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On False Alarm Rate of Matched Filter

Under Distribution Mismatch
Olivier Besson, Senior Member, IEEE

Abstract—The generalized likelihood ratio test (GLRT) is a very

widely used technique for detecting signals of interest amongst

noise, when some of the parameters describing the signal (and
possibly the noise) are unknown. The threshold of such a test

is set from a desired probability of false alarm and hence

this threshold depends on the statistical assumptions made about
noise. In practice however, the noise statistics are seldom known

and it becomes crucial to characterize under a mismatched

distribution. In this letter, we address this problem in the case of
a simple binary composite hypothesis testing problem (matched

Þlter) when the threshold is designed under a Gaussian assumption

while the noise actually follows an elliptically contoured distribu-
tion. We also consider the inverse situation. Generic expressions

for the assumed and actual are derived and illustrated on

the particular case of Student distributions for which simple,
closed-form expressions are obtained. The latter show that the

GLRT based on Gaussian assumption is not robust while that

based on Student assumption is.

Index Terms—Distribution mismatch, elliptically contoured
distributions, generalized likelihood ratio test, probability of false

alarm.

I. INTRODUCTION AND PROBLEM STATEMENT

C ONTROL of the false alarm rate is a crucial issue in most
radar systems, as a mismatch between the presumed (de-

signed) probability of false alarm ( ) and the actual one has
very detrimental effects in any post-detection step, e.g., target
tracking. Usually, a desired is speciÞed and a threshold, as-
sociated to a given detection scheme, is computed based on sta-
tistical assumptions regarding the data under test. In practice,
however, one cannot ensure that the received data will match
its assumed distribution, and therefore it is highly desirable that
a detection scheme be robust to a possible mismatch between
the assumed and the actual data distribution. In this preliminary
study, we investigate the relation between the designed and
its actual value under distribution mismatch, for a conventional
hypothesis testing problem, namely

(1)

In (1), stands for the signature of the signal of interest and
denotes its unknown complex amplitude. is a random noise
vector, whose assumed probability density function is

herein considered to be known. The generalized likelihood ratio
test (GLRT) for the problem at hand is given by [1], [2]

(2)

The threshold is computed from and
thus depends on . Therefore, can be ensured only if
is distributed according to . In this letter, we investigate

what becomes of when is drawn from .
More precisely, we Þrst investigate the usual case where
corresponds to a Gaussian distribution while corresponds
to an elliptically contoured (EC) distribution [3], [4], [5]. EC
distributions have been used in a number of engineering appli-
cations, including radar where they encompass the widely used
compound-Gaussian model [6]. We refer the reader to [5] and
references therein for a detailed discussion. In a second step,
we consider the inverse situation, viz. the probability of false
alarm of the GLRT based on EC distributed data when applied
to Gaussian data. We provide closed-form expressions for the
actual versus assumed in the case of Student distributions,
and show that the GLRT based on a Gaussian assumption is not
robust at all, while the GLRT based on a Student assumption is
rather robust.

II. ANALYSIS OF GAUSSIAN GLRT (MATCHED FILTER)

When follows a complex Gaussian distribution, i.e.,
, and the covariance matrix is known, the

GLRT, also referred to as matched Þlter is given by [1], [2], [7]

(3)

The probability of false alarm is related to through
where the superscript over in-

dicates that the probability of false alarm is obtained for a
Gaussian distributed .

Our aim is to study the robustness of the test (3) when applied
to elliptically distributed . Sincewe address probability of false
alarm in this paper, we consider only hypothesis for which

, and we assume that , under , admits the following
stochastic representation [3], [4], [5]

(4)

where means “as the same distribution as”. In (4), the vector
is uniformly distributed on the complex -sphere, where

is the size of vector . This means that can be written as
with . Note that and

are independent [3], [8]. is a random positive scalar whose
probability density function (p.d.f.) is

where is the so-called density generator of the elliptic distri-
bution and is a constant which ensures that integrates



to one. Assuming that is positive deÞnite, the probability den-
sity function of , under , is given by

(5)

where means “proportional to”. We Þrst examine how robust

is the test in (3) when applied to in (4). Let ,
denote the projection onto , and

the projection onto its orthogonal complement.
Then, one can write that

(6)

where denotes the complex central chi-square distribu-
tion with degrees of freedom (d.o.f.) whose p.d.f. is

and is the complex beta distribu-

tion, whose p.d.f. is

Consequently, if the threshold is used as in (3), the actual
probability of false alarm is given by (the superscript means
that the data follows an EC distribution with as the density
generator)

(7)

The previous formula allows one to recover the usual Gaussian
case for which , , which yields

(8)

Fig. 1. Actual probability of false alarm of the Gaussian GLRT when follows

a Student distribution, as a function of . and .

The two equations (7) and (8) enables one to relate the actual and
assumed . Let us illustrate the following general formula
on the speciÞc case of a Student distribution with degrees
of freedom, for which and

. Then, one has (9), shown at the bottom of the

page, where, to obtain the last line, we made use of [9, 3.194.3].
Therefore, the actual probability of false alarm is related to the
one assuming is Gaussian distributed through the relation

(10)

The dependence of versus is illustrated in Fig. 1,

for and . Accordingly, Fig. 2

presents versus for various values of
. Clearly, the Gaussian matched Þlter is not robust to deviation

from the assumed data distribution as the actual can signif-
icantly depart from the presumed one, making this detector not
desirable in practical situations.

III. ANALYSIS OF EC GLRT

Suppose now that, under , is distributed according to (4).
In this case, assuming that is decreasing, the matched Þlter
takes the form [10]

(11)

(9)



Fig. 2. Actual probability of false alarm of the Gaussian GLRT when follows

a Student distribution, as a function of . Varying . .

Then, using the fact that

(12)

it follows that

(13)

Consequently

(14)

Since , and is decreasing, we necessarily have
and thus

Therefore, the integral in the previous equation is over the do-
main . Finally, we get

(15)

Suppose now that is EC distributed with a density generator
. Since the distribution of is independent of , the rep-

resentation in (13) holds with now
and hence

(16)

For instance, when is Gaussian distributed, and
it ensues that

(17)

Let us now apply these general formulas to the case of a Stu-
dent distribution with degrees of freedom, for which

and . It is straightfor-

ward to show that, in this case,

where . Consequently, is obtained
as (18), shown at the bottom of the page. Hence, the threshold

can be computed very easily from . Let us ex-
amine now what happens if is used with the same threshold

but is now Gaussian distributed. Then, we simply have

(18)



Fig. 3. Actual probability of false alarm of the Student GLRT when follows

a Gaussian distribution. and .

(19)

This allows to obtain the following relation between the de-
signed probability of false alarm and the actual one

:

(20)

For illustration purposes, in Fig. 3, we display

versus for . Accordingly, Fig. 4 presents

versus for various values of . Clearly,
the Student matched Þlter, when applied to Gaussian distributed
data, exhibits a very good robustness, since the actual is
very close to the designed one. In other words, even if the
data is truly Gaussian distributed, there is no signiÞcant loss in
assuming that it is Student distributed as the resulting will
be quite close to the desired one.

Finally, as a last example, consider a mismatch in the degrees
of freedom of the Student distribution. In other words, the GLRT
is constructed assuming a Student distribution with degrees
of freedom (and subsequently the threshold is computed based
on this hypothesis) and it is applied to data following a Student
distribution with degrees of freedom. Using (7) and (16), and
after some straightforward calculations it can be shown that

(21)

Fig. 4. Actual probability of false alarm of the Student GLRT when follows

a Gaussian distribution, as a function of . Varying . .

Fig. 5. Actual probability of false alarm of the Student GLRT (assuming

d.o.f.) when follows a Student distribution with d.o.f., as a function of .

, and .

The relation between these two is illustrated in Fig. 5. It
can be observed that the GLRT is not very sensitive to a wrong
guess of the number of d.o.f. in the Student distribution, which
is a desirable feature.

IV. CONCLUDING REMARKS

In this letter, we considered the (non-adaptive) detection of
a signal of interest embedded in noise. We studied the sensi-
tivity of the probability of false alarm of the GLRT, when the
latter is designed based on some noise distribution, while the
data obeys another distribution. More precisely, we considered
the case where data is assumed to be Gaussian [respectively
elliptically] distributed while it is actually elliptically [respec-
tively Gaussian] distributed. Conclusions are that the Gaussian
matched Þlter is not robust while the GLRT based on elliptical
assumption guarantees a rather close to the designed one.
This preliminary work should be pursued and extended to the
more relevant case of adaptive detectors.
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