dant in three to four of the transgenic lines (Figure 7b).

Lines T529 and T530 showed the largest number of volatile-

alcohol glycosides with elevated levels compared with the

control which is consistent with the higher level of AdGT4

transgene expression in these two transgenic lines (Figure

S4). Despite changes in glycoside accumulation, fruit from

all six transgenic lines were physiologically similar to the

control for colour, firmness and crop load (Figure S5a–e).

However, a significant increase in soluble solids content

(3.5 to ~5°Bx) was observed in all lines (Figure S5f).

(a)

(b)

(c)

Figure 3. Relative expression of AdGT4 in kiwifruit tissues.

Relative gene expression was determined by qRT-PCR in three different tis-

sue sets (a) young leaf, vegetative bud, mature fully-open flower and ripe

fruit, (b) dissected flower parts and (c) a ripening fruit series (firmness in N).

Data are presented as mean � standard error of the mean (SEM) (n = 12).

Means with the same letter are not significantly different at the 0.05 level.

Figure 4. Glycosides produced by transient over-expression in tobacco.

Leaves were infiltrated with pART27-AdGT4 or a control pHEX2-GUS con-

struct in the presence ‘+’ or absence ‘�’ of four volatile aglycones. Purified

glycosides were treated with b-glucosidase and the volatiles released were

extracted into solvent for GC-MS analysis. Data are presented as

mean � standard error of the mean (SEM) (n = 3 for ‘+’ aglycone; n = 9 for

‘�’ aglycone). Means with the same letter are not significantly different at

the 0.05 level for each compound.



Free volatiles and solvent extractions. Free volatiles

released from red ripe fruit of the six transgenic AdGT4

lines were measured by dynamic headspace trapping and

GC-MS analysis (all compounds listed in Table S6). Individ-

ual volatiles were categorised into alcohol, aldehyde,

acid + ester, terpene and ‘other’ (ketone, sulfur, thiazole

and nitrile, furan and hydrocarbon) categories. Total free

volatile-alcohols were significantly decreased (2–9-fold) in

all six transgenic tomato lines. No significant difference in

total free volatile aldehydes, acids + esters, terpenes or

‘other’ compounds released was observed, with the excep-

tion of an increase in total free volatile acids + esters in

line T528 (Figure 8a).

Volatile-alcohols and aldehydes in red ripe fruit were

also extracted into solvent and analysed by GC-MS (all

compounds listed in Table S7). Levels of total volatile-alco-

hols extracted into solvent were low (0.1 lg g�1) from both

control and transgenic AdGT4 lines (Figure 8b). Signifi-

cantly reduced levels were observed in three of the trans-

genic tomato lines. Extraction of volatile aldehydes into

solvent was much higher (40 lg g�1), but levels were

comparable between control and all transgenic lines

(Figure 8b).

Glycosides in development. Glycoside production was

assessed during three additional stages of fruit

development (green, breaker, and pink) using transgenic

lines T529 and T530 that showed the most consistent

changes in both free volatile and glycoside production in

red ripe fruit. Significant differences in total extractable

volatile-alcohol glycosides were observed in all stages of

development for line T529 (Figure 9) and three of the four

stages for T530. The most abundant compound contribut-

ing to the difference in the alcohol glycoside pool was

(a)

(b)

Figure 5. Glycosides produced by transient down-regulation in kiwifruit.

A. eriantha fruit were infiltrated with the RNAi construct pTKO27S-AdGT4

or control pHEX2-GUS. Purified glycosides were treated with b-glucosidase
and the volatiles released trapped on SPME columns and analysed by GC-

MS.

(a) Total extractable glycosides of volatile ‘terpene alcohols’ and ‘other

alcohols.’

(b) Glycosides of selected individual terpene alcohols. Data are presented

as mean � standard error of the mean (SEM) (n = 3). *Different at the 0.05

level.

(a)

(b)

Figure 6. Glycosides sequestered in petunia flowers.

Glycosides were isolated from three petunia transformants over-expressing

AdGT4 and a wildtype ‘WT’ control and treated with b-glucosidase. Volatiles
released were trapped on SPME columns and analysed by GC-MS.

(a) Total extractable volatile-alcohol glycosides and aldehydes.

(b) Glycosides of individual compounds showing significant change. Data

are presented as mean � standard error of the mean (SEM) (n = 3 indepen-

dent harvests). Statistical analysis in GraphPad Prism: 1-way analysis of var-

iance (ANOVA) using Dunnett’s Multiple Comparison Test versus wild type

(WT). *Different at the 0.05 level.



3-methylbutanol; however, the majority of alcohol glyco-

sides observed in the control were sequestered at higher

levels in both T529 and T530 (all compounds listed in Table

S8). No significant difference in total aldehydes was

observed in the glycoside fractions. Variability between

samples was high for both control and T529. This was

related to variation in the levels of (E)-hex-2-enal that was

only found at breaker and pink stages in the control and

T529 samples but not at any stage in T530.

Sensory analysis. A sensory panel investigated the

impact of AdGT4 over-expression on ripe tomato fruit

aroma. In triangle tests, panelists were clearly able to dis-

tinguish the aroma of transgenic T530 fruit from control

fruit, with 27 correct answers out of a total of 47 tests

(P < 0.001), run over three independent sessions. Panelists

perceived the AdGT4 over-expressing fruit as having a sig-

nificantly more ‘earthy’ aroma, and to be globally less

‘intense’ than control fruit (Table 3). The sensory analysis

suggested also that T530 tomatoes were less floral, less

sweet and less fruity, but without harboring a significant

difference.

DISCUSSION

Using a molecular and biochemical screen we have iso-

lated and characterised AdGT4, a ripening-related GT from

kiwifruit with closest homology to Group 85A GTs.

Recombinant AdGT4 enzyme showed a broad specificity,

accepting many primary and secondary alcohols as sub-

strates, but not phenolic substrates (e.g. resorcinol, hydro-

quinone). AdGT4 preferentially glycosylated geraniol,

nerol, the C-6 alcohols hexanol, (Z)-hex-3-enol and (E)-hex-

2-enol, and octan-3-ol. UGT85B1 from Sorghum bicolor

shows a similar broad specificity but with a preference for

(a)

(b)

Figure 7. Glycosides sequestered in red ripe tomato fruit.

Glycosides were isolated from six tomato transgenic lines over-expressing

AdGT4 and a wildtype ‘WT’ control and treated with b-glucosidase. Volatiles
released were extracted into solvent for GC-MS analysis.

(a) Total extractable volatile-alcohol glycosides and aldehydes.

(b) Glycosides of selected individual compounds showing significant

change. Data are presented as mean � standard error of the mean (SEM)

(n = 3 independent harvests). Statistical analysis as per Figure 6. *Different

at the 0.05 level.

(a)

(b)

Figure 8. Volatiles in red ripe tomato fruit.

(a) Total alcohol, aldehyde, acid + ester, and terpene volatiles released

from six tomato transgenic lines over-expressing AdGT4 and a wildtype

‘WT’ control. Volatiles were trapped onto Chromasorb and analysed by GC-

MS. Data are presented as mean � standard error of the mean (SEM) (n = 3

independent harvests of 15 fruit) and exclude ethanol and acetic acid which

are typically associated with over-ripeness/fermentation.

(b) Total alcohol and aldehyde solvent-extracted volatiles. Data are pre-

sented as mean � SEM (n = 3). Statistical analysis as per Figure 6. *Differ-

ent at the 0.05 level.



cyanohydrin substrates not found in kiwifruit (Hansen

et al., 2003). The Km value for AdGT4 towards geraniol

(76 lM) is lower than that reported for other UGT85 family

members towards terpenoids e.g. 610 lM for UGT85A24

towards 7-deoxyloganetin (Nagatoshi et al., 2011) and

140 lM for UGT85B1 towards geraniol (Hansen et al.,

2003), but higher than those reported towards flavanols

e.g. ~3 lM for UGT85H2 towards quercetin and kaempferol

(Li et al., 2007). LC-MS analysis indicated AdGT4 was pri-

marily a glucosyltransferase with weak but detectable

galactosyltransferase activity.

In transient assays using tobacco leaves, AdGT4 was

able to glycosylate exogenous octan-3-ol and geraniol sub-

strates thereby showing AdGT4 was an active GT in planta.

However, analysis using this system was complicated by

glycosylation via endogenous GTs in the leaves using (Z)-

hex-3-enol and 2-phenylethanol. Transient down-regula-

tion of AdGT4 in unripe A. eriantha fruit indicated that the

enzyme primarily glycosylates terpene alcohols in kiwifruit

as significant reductions in geraniol, a-terpineol and carve-

ol glycosides were observed. This suggests that in ripe

A. deliciosa fruit, AdGT4 will glycosylate a-terpineol and

especially geraniol which is found at 10-fold higher levels

in ripe A. deliciosa fruit (Table S1) compared to unripe

A. eriantha fruit (Table S3). No reduction in glycosides of

hexanol and octan-3-ol was observed in transiently down-

regulated fruit and glycosides of (Z)-hex-3-enol and (E)-

hex-2-enol were not present even in control A. eriantha

fruit. Whether AdGT4 influences glycosylation of these

grassy-green aroma notes in ripe A. deliciosa fruit remains

an open question.

In both transgenic petunia flowers and tomato fruit, sta-

ble over-expression of AdGT4 led to a significant increase

in the total pool of volatile-alcohols that were sequestered.

Significant increases in glycosylated hexanol and 3-methyl-

butanol were observed in both tomato and petunia, whilst

increased glycosylation of other volatile-alcohols was spe-

cific to each system, e.g. octanol and decanol in petunia

versus butanol, 6-methyl-5-hepten-2-ol and geraniol in

tomato. These differences most likely relate to substrate

availability, e.g. geraniol and 6-methyl-5-hepten-2-ol are

reported as free volatile-alcohols in tomato fruit, e.g.

(Ortiz-Serrano and Gil, 2007), but not in petunia flowers,

e.g. (Verdonk et al., 2005). Differences in substrate avail-

ability are also likely to contribute to the changing glyco-

side profiles evident during fruit development. For

example, 3-methylbutanol glycosides increased ~7-fold in

control fruit as fruit ripened from green to red. An increase

in 3-methylbutanol glycosides also occurred during ripen-

ing of the AdGT4 over-expressing lines, but to an even

greater extent (80–140-fold; Table S8).

Aldehydes are not directly glycosylated by UGTs as they

lack a hydroxyl group. However, the presence of aldehydes

in glycosidic fractions is widely reported (Birtic et al., 2009;

Ortiz-Serrano and Gil, 2010). The ratio of alcohols to alde-

hydes in the glycosidic fraction can vary widely depending

on the extraction conditions, as can been seen in Table S1

where benzyl alcohol:benzaldehyde and (Z)-hex-3-enol:

(E)-hex-2-enal ratios varied markedly. In this study, a

significant difference in total aldehydes was observed in

the glycoside fractions of petunia flowers over-expressing

AdGT4 but not from tomato fruit which might be due to

the glycoside digestion with almond b-glucosidase versus

Rapidase.

A decrease in the total pool of solvent extracted volatile-

alcohols was measured by GC-MS in three tomato lines

over-expressing AdGT4, whilst the pool of free volatile-

alcohols decreased in all lines. No significant change in the

Figure 9. Total extractable glycosides of volatile-alcohols and aldehydes

that are sequestered during tomato fruit ripening.

Glycosides were isolated from tomato transgenic lines T529 and T530 and a

wildtype ‘WT’ control during tomato ripening stages green (grn), breaker

(brk), pink (pnk) and red ripe. Glycosides were treated with b-glucosidase
and the volatiles released extracted into solvent for GC-MS analysis. Data

are presented as mean � standard error of the mean (SEM) (n = 3 indepen-

dent harvests). Statistical analysis as per Figure 6. *Different at the 0.05

level.

Table 3 Sensory comparison of ripe transgenic T530 and control tomato fruit

Descriptor Intense Green Floral Sweet Fruity Earthy

T530 0.8 � 0.5a 4.0 � 0.6 1.5 � 0.5 0.8 � 0.3 2.8 � 0.6 9.0 � 0.7a

Control 3.2 � 0.8 3.8 � 0.7 2.6 � 0.5 1.8 � 0.5 4.4 � 1.1 5.6 � 0.2

Data are the average occurrence of each descriptor � standard error of the mean (SEM) (n = 3 independent sessions with 16 panelists).
Statistical analysis was performed using a t-test.
aDifferent at the 0.05 level.



pool of free volatile aldehydes, acids + esters, or terpenes

was observed. The sensory panel analysis of line T530 ver-

sus control fruit highlighted that the changes in free vola-

tiles were obvious to detect by sniffing, as the statistical

significance of the triangle test was very strong (P < 0.001).

The descriptive sensory analysis suggests that the reduc-

tion in free volatile-alcohols leads to fruit that are per-

ceived as having less overall aroma intensity and that are

earthier than control fruit. Hexanol, (Z)-hex-3-enol,

6-methyl-5-hepten-2-ol, and geraniol are all noted as hav-

ing grassy-green/fruity notes, whilst 3-methylbutanol and

butanol have fusel/alcoholic/banana notes (http://www.

thegoodscentscompany.com/search.html). Our hypothesis

is that the increased sequestration of these compounds

with fruity/floral notes leads to the perception of a fruit that

is ‘earthier.’ Compounds such as 2-isobutylthiazole and

3-methylbutanal, which are noted as having musty/earthy

aromas in tomato (Baldwin et al., 2008), were slightly

reduced in the T530 line (Table S6). Our hypothesis is also

consistent with sensory analysis of ripe tomato fruit with

elevated ADH activity. These transgenic lines had higher

levels of C-6 alcohols such as hexanal and (Z)-hex-3-enol

and were identified as having a more intense ‘ripe fruit’

flavor (Speirs et al., 1998).

In conclusion, we have demonstrated that AdGT4 can

glycosylate a range of terpenes and C-6 alcohols in vitro

and four systems (including kiwifruit) in planta. Our results

in tomato indicate that over-expression of AdGT4 influ-

ences volatile compound release which has a measurable

effect on sensory perception of fruit aroma. This work fur-

ther suggests that glycosyltransferases with specificity for

key odour-active compounds are good candidate genes for

manipulating levels of different aromas and flavours in

flowers and fruit by transgenic or conventional breeding

techniques.

EXPERIMENTAL PROCEDURES

Plant material

Actinidia deliciosa Lindl. var. deliciosa (A. Chev.) C.F. Liang et
A.R. Ferguson ‘Hayward’ samples were obtained from the PFR
orchard in Te Puke, NZ. Outer pericarp tissue was sampled from
fruit when immature (firmness 100 N), mature but unripe (80 N),
during the rapid period of fruit softening (50 N or 20 N), and
when eating ripe (8–10 N, producing endogenous ethylene,
1.03 lmol kg�1 sec�1). Fruit firmness was determined with an
Effegi penetrometer (7.9 mm diameter head). Endogenous ethyl-
ene production was measured by flame ionisation chromatogra-
phy (Atkinson et al., 2011). Whole flowers were harvested at
noon and immediately dissected into flower part samples
(Nieuwenhuizen et al., 2009). All tissues were snap frozen in
liquid nitrogen immediately after collection and stored at �80°C.

Sequence analysis

A ‘Hayward’ ripe fruit library containing ~10300 ESTs (Crowhurst
et al., 2008) was BLAST-searched for sequences with homology to

known GTs. Homologous contigs (expect value <exp�20) were
identified and the most 50 EST was selected for full-length
sequencing. For phylogenetic analysis amino acid sequences were
initially aligned using CLUSTALX (version 1.8) then manually edi-
ted. Phylogenetic trees were constructed using PHYLIP, analysed
using BOOTSTRAP N-J TREE and visualised in TREEVIEW (v.1.6.6,
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html).

Expression in Escherichia coli

The complete ORFs of AdGT1-4 were amplified using gene-spe-
cific primers (Table S9) into pET30A(+) (Novagen, http://www.
novagen.com/). DNA from individual clones was sequence verified
against the original ORF, then transformed into BL21-Codon-Plus
RIL cells. For recombinant protein isolation, 30 ml cultures in LB
broth containing 50 lg ml�1 kanamycin were grown at 37°C,
300 rpm, for 4 h until they reached an OD600 of ~0.6. Cultures were
induced by the addition of isopropyl b-D-1-thiogalactopyranoside
(IPTG) to a final concentration 1 mM and grown for a further 72 h
at 16°C. Cells were harvested and then lysed with 2 ml protein
extraction buffer (B-PER in phosphate buffer) following manufac-
turer’s instructions. Recombinant protein obtained at this point is
referred to as ‘partially purified’. Purified N-terminal His6-tagged
AdGT4 protein was obtained using His SpinTrap columns (GE
Healthcare Life Sciences, www.gelifesciences.com) following
manufacturer’s instructions. Protein concentrations were mea-
sured using an ND-1000 spectrophotometer (NanoDrop Technolo-
gies Inc., www.nanodrop.com).

Glucosyltransferase activity assays

Standard UGT activity assays were performed in 50 ll reactions
containing 10 ll of 59 UGT assay buffer (50 mM Tris–HCl, pH 7.5,
2 mM dithiothreitol), 1 ng ll�1 recombinant protein, 0.2 mM sub-
strate and 0.27 lM [3H]-UDP-glucose (uridine diphospho-D-[6-3H]
glucose, 13.6 Ci mmol�1; GE Healthcare). Reactions were per-
formed at 30°C for 30 min and terminated using 10 ll of 2 M HCl.
Reaction mixtures were extracted with 100 ll of ethyl acetate, and
20 ll of organic phase was added to 1 ml of non-aqueous scintilla-
tion fluid and analysed by liquid scintillation counting (Tri-Carb
2900TR; PerkinElmer, www.perkinelmer.com). Boiled protein or
empty vector protein as a negative control was treated in parallel
with all enzyme activity reactions. Reactions were shown to be lin-
ear with respect to enzyme concentration and time under standard
reaction conditions.

LC-MS analysis

Scaled-up reactions contained 100 ng enzyme, 100 lM substrate
and 250 lM UDP-glycoside (UDP-glucose, UDP-galactose; Sigma-
Aldrich, www.sigmaaldrich.com; or UDP-xylose, Carbosource
Services). For Figure 2, reactions were incubated at 30°C for 16 h
and stopped with 20 ll glacial acetic acid. Three reactions for
each substrate:UDP-glycoside combination were pooled for
LC-MS analysis. LC-MS employed an LTQ linear ion trap mass
spectrometer fitted with an ESI interface coupled to an Ettan
MDLC (GE Healthcare Life Sciences). Compound separation was
achieved as described in Jugd�e et al. (2008). Sample injection
volume was 10 ll. MS data was acquired in the negative mode
using a data-dependent LC-MS3 method (Jugd�e et al., 2008).
Authentic geraniol and octan-3-ol standards were obtained from
Sigma-Aldrich.

For the LC-MS time course analysis of glycosides, scaled-up
reactions were incubated for 10 min, 1 h or 16 h and analysed as
described in Table S2.

http://www.thegoodscentscompany.com/search.html
http://www.thegoodscentscompany.com/search.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://www.novagen.com/
http://www.novagen.com/
www.gelifesciences.com
www.nanodrop.com
www.perkinelmer.com
www.sigmaaldrich.com


Quantitative real-time PCR

RNA from kiwifruit was isolated according to Chang et al. (1993)
and from tomato using NucleoSpin RNA Plant columns (Mache-
rey-Nagel). cDNA was synthesised as described in Nieuwenhuizen
et al. (2009). qRT-PCR gene expression analysis was performed on
a LightCycler 480 platform using SYBR Green master mix. Results
were analysed using the LightCycler 480 software (Roche Applied
Science, www.roche.com). Amplification conditions included an
initial denaturation step of 95°C for 5 min followed by 45 cycles of
95°C for 10 sec, 60°C for 10 sec and 72°C for 12 sec. Fluorescence
was measured at the end of each annealing step followed by a
melting curve analysis with continual fluorescence acquisition
from 65 to 95°C to check for single product amplification. Expres-
sion was calculated relative to the control kiwifruit gene EF1a.
qRT-PCR primer sequences are shown in Table S9 together with
predicted product sizes.

Binary vectors and plant transformation

The over-expression construct pART27-AdGT4 (CaMV35S:AdGT4:
nos) contained the full-length AdGT4 ORF in the binary vector
pART27 (Gleave, 1992). The first 610 bp of AdGT4 (excluding the
conserved PSPG motif) was used to produce the RNAi hairpin
construct pTKO27S-AdGT4 (CaMV35S:AdGT4:act2) in the binary
vector pTKO2 (Snowden et al., 2005). The control construct
pHEX2-GUS (CaMV 35S:GUS reporter gene:nos) is as reported in
Nieuwenhuizen et al. (2009).

For transient expression, all constructs were electroporated into
Agrobacterium strain GV3101. Transient experiments in tobacco
leaves were performed as described in Hellens et al. (2005). Seven
days after inoculation, leaves were infiltrated with a 100 lM solu-
tion of volatile aglycone (except geraniol 10 lM, as it was toxic at
100 lM). After 4 h the leaves were detached and frozen at �80°C
for glycoside extraction. Transient experiments using unripe
A. eriantha fruit were performed as described in Montefiori et al.
(2011). Three fruit for each treatment were injected and then
stored for 4 days at 25°C.

Transgenic petunia (Petunia hybrida) ‘V26’ plants were regener-
ated according to Jorgensen et al. (1996) using pART27-AdGT4 in
Agrobacterium strain LBA4404 and rooted in the presence of kana-
mycin (100 lg ml�1). The presence of the AdGT4 transgene was
confirmed in transgenic plants using primers YKGTF1 and YKGTR1
(Table S9). Transgenic tomato (Solanum lycopersicum Mill.)
‘MicroTom’ plants were regenerated according to Wang et al.
(2005) and rooted in the presence of kanamycin (50 lg ml�1).
Plants were self-pollinated to produce homozygous seed lines.
Transgenic and control plants were grown under containment
greenhouse conditions with a minimum/maximum temperature
range of 20–30°C and a minimum of 12 h light. Fully-open petunia
flowers with mature pollen were harvested at 10:30 am. Tomato
fruit were harvested according to the standard ripening scale (Del-
laPenna et al., 1986). For glycoside analysis and solvent extraction,
pools of at least 10 petunia flowers and 15 tomato fruit were
collected from multiple plants for each time point and frozen
at �80°C.

Extraction and hydrolysis of volatile glycosides

Frozen tobacco leaf (1–2 g), petunia flower (~2–3 g), and tomato
fruit (~ 8 g) material were ground, mixed with 20–35 ml water,
and centrifuged (2000 g for 15 min). The supernatant was col-
lected and 35 ll of 1 mM n-heptyl-D-glucopyranoside (Calbiochem,
www.merckmillipore.com) added as internal control. The superna-
tant was loaded onto a 15 ml Amberlite XAD-2 column (prepared

according to manufacturer’s instructions, Supelco), washed with
50 ml water followed by 40 ml diethyl ether/pentane (1:1) to
remove non-glycosylated compounds. The glycosylated com-
pounds were eluted using 20–50 ml methanol and dried.

Glycosidic eluates were resuspended in 2 ml of deglycosylation
buffer (4.2 g citric acid, 2.84 g Na2HPO4 in 100 ml, pH 5) and
extracted 39 with 2 ml of diethyl ether/pentane to remove any
non-glycosylated compounds. Petunia glycosides were hydroly-
sed using almond b-glucosidase (2 mg) and the volatile products
trapped onto SPME fibres coated with 65 lM polydimethylsilox-
ane-divinylbenzene (Supelco, www.sigmaaldrich.com). Volatile
collection was for 24 h at 37°C in a water bath with gentle rocking.
Tomato and tobacco glycosides were digested with Rapidase
AR2000 (4 mg; DSM Food Specialities, www.dsm.com). Reactions
were overlaid with 100 ll diethyl ether/pentane and incubated for
16 h at 37°C. Reactions were then extracted 29 with 0.8 ml diethyl
ether/pentane and water removed by passage through a Na2SO4

column.

Headspace collection and solvent extraction of tomato

volatiles

Headspace volatiles were collected by sealing 15 fruit without
sepals in 100 ml sampling jars for 20 min to equilibrate without
flow and then purging the headspace with dry purified air at a
flow rate of 25 ml min�1 for 1 h. Volatiles were trapped onto
direct thermal desorption liners (ATAS GL) packed with 80 mg of
60–80 mesh Chromosorb 105 adsorbent (Shimadzu).

For solvent extraction, fruit (20 g) were blended in 22% CaCl2
(20 ml) and mixed with 40 ml diethyl ether/pentane (1:1) for
30 min at room temperature. The pulp was re-extracted with
20 ml diethyl ether/pentane for 10 min at room temperature, the
combined extracts passed through a Na2SO4 column to remove
water then stored at �20°C.

GC-MS analysis

GC-MS analysis of solvent extracts was performed on an Agilent
6890N GC coupled to a Waters GCT time of flight-mass spectrom-
eter, as described previously (Nieuwenhuizen et al., 2013). The
oven temperature program was 1 min at 35°C, 5°C min�1 to
230°C, and hold for 5 min. Headspace volatiles were desorbed
directly from the direct thermal desorption tubes and cryo-focused
as described in the legend to Table S6.

Volatile compounds were identified by comparing their mass
spectra and retention data with those of a series of authentic stan-
dards, supplemented with the NIST 98 and Wiley 7 mass spectral
libraries. Amounts of each chemical were semi-quantified with an
average detector response factor based on a range of standards.
Concentrations of glycoside volatiles were also corrected for
recovery of the internal standard (n-heptyl-D-glucopyranoside).

Sensory panel analysis

The panel consisted of 16 individuals and included 10 men and 6
women. Participation was voluntary and all participants gave their
written consent prior to participation in the study. Although
panelists knew the general purpose of the experiment, none was
aware of the exact nature of the samples. Red ripe tomato fruit
without sepals (30 � 1 g) from the control and a representative
AdGT4 over-expressing line (T530, showing a 40-fold increase in
total volatile-alcohol glycosides and nine-fold decrease in total
free volatile-alcohols) were placed in individual wine glasses.
There was no visual difference between samples. A watch
glass was placed over each glass before and after sampling so
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headspace volatiles could accumulate within the glass. For the
triangle tests, three samples were presented with a random code
to the panelist: two the same, and one different. Each panelist
was asked to smell in each glass and identify which sample was
different. For the descriptive analysis panelists were asked to
choose from a set of five aroma descriptors: intense, green,
floral, sweet, fruity and earthy. The presented results are the
average occurrence for each descriptor. The experiment was
repeated three times with independent sets of samples presented
to each panelist. Significance was analysed using probability
tables developed for sensory analysis (Lawless and Heymann,
2010).

GenBank accession numbers

AdGT1 (KF954941); AdGT2 (KF954942); AdGT3 (KF954943); AdGT4
(KF954944).
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