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Introduction

Heavy oil and oil sands are important hydrocarbon resources that account for over 10 trillion barrels

(Meyer et al., 2007), nearly three times the conventional oil in place in the world. There are huge,

wellknown resources of heavy oil, extra-heavy oil, and bitumen in Canada, Venezuela, Russia, the USA

and many other countries. The oil sands of Alberta alone contain over two trillion barrels of oil. In

Canada, approximately 20% of oil production is from heavy oil and oil sand resources.

The process of In-Situ Upgrading (ISU) by subsurface pyrolysis has been applied in various pilot projects

and laboratory experiments (Fowler and Vinegar, 2009; Kumar et al., 2011). This process is only effec-

tive if the formation is heated above 300oC. At this temperature, the long chain oil molecules that mostly

compose kerogen and bitumen decompose through a series of chemical reactions of pyrolysis and crack-

ing. This results in the production of small hydrocarbon molecules, and thus improves the quality of the

recovered oil. There are various potential advantages of using an ISU process instead of the more com-

mon process of steam injection (Butler and Stephens, 1981). Firstly, at the recovery stage, there would

be no requirement for a nearby water supply and water recycling facilities. Secondly, since upgrading

of the oil takes place in-situ, the heavy components like coke will be left in the reservoir, and so the

produced oil is lighter and of higher commercial value (Snow, 2011). As a result, using the ISU process

will lead to a reduction in the amount of required infrastructure and expenses on site for refining and

pre-upgrading before transport.

Modelling ISU is complex as various physical and chemical phenomena need to be represented. In

addition to the transport of fluids through porous media and the change of properties with varying pres-

sure and temperature, ISU involves transport of heat, evaporation, condensation and several chemical

reactions. The temperature scale goes from initial reservoir temperature to several hundreds of degrees

celsius. As a result, thermodynamic and petrophysical properties vary significantly within the reser-

voir. Moreover, describing the complex chemistry accurately requires a large number of hydrocarbon

components and chemical reactions. In this context, a compositional description is mandatory.

Despite the advent of faster and more powerful computers, numerical simulation of the ISU process

is challenging because of the large number of physical mechanisms that need to be modelled and the

non-linearity of the equations describing these processes. Various methods for reducing the Central Pro-

cessing Unit (CPU) time in simulations can be considered. One can identify several numerical operators

in the simulation: heat transport and diffusion, mass transport, and chemical reaction. The time constant

of the system is driven by the most penalizing operator. Decoupling techniques, or so-called Operator

Splitting (OS) methods, provide a framework to deal separately with each operator and then propose

a dedicated resolution (special numerical schemes, explicit/implicit) that leads to smaller systems and

improve computational efficiency (Barry et al., 1997; Lanser and Verwer, 1999). However, a signifi-

cant drawback of splitting technique is that decoupling the governing equations introduces an additional

source of numerical error, known as the splitting error (Valocchi and Malmstead, 1992).

In this paper, we develop a mathematical model that can be used to represent the ISU of heavy oil

or oil shale. We then describe several operator splitting methods to solve the non-linear systems, and

evaluate them on two test cases by considering the evolution of the discretization error with the size of

the time-step compared with the result of a fully implicit simulation.

Mathematical Model

The ISU process generally uses tightly spaced electrical heaters to slowly and uniformly heat the forma-

tion by thermal conduction to the conversion temperature of about 350o C (Fowler and Vinegar, 2009).

In this paper, we define a one dimensional domain that contains one heater and one producer well (figure

1). To define the boundary conditions, we assume constant temperature around the heater and constant

bottom hole pressure (bhp) at the producer. Due to the symmetry of the problem, we assume no heat
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transfer by conduction around the producer.
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Figure 1 One dimensional model for ISU

The model contains three phases: gas, liquid and solid. The solid phase is formed by kerogen and/or

coke. Gravity is neglected so the model can be considered one dimensional. The mass-balance equation

for compositional simulation for each fluid component j can be expressed as follows (Watts, 1986):

∂

∂ t

(

φ ∑
p

α j,pρpSp

)

=−
∂

∂x

(

∑
p

α j,pρpvp

)

+∑
k

s j,krk (1)

where φ is the rock porosity, Sp, ρp and vp the saturation, molar density and velocity of phase p, α j,p

the mole fraction of component j in phase p, s j,k the stoichiometric coefficient for component j as a

product (s j,k > 0) or a reactant (s j,k < 0) of reaction k and rk the rate of reaction k. The velocity is given

by Darcy’s law:

vp =−K
krp

µp

ks

∂P

∂x
(2)

where P is the pressure, K is the rock permeability, kr,p and µp are the relative permeability and viscosity

of phase p and ks is the solid mobility multiplier, which is a function of the solid saturation. We assume

that the thermally unstable chemical entities decompose with first-order kinetics. The reactivity of an

entity Xi can be accounted for by one chemical reaction with one reactant:

Xi
rk−→ s1,kX1 + . . .+ sh 6=i,kX1 + . . .+ sm6=i,kXm (3)

The rate of reaction is modelled using an Arrhenius law of order 1:

rk = Akexp

(

−
Ek

RT

)

Ci (4)

where Ak and Ek are the frequency factor and the activation energy of reaction k, R is the universal gas

constant and Ci is the mole concentration of the reactant Xi of reaction k. Phase equilibrium is modeled

using Wilson K-values (Wilson, 1968). Heat transfer is accounted for in the overall energy balance

equation (Mifflin et al., 1991):

∂

∂ t

(

(1−φ)ρrur +φ ∑
p

ρpupSp

)

=−
∂

∂x

(

∑
p

ρpvphp

)

+
∂

∂x
κ

∂T

∂x
+∑

k

∆hr,krk (5)
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where ρr and ur are the rock density and internal energy, up and hp are the phase internal energy and

enthalpy, κ is the thermal conductivity of the system and ∆hr,k is the reaction enthalpy of k.Finally, we

obtain the following of equations for the boundary conditions:

at x = 0, vp = 0, ∀p

T = TH

at x = L, P = P0

∂T

∂x
= 0

(6)

Where L is the length of the domain, P0 the initial pressure and TH the heater temperature. This mathe-

matical model can be used to describe both thermal decomposition of oil shale and bitumen. In the next

section, we explore the precision and convergence of OS methods to solve the governing equations.

Operator Splitting Methods

Operator splitting methods have been previously applied to a wide range of applications, including

groundwater transport simulations (Barry et al., 1997), air pollution modelling (Lanser and Verwer,

1999) and combustion-reaction problems (Pope and Ren, 2009). They provide a framework to deal sep-

arately with the transport and the chemical reaction steps. Thus, dedicated solvers can be applied to each

operator. Accurate ODE (ordinary differential equation) solvers can be employed to cope with the some-

times stiff systems of equations describing the chemical reactions while Fully Implicit (FIM), Implicit

Pressure Explicit Saturation (IMPES) or Adaptive Implicit (AIM) (Coats, 2003) method can be used

to deal with the transport step. Different time-step strategies can be applied to the different operators,

and in the case of ODE, local time-steps may be used. Moreover, in many cases, the chemical reaction

operator depends on variables that do not affect the transport. Complex kinetic models sometimes re-

quire a large number of components, while the transport step can be described with a small number of

pseudo-components (Kumar et al., 2011).

The convergence and precision of operator splitting methods have been extensively studied for linear

or quasi-linear operators (Valocchi and Malmstead, 1992). Applying these methods to the modelling of

ISU could potentially improve both precision and performance. There are a large number of operator

splitting methods published in the literature (Carrayrou et al., 2004; Farago et al., 2008). In this paper,

we describe the most common methods and evaluate their precision and convergence on two different

test cases. Test case 1 is a one dimensional model representing ISU of oil shale adapted from Fan et al.

(2010). In test case 2, pyrolysis is applied to a fluid representing Athabasca tar-sands adapted from

Kumar et al. (2011). The best performing method is applied to test case 3, where a very large number

of components is necessary to describe the kinetics of pyrolysis, but they are regrouped into a small

number of pseudo-components for the transport steps. We describe our methods on a Cauchy problem

of the form:






∂u

∂ t
= A.u+K.u, t ∈ (0,T ] .

u(0) = u0

(7)

where A represents the advection and thermal conduction operator and K the chemical reaction operator.

Sequential Non Iterative Approach

Operator splitting methods offer two distinct approaches. In a Sequential Non-Iterative Approach

(SNIA), each operator is applied once sequentially. The simplest and most common of these meth-

ods is the Sequential Split Operator (SSO) (Carrayrou et al., 2004), which is a sequence of one transport
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step followed by one chemical step (SSO-AK):















∂u∗

∂ t
= A.u∗, t ∈

[

tn
, tn+1

]

, u∗(tn) = u(tn)

∂un+1

∂ t
= K.un+1

, t ∈
[

tn
, tn+1

]

, un+1(tn) = u∗(tn+1)

(8)

SSO can be done the opposite way with one chemical step followed by one transport step (SSO-KA):















∂u∗

∂ t
= K.u∗, t ∈

[

tn
, tn+1

]

, u∗(tn) = u(tn)

∂un+1

∂ t
= A.un+1

, t ∈
[

tn
, tn+1

]

, un+1(tn) = u∗(tn+1)

(9)

In SNIA the splitting error arises from the decoupling of the governing equations and has been exten-

sively studied for linear operators (Valocchi and Malmstead, 1992). In this case, it can be linked to the

asymmetry of the operator decoupling. The classical SSO can be modified by using two time-steps in an

effort to cancel the splitting error, as is done in the Strang-Marchuk Split Operator (SMSO) sometime

called the Alternate Split Operator (ASO) (Strang, 1968; Carrayrou et al., 2004):















∂u∗

∂ t
= A.u∗, t ∈

[

t2n
, t2n+1

]

, u∗(t2n) = u(t2n)

∂u2n+1

∂ t
= K.u2n+1

, t ∈
[

t2n
, t2n+1

]

, u2n+1(t2n) = u∗(t2n+1)

(10)

and














∂u∗∗

∂ t
= K.u∗∗, t ∈

[

t2n+1
, t2n+2

]

, u∗∗(t2n+1) = u2n+1(t2n+1)

∂u2n+2

∂ t
= A.u2n+2

, t ∈
[

t2n+1
, t2n+2

]

, u2n+2(t2n+1) = u∗∗(t2n+2)

(11)

For constant linear operators, SMSO cancels the splitting error of order one (Valocchi and Malmstead,

1992), but these findings do not necessarily apply to ISU where the coupling between transport and

chemical reactions is strongly non-linear. In this paper, we evaluate SSO-AK, SSO-KA and SMSO.

First, we solve the full system of equations with no splitting using an implicit solution technique. We

choose a small time-step (0.01 day) in order to obtain a reference solution P for pressure, T for tem-

perature, Sp for saturations and z j for overall compositions. We then study the evolution of the relative

error between our reference solution and the three SNIA described above as a function of the time-step.

Newton-Raphson’s algorithm is applied to handle non-linearities. We use the following definitions for

the normalized error for each variable:

eP = max
n

(

1

nd
∑
x j

|P(tn,x j)−P(tn,x j)|

P0

)

, eT = max
n

(

1

nd
∑
x j

|T (tn,x j)−T (tn,x j)|

∆T

)

eS = max
p

max
n

(

1

nd
∑
x j

|Sp(t
n
,x j)−Sp(t

n
,x j)|

)

, ez = max
j

max
p

(

1

nd
∑
x j

|z j(t
n
,x j)− z j(t

n
,x j)|

) (12)

Figures 2 and 3 show the evolution of the normalized errors with the time-step for test case 1 and test

case 2. For test case 1, we observe that the SSO-AK gives a large pressure error. The pressure rose

during the chemical reaction step and could reach non-physical values if not relaxed by a transport step

afterwards. However, we obtain a small composition error. On the other hand, SSO-KA has a limited

pressure error but the saturation and composition errors are large. SMSO gives a compromise between

the two methods but the pressure and saturation errors are still too large. For test case 2, the pressure

error was less important. As a result, SSO-AK gives very good results but SSO-KA and SMSO still

generate large saturation and composition errors.
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A New Splitting Method : SSO-CKA

When the operator K is performed before A, as in SSO-KA and a half step of SMSO, the chemical

reactions are computed with a temperature that has not been transported yet. The thermal conduction

is the dominant process controlling the temperature for ISU, so we try to solve this problem by using a

splitting scheme where the thermal conduction is performed first (operator C), followed by a chemical

reaction step (operator K) and finally the advection part with no thermal conduction (operator A′). This

method is defined as SSO-CKA:






























∂u∗

∂ t
=C.u∗, t ∈

[

tn
, tn+1

]

, u∗(tn) = u(tn)

∂u∗∗

∂ t
= K.u∗∗, t ∈

[

tn
, tn+1

]

, u∗∗(tn) = u∗(tn+1)

∂un+1

∂ t
= A′

.un+1
, t ∈

[

tn
, tn+1

]

, un+1(tn) = u∗∗(tn+1)

(13)

The evolution of the normalized errors with the dimensionless time-step for SSO-CKA are also plotted

on figures 2 and 3. We observe that it gives the best compromise in term of discretization error.
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Figure 2 Normalized error in (a) pressure, (b) temperature, (c) saturation and (d) composition with

respect to the time-step size for test case 1. We observe that SSO-CKA gives the best compromise in term

of discretization error.

Sequential Iterative Approach

The second category of operator splitting methods is the Sequential Iterative Approach (SIA), which

attempts to eliminate or control the splitting error through an iterative process. Unlike SNIA, each sub-

step of an iterative scheme solves an approximation to the fully coupled PDE system. The simplest of

these methods is the Iterative Split Operator (ISO) (Farago et al., 2008):

∂u∗2i+1

∂ t
= A.u∗2i+1 +K.u∗2i t ∈

[

tn
, tn+1

]

.

u∗2i+1(t
n) = un(t

n)

∂u∗2i+2

∂ t
= A.u∗2i+1 +K.u∗2i+2 t ∈

[

tn
, tn+1

]

.

u∗2i+2(t
n) = un(t

n)

(14)
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Figure 3 Normalized error in (a) pressure, (b) temperature, (c) saturation and (d) composition with

respect to the time-step size for test case 2. We observe that SSO-AK and SSO-CKA give very good

results in term of discretization error.

for i = 0,1, ...,m or until convergence. The function u∗0 is an arbitrarily chosen initial guess on the

interval [tn, tn+1] and

un+1(t) = u∗2m+1(t) t ∈
[

tn
, tn+1

]

. (15)

ISO converges for constant linear operators (Farago et al., 2008) but not necessarily for a complex

model such as ISU. Indeed, we have tested ISO on test cases 1 and 2 and for both cases, ISO does not

converge for time-steps larger than 0.1 day. The mass balance error decreases after one or two cyles,

but then instabilities appear due to the explicit/implicit treatment of operators A and K leading to large

unphysical errors.

Application to large chemical model

In this section, we consider the ISU of Athabasca oil sand bitumen (test case 3). The decomposition of
the unstable NSO compounds can be described by a set of seven parallel reactions (Kumar et al., 2011):

NSO



































r1−→ C14+Sat+C14+Aro1+C14+Aro2+C14+Aro3+C5−14Sat+C5−14Aro+C1−4 +H2SC02 +PreChar

. . .

rk−→ C14+Sat+C14+Aro1+C14+Aro2+C14+Aro3+C5−14Sat+C5−14Aro+C1−4 +H2SC02 +PreChar

. . .

r7−→ C14+Sat+C14+Aro1+C14+Aro2+C14+Aro3+C5−14Sat+C5−14Aro+C1−4 +H2SC02 +PreChar

(16)

Each of the parallel reactions has its own stoichiometry and reaction constant parameters. To approxi-

mate the total decomposition, one can apply a constant weight for each reaction rate rk, but this approx-

imation generates a large error in the hydrocarbon production rate (about 15%). To describe correctly

the decomposition rate, one needs to split the NSO component into seven chemical entities, which have

the same thermophysical properties and only differ in the stoichiometry of the chemical reactions. The

decomposition of the product components C14+, C5−14 and PreChar can also be accounted for by sets of

parallel reactions, and so they need to be split into separate chemical entities as well. In total, the model

contains 27 reactions between 11 components that are split into 30 chemical entities. The simulation of

such a model using FIM is very slow for three reasons:

• The number of variables by cell (pressure, temperature and compositions of chemical entity) to be
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solved for each step of the Newton method is large (about 50% of the CPU time for test case 3)

• For each Newton iteration and for each cell, the thermal equilibrium between the 30 components

must be calculated (about 20% of the CPU time for test case 3)

• For each Newton iteration and for each cell, the chemical reaction rate of each reaction (27) needs

to be computed (about 30% of the CPU time for test case 3)

One can obtain a large speed-up when splitting the advection-conduction and the chemical reactions.

The advection and conduction operators can be solved using only the 11 components because the ther-

mal properties of the chemical entity inside one component are identical so the relative compositions

inside one lumped component are constant during those steps. The linear system to be solved during a

Newton step is significantly smaller (number of variables 13 instead of 32). The thermal equilibrium is

calculated with the 11 components. Finally the chemical reaction rates are computed only when solving

the operator K, which is fully local, so the chemical rates do not need to be computed for each cells at

each Newton step but only for those which have not converged yet. In test case 3, the chemical reactions

are significant only in the cells near the temperature front, so most of the cells (about 90%) have con-

verged after 1 or 2 Newton iterations. Then for iteration 3 and above, we need to compute the chemical

reaction rates only for the cells that have not converged yet.

Test case 3 has been simulated for 150 days with a time-step of 0.5 day, using a finite-volume code

written in C++. We compared the results between one simulation using FIM and one using SSO-CKA.

Figure 4 shows the CPU time for both methods. We obtained speed-ups between 3 and 5. Parallelisation
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Figure 4 Comparison of CPU time using FIM and SSO-CKA for test case 3. The simulations have been

run for 150 days for different number of cells. We obtain a speed-up between 3 and 5.

could even further improve the speed-up since K is fully local. The bottleneck of the simulation is

inside the advection which is solved with three time fewer variables than for FIM and with no chemical

reactions. The precision of the chemical reaction operator could be improved by using smaller and local

time-steps or higher order non-linear methods such as Runge-Kutta (Valocchi and Malmstead, 1992).

Conclusions

This work has focused on the application of operator splitting methods (OS) to simulate the process of

heavy oil ISU, where heavy components such as kerogen or NSO compounds decompose into lighter

liquid and gas components. We showed that the simple Sequential Split Operator (SSO, in both direction

AK or KA) applied to an oil shale test case adapted from Fan et al. (2010) (test case 1) and a bitumen

test case adapted from Kumar et al. (2011) (test case 2) led to unacceptble time discretization errors.
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Moreover, unlike for constant linear operators A and K, the Strang-Marchuk Split Operator (SMSO)

did not significantly reduce the splitting error. We solved this issue with a splitting scheme where the

thermal conduction was performed first, followed by a chemical reaction step and finally advection with

no thermal conduction (SSO-CKA).

OS methods have the potential to improve the precision of the chemical reaction operator and decrease

the computation time. To illustrate the later, we compared the CPU time of a simulation using FIM and

one using SSO-CKA for a test case with 11 components that needs to be split into 30 components to

represent accurately the chemical reactions (test case 3). The speed-ups obtained are between 3 and 5.

The method proposed led to small time discretization errors in the three cases presented here but the

splitting error could be large for other applications. In order to ensure the applicability of SSO-CKA

for the simulation of the ISU process, one could study the sensitivity of the splitting error with several

physical parameters (reaction enthalpy, activation energy of chemical reactions...). We also observed

that the Iterative Split Operator (ISO) was not converging for both test case 1 and 2. In practice, this

method could not be applied on its own but may be used in future work to accelerate the fully implicit

method in the non-linear or linear step.
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