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Abstract—Multicarrier transmissions are classically based on
undercomplete or exact Weyl–Heisenberg Riesz (biorthogonal
or orthogonal) bases implemented thanks to oversampled filter-
banks. This can be seen as a transmission below the Nyquist
rate. However, when overcomplete Weyl–Heisenberg frames are
used, we obtain a “faster-than-Nyquist” (FTN) system and it is
theoretically impossible to recover exactly transmitted symbols
using a linear receiver. Various studies have shown the interest of
this high density signaling scheme as well as practical implemen-
tations based on trellis and/or iterative decoding. Nevertheless,
there is still a lack of theoretical justifications with regard to
pulse design in the FTN case. In this paper, we consider a
linear transceiver operating over an additive white Gaussian
noise channel. Using the frame theory and simulation results,
we show that the mean squared error (MSE) is minimized when
tight frames are used.

I. INTRODUCTION

It is usually recognized that perfect reconstruction of the

symbols is one of the necessary conditions for reliable in-

formation transmission. This constraint implies biorthogonal

synthesis and analysis bases (used respectively by the trans-

mitter and the receiver). In the particular case of T -spaced

waveforms, it leads to the Nyquist inter-symbol interference

(ISI) free criterion [1]. This strategy has the advantage to

allow a low-complexity optimal detector (linear receiver) at

the expense of a maximum signaling density: the bandwidth

has to be greater or equal than 1/T .

With an increasing need for spectral efficiency, it has

been suggested to override the Nyquist criterion leading to

“faster-than-Nyquist” (FTN) transceivers. The first approach

developed by J. Mazo was based on an orthogonal single

carrier system with cardinal sine pulses and binary antipodal

symbols [2]. From this setup, he showed that an increase of the

signaling rate up to 25 % has no consequence on the minimum

euclidean distance between sequences of symbols. According

to G.D. Forney’s optimal detection over ISI channels, it

follows from this result that error probability can remain

unchanged even if the receiver’s complexity is increased [3].

Three decades later, F. Rusek et al. provided a generalization

of FTN transmission to non-binary alphabets with an emphasis

on reconstruction techniques [4]. Simplified trellis detector as

well as iterative decoders have been proposed in order to target

practical implementations [5], [6]. It confirms that binary-

error-rate (BER) over additive white Gaussian noise (AWGN)

channels are similar to orthogonal systems when the density

is increased up to 30 %.

When facing time-frequency selective channels, multicarrier

modulations are usually justified since they allow to distribute

information in the time-frequency plane using appropriate

pulse shapes [7], [8]. However, in the context of a FTN

linear system with limited output power, the challenge is

to determine appropriate time-frequency spacing and pulse

shaping in order to reach a trade-off between throughput,

bandwidth and reconstruction error. If one further assumes a

fixed bandwidth, it follows that channel-induced interference

mitigation is tied to the signaling density.

Despites attractive practical implementations of FTN multi-

carrier systems [9], [10], a lack of theoretical justifications

appears concerning their design. Such systems are usually

derived from (bi)orthogonal transceivers where higher density

time-frequency lattices are used. In this paper, we restrict our

study to linear transceivers and focus on the minimization of

the normalized mean squared error (NMSE) in presence of

inter-pulse interference and additive white Gaussian noise. Our

main contributions include an analysis based on the frame

theory as well as practical guidelines for FTN multicarrier

modulations design.

This paper is organized as follows. After presenting no-

tations and definitions used throughout the document, sec-

tion 2 describes the multicarrier transceiver based on Weyl–

Heisenberg families. In this context, a general definition of

FTN signaling is given based on the density of its time-

frequency lattice. Section 3 discusses the design of the pulse

shapes in order to minimize the MSE introduced by a linear

transceiver operating over an AWGN channel. Section 4 con-

firms the theoretical study based on simulation results. Finally,

conclusions are presented in section 5.



II. SYSTEM MODEL

In this section, we first present our notations and recall basic

definitions from the frame theory. Afterwards, we establish the

input-output relations of a linear multicarrier transceiver in a

faster-than-Nyquist context.

A. Notations and definitions

Let V be an Hilbert space. For two vectors x, y ∈ V, the

inner product is denoted 〈x, y〉 and the norm of x is given

by ‖x‖ =
√

〈x, x〉. In particular, we define for p ∈ {1, 2}
the spaces Lp(R) = {x : R → C/

∫ +∞

−∞
|x(t)|p dt < +∞}

and ℓp(I) = {x : I → C/
∑

k∈I |x[k]|p < +∞} with I a

countable index set.

Let us define f = {fk}k∈I a family of vectors in V. We

say that f is a frame of V if there exist two constants 0 <
A ≤ B < +∞ such that

A ‖f‖2 ≤
∑

k∈I

| 〈f, fk〉 |2 ≤ B ‖f‖2 , ∀f ∈ V. (1)

The constants A,B are called lower and upper frame bounds

(respectively) for the frame. If A = B, f is a tight frame. Let

us define g = {gk}k∈I another frame of V; we say that f and

g are dual frames if and only if

f =
∑

k∈I

〈gk, f〉 fk, ∀f ∈ V. (2)

If there exist not all zero coefficients {ck}k∈I ⊂ ℓ2(I)
such that

∑

k∈I ckfk = 0 then the frame is overcomplete

and several dual frames exist [11, p. 107]. Conversely, if
∑

k∈I ckfk = 0 only if ck = 0, ∀k ∈ I, the frame f is a

Riesz basis and a unique dual frame exists.

In order to introduce compact notations related to frame

operations, we define the synthesis and analysis operators Df

and D∗

f associated to f :

Df : ℓ2(I) → V, {ck}k∈I 7→
∑

k∈I

ckfk, (3)

D∗

f : V → ℓ2(I), f 7→ {〈fk, f〉}k∈I (4)

where ·∗ is the adjoint operator. It is then possible to define the

frame operator S based on successive analysis and synthesis:

Sff = DfD
∗

ff =
∑

k∈I

〈fk, f〉 fk. (5)

Notice that S is bounded, invertible and self-adjoint. It follows

that f̃ = {f̃k = S−1
f fk}k∈I is also a frame with bounds 1/B

and 1/A [11, p. 100]. The frame f̃ is called the canonical

dual frame of f and it verifies the following property: among

all scalar sequences {ck}k∈I for which f =
∑

k∈I ckfk, the

coefficient sequence {〈f, f̃k〉}k∈I has minimal ℓ2-norm [11, p.

6].

With the aim of representing multicarrier systems, it is con-

venient to introduce the particular class of Weyl–Heisenberg

frames (sometimes called Gabor frames) [12]. We start by

defining translation and modulation operators, denoted respec-

tively TT0
and MF0

, with F0, T0 ∈ R:

MF0
: L2(R) → L2(R), f(t) 7→ f(t)ej2πF0t, (6)

TT0
: L2(R) → L2(R), f(t) 7→ f(t− T0). (7)

We consider a lattice {mF0, nT0}(m,n)∈Λ ⊂ R
2 with Λ ⊂

Z
2; its density is denoted ρ = 1/(F0T0). The family of

regularly modulated and translated function g ∈ L2(R) is

written as g = {MmF0
TnT0

g}(m,n)∈Λ; it forms a Weyl–

Heisenberg frame if it fulfills (1).

B. Back-to-back input-output relation

At the transmitter side, let us define a sequence of complex

coefficients c = {cm,n}(m,n)∈Λ ∈ ℓ2(Λ) with Λ ⊂ Z
2.

Let g = {gm,n}(m,n)∈Λ be a Weyl–Heisenberg frame with

parameters F0, T0 > 0, bounds 0 < A ≤ B < +∞ and

whose vectors are derived from a generator g(t) ∈ L2(R):

gm,n(t) = g(t− nT0)e
j2πmF0t. (8)

The signal s(t) at the output of the multicarrier transmitter

can be written as a synthesis operation based on the sequence

c and the Weyl–Heisenberg family g:

s(t) = (Dgc)(t) =
∑

(m,n)∈Λ

cm,ngm,n(t), t ∈ R. (9)

As a result of this expansion, information carried by the

complex symbol sequence is regularly spread in the time-

frequency plane (fig. 1) with a minimum distance T0 in time

and F0 in frequency.

t

f

T0

F0

Fig. 1: Representation of transmitted signal energy in the time-

frequency plane. In this example, a Gaussian-shaped generator

function g is used and the lattice parameters allow a clear

separation between pulses in the frequency domain and an

overlap in the time domain.

At the receiver side, we consider a frame ǧ = {ǧp,q}(p,q)∈Λ

with bounds 0 < Ǎ ≤ B̌ < +∞. A linearly estimated

sequence of coefficients ĉ = {ĉp,q}(p,q)∈Λ is obtained by an

analysis operation based on the received signal r(t) and the

analysis frame ǧ:

ĉ = {ĉp,q}(p,q)∈Λ = D∗

ǧr = {〈ǧp,q, r〉}(p,q)∈Λ. (10)



The convergence of the double sum mentioned in (9) is

guaranteed by the upper bound of g and ensures a stable

synthesis. Moreover, the lower bound of the frame also ensures

that a non-zero input sequence generates a non-zero transmit-

ted signal. Conversely the frame structure of ǧ guarantees the

stability of the analysis operation specified in (10).

We first consider a perfect channel, i.e. r(t) = s(t), such

that an estimated symbol ĉp,q , with (p, q) ∈ Λ is given by

ĉp,q = 〈ǧp,q, s〉 =
∑

(m,n)∈Λ

cm,n 〈ǧp,q, gm,n〉 (11)

For brevity, we define Λp,q = Λ\{(p, q)} and we rewrite (11)

in order to identify a useful signal term and an interference

term:

ĉp,q = cp,q 〈ǧp,q, gp,q〉
︸ ︷︷ ︸

useful signal

+
∑

(m,n)∈Λp,q

cm,n 〈ǧp,q, gm,n〉

︸ ︷︷ ︸

interference

. (12)

In order to recover the transmitted symbols without ambiguity

(i.e. with no interference), it is necessary to choose g and ǧ as

biorthogonal Riesz sequences. This constraint requires ρ ≤ 1
which limits the signaling density in the time-frequency plane.

In this study, we consider faster-than-Nyquist transceivers

that fulfill the relation ρ > 1. A consequence of this high

signaling density prevents g to be a Riesz sequence. It follows

that biorthogonality can’t be obtained, leading to inter-pulse

interference.

The FTN constraint raises several questions for the multi-

carrier transceiver design. For a given time-frequency lattice,

how to choose ǧ in order to minimize the interference and

noise power? Are there practical methods to derive ǧ from

g? The following section discusses these questions using the

frame theory.

III. NMSE STUDY IN PRESENCE OF INTERFERENCE AND

NOISE

In this section, we develop the conditions for NMSE min-

imization over an AWGN channel. We assume a given time-

frequency lattice with parameters T0, F0 > 0 and a generator

function g(t) ∈ L2(R). In a more realistic scenario, these

parameters would be determined with regard to the time and

frequency selectivity introduced by the channel, considering

a target signal-to-interference ratio or signaling density. Such

considerations are explained in [7], [8] with ρ ≥ 1 and won’t

be discussed in the following. The noise is denoted z(t) such

that the received signal is r(t) = s(t)+z(t) and the estimated

coefficients are ĉp,q = 〈ǧp,q, s〉+ 〈ǧp,q, z〉.
The symbols are assumed zero-mean, independent and with

same variance σ2
c . The noise z(t) is a centered complex

Gaussian process, independent of the symbols, characterized

by its power spectral density σ2
z/W for |f | ≤ W/2 and 0

otherwise (with 0 < W < +∞). Let us define the received

normalized symbol c̄p,q with (p, q) ∈ Λ:

c̄p,q =
ĉp,q

〈ǧp,q, gp,q〉

= cp,q +
∑

(m,n)∈Λp,q

cm,n
〈ǧp,q, gm,n〉
〈ǧp,q, gp,q〉

︸ ︷︷ ︸

ip,q

+
〈ǧp,q, z〉

〈ǧp,q, gp,q〉
︸ ︷︷ ︸

zp,q

(13)

Denoting E(·) the expected value operator, the NMSE of the

received symbol can be expressed as:

E(|c̄p,q − cp,q|2)
σ2
c

=

∑

(m,n)∈Λp,q

| 〈ǧp,q, gm,n〉 |2
| 〈ǧp,q, gp,q〉 |2

︸ ︷︷ ︸

σ2

ip,q
/σ2

c

+
‖ǧp,q‖2

| 〈ǧp,q, gp,q〉 |2
σ2
z

σ2
c

︸ ︷︷ ︸

σ2
zp,q

/σ2
c

(14)

Finally, the NMSE splits into two parts: the first, σ2
ip,q

/σ2
c

ties to the inter-pulse-interference and the second, σ2
zp,q/σ

2
c is

related to the noise. In the following, we discuss the separated

minimization of both terms under the constraint of a non-null

estimated symbol energy.

A. Interference term minimization

In view of (14) and according to [11, lemma 5.3.6], the

minimization of the ℓ2-norm of {〈ǧp,q, gm,n〉}(m,n)∈Λp,q
re-

quires g and ǧ to be canonical dual frames, that is {ǧm,n =
S−1gm,n}(m,n)∈Λp,q

which implies Ǎ = 1/B and B̌ = 1/A.

Since g has a Weyl–Heisenberg structure, it is useful to no-

tice that SMmF0
TnT0

= MmF0
TnT0

S and S−1MmF0
TnT0

=
MmF0

TnT0
S−1 [11, lemma 9.3.1]. As a consequence, g and

ǧ share the same time-frequency lattice:

ǧp,q(t) = ǧ(t− qT0)e
j2πpF0t. (15)

This important simplification means that it is enough to find

ǧ = S−1g in order to derive the canonical dual frame of g

[11, theorem 9.3.2]. Moreover, in this case, | 〈ǧp,q, gm,n〉 | =
| 〈ǧ, gm−p,n−q〉 | such that

σ2
ip,q

σ2
c

=
∑

(m,n)∈Λp,q

| 〈ǧ, gm−p,n−q〉 |2
| 〈ǧ, g〉 |2 (16)

σ2
zp,q

σ2
c

=
‖ǧ‖2

| 〈ǧ, g〉 |2
σ2
z

σ2
c

(17)

In the following, we assume that g and ǧ are canonical dual

frames.

B. Noise term minimization

Then, the Cauchy–Schwartz inequality yields | 〈ǧ, g〉 | ≤
‖ǧ‖ ‖g‖ or equivalently

‖ǧ‖2
| 〈ǧ, g〉 |2 ≥ 1

‖g‖2
. (18)

The equality is satisfied when g and ǧ are proportional, which

means that g and ǧ are tight Weyl–Heisenberg frames that



fulfill the relation ǧ = (1/A)g. In this case assumed hereafter,

A = B and we obtain from (16) and (17)

σ2
ip,q

σ2
c

=
∑

(m,n)∈Λp,q

1
A2 | 〈g, gm−p,n−q〉 |2

1
A2 | 〈g, g〉 |2

=
∑

(m,n)∈Λp,q

| 〈g, gm−p,n−q〉 |2
| 〈g, g〉 |2 (19)

σ2
zp,q

σ2
c

=
1
A2 ‖g‖2

1
A2 | 〈g, g〉 |2

σ2
z

σ2
c

=
‖g‖2

| 〈g, g〉 |2
σ2
z

σ2
c

(20)

Furthermore, the tight frame equality yields
∑

(m,n)∈Λ

| 〈f, gm,n〉 |2 = A ‖f‖2 , ∀f ∈ L2(R). (21)

Particularly, for f = g, we have

σ2
ip,q

σ2
c

=
A ‖g‖2 − ‖g‖4

‖g‖4
=

A− ‖g‖2

‖g‖2
(22)

σ2
zp,q

σ2
c

=
1

‖g‖2
σ2
z

σ2
c

. (23)

C. On the derivation of ‖g‖2

According to the Wexler–Raz duality theorem [11, theo-

rem 9.3.4], g = {MmF0
TnT0

g}(m,n)∈Λ is a tight Weyl–

Heisenberg frame with bound A if and only if g̃ =
{Mm/T0

Tn/F0
g}(m,n)∈Λ is an orthogonal family with bound

A/ρ:
〈

g

(

t− n

F0

)

ej2πm
t

T0 , g

(

t− q

F0

)

ej2πp
t

T0

〉

=
A

ρ
δm,pδn,q.

(24)

Particularly, for m = p = 0 and n = q = 0, we obtain

〈g, g〉 = ‖g‖2 =
A

ρ
. (25)

Finally the theoretical interference and noise terms are ob-

tained:

σ2
ip,q

σ2
c

=
1− F0T0

F0T0
= ρ− 1 and

σ2
zp,q

σ2
c

=
ρ

A

σ2
z

σ2
c

. (26)

This result confirms that interference and noise power in-

creases with the signaling density ρ.

There are two ways to normalize the system:

• by imposing A, which yields ‖g‖ =
√

A/ρ;

• by imposing ‖g‖, which yields A = ρ ‖g‖2 and ǧ =
g/(ρ ‖g‖2).

Particularly the case A = 1 implies that the transmitter and

the receiver share the same generator function ǧ = g with

‖g‖ = 1/
√
ρ. Moreover, the symbol energy is preserved over

transmission, since for a tight frame, we have:

‖s‖2 = A
∑

(m,n)∈Λ

|cm,n|2 =
∑

(m,n)∈Λ

|cm,n|2. (27)

These results can be summarized in the following theorem.

Theorem 1: A multicarrier linear transceiver based on

Weyl–Heisenberg families with density ρ > 1 achieves a

minimal mean squared error with AWGN channel when it uses

a tight Weyl–Heseinberg frame for transmission and reception.

Moreover the NMSE is then given by

E(|c̄p,q − cp,q|2)
σ2
c

= (ρ− 1) +
ρ

A

σ2
z

σ2
c

. (28)

IV. SIMULATIONS UNDER AWGN CHANNEL

In this section, we measure the performances of various

FTN multicarrier systems in terms of NMSE. The linear

transceiver is characterized by a number of subcarriers M =
128 and a lattice density ρ ∈ {16/15, 16/14, 16/12, 16/10}.

Simulations are performed using K = 1000 multicarrier

blocks composed of symbols taken in a quaternary alphabet

forming a quadrature phase-shift keying (QPSK) modula-

tion. Four types of generators (or pulse shape filters) are

used: square-root-raised cosine (SRRC), rectangular (RECT)

as specified for CP-OFDM [13], time-frequency localization

(TFL) maximized and out-of-band energy (OBE) minimized

[14]. We notice that the SRRC filter is truncated at length of 32

blocks (32T0), and the three last pulse-shapes are characterized

by an impulse response equal to T0 which ensures a low-

complexity implementation [13].

We start by using SRRC filters with roll-off parameter 0 ≤
α ≤ 1 in order to investigate the mean interference power

introduced by a FTN signaling over an ideal channel (fig. 2). In

figure 2, we plot the theoretical mean interference power given

by (16), the simulated interference power (by letting σ2
z = 0),

as well as the theoretical interference for tight frame expressed

by (26). For each ρ, the minimum value of σ2
ip,q

/σ2
c is reached

below a given value of α. In order to explain this result, it

is convenient to consider a system based on the dual lattice

with a fixed T0 parameter: since the bandwidth of a given

subcarrier is (1+α)F0 the system is orthogonal if (1+α)F0 ≤
1/T0 or equivalently if α ≤ ρ − 1. In the FTN case, this

appropriate choice of α makes g a tight frame. Notice that the

suboptimal results obtained when α is close to zero is due to

the truncation of the filters. This effect becomes inconspicuous

when α increases.

Figure 3 extends the previous observation to several other

filters. Since TFL and OBE filters form orthogonal systems

in the dual lattice configuration, they lead to tight frames in

the FTN case. However, the rectangular short filters which

corresponds to CP-OFDM does not generate tight frames since

ǧ 6= (1/A)g. Furthermore, the suboptimal performances of

rectangular filters are justified because ǧ and g are neither

canonical dual frames.

Finally, we examine tight frame signaling schemes over

an AWGN channel. TFL and SRRC filters (α = ρ − 1) are

chosen for this simulation. Figure 4 shows the global NMSE

of the two filters and the corresponding theoretical values as

a function of σ2
c/σ

2
z . We observe that the simulation results

perfectly coincide with the theoretical values, the tight frame

NMSE equation is thus validated.
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V. CONCLUSION

We have expressed the input-output relations of a linear

multicarrier transceiver operating at a high signaling density

that prevents perfect reconstruction of the symbols. In this

“faster-than-Nyquist” context, we have shown several con-

ditions in order to minimize the MSE of such transceivers

based on Weyl–Heisenberg frames. First of all, inter-pulse

interference is minimized if canonical dual frames are used.

Futhermore, the use of tight frames is optimal when a white

gaussian noise is added.

Future investigations to be performed on FTN multicar-

rier signaling consist of designing efficient implementation

schemes, including low-complexity equalizers. A performance

analysis over time-frequency selective channels would also be

interesting in order to target practical applications.
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