

To cite this document: Hamez, Alexandre and Hostettler, Steve and Linard, Alban and Marechal,

Alexis and Paviot-Adet, Emmanuel and Risoldi, Matteo Specification of Decision Diagram

Operations. (2010) In: Proceedings of the Workshops of the 31st International Conference on

Application and Theory of Petri Nets and Other Models of Concurrency (PETRI NETS 2010)

and of the 10th International Conference on Application of Concurrency to System Design

(ACSD 2010), 22 June 2010 - 22 June 2010 (Braga, Portugal)

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 6792

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/33663791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Specification of Decision Diagram Operations

Alexandre Hamez1, Steve Hostettler2, Alban Linard2, Alexis Marechal2,
Emmanuel Paviot-Adet3, and Matteo Risoldi2

1 CNRS - LAAS, 7, avenue du Colonel Roche, 31077 Toulouse, France
FirstName.LastName@laas.fr

2 Université de Genève, 7 route de Drize, 1227 Carouge, Switzerland
FirstName.LastName@unige.ch

3 Université Pierre & Marie Curie, LIP6 - CNRS UMR 7606,
4 place Jussieu, 75252 Paris Cedex 05, France

FirstName.LastName@lip6.fr

Abstract. Decision Diagrams (DDs) are a well populated family of data
structures, used for efficient representation and manipulation of huge
data sets. Typically a given application requires choosing one particular
category of DDs, like Binary Decision Diagrams (BDDs) or Data Decision
Diagrams (DDDs), and sticking with it.
Each category provides a language to specify its operations. For instance,
the operation language of BDDs provides if-then-else, apply, etc. We
focus on two main kinds of operation languages: BDD-like and DDD-
like. They overlap: some operations can be expressed in both kinds of
languages, while others are only available in one kind.
We propose in this article a critical comparison of BDD-like and DDD-
like languages. From the identified problems, we also propose a unified
language for DD operations. It covers both BDD-like and DDD-like lan-
guages, and even some operations that cannot be expressed in either.

1 Introduction

Decision Diagrams (DDs) are now widely used in model checking as an extremely
compact representations of state spaces [1]. Numerous DD categories have been
developed over the past twenty years based on the same principles. Each category
is adapted to a particular application domain and comes with a manipulation
language, that is used to create and modify the DDs.

Typically a given application requires choosing one particular category of
DDs, like Binary Decision Diagrams (BDDs) or Data Decision Diagrams (DDDs),
and sticking with it. Then, the user has to learn its operations, which might be a
non-trivial task. DDs are used for both efficient memory representation and effi-
cient computation time. But knowing which operation leads to better efficiency
sometimes requires deep knowledge and understanding of the DD category.

Two solutions try to circumvent this problem. The first one is to use high-
level Domain Specific Languages (DSLs), specific to an application domain. For

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, ISSN 1613-0073, Jan/2012, pp. 437–451.

instance, CrocoPat4 completely hides the DDs and provides to the user a lan-
guage for manipulating relational expressions. We do not consider high-level
languages here. The second solution is automatic optimization of low-level oper-
ations [2]. We are interested in this article only in low-level languages provided
with the DDs. DSLs can then be translated to low-level programs.

Section 2 first does a brief presentation of DDs. It presents the terminology
we are using in the remainder of the article, and the categories of DDs we cover.

We compare two kinds of languages, those used in BDD-like structures (BDDs,
Algebraic Decision Diagrams (ADDs), Multi-valued Decision Diagrams (MDDs),
for instance) in Section 3, and those used in DDD-like structures (DDDs, Set De-
cision Diagrams (SDDs), Σ Decision Diagrams (ΣDDs)) in Section 4. They offer
very different operations to their users. Moreover, their expressiveness differ. We
think they are therefore good candidates for comparison.

We then propose in Section 5 low-level operations that generalize both BDD-
like and DDD-like operations. They only apply to DDs where the function’s re-
sults are stored in terminal vertices, so Edge-Valued Decision Diagrams (EVDDs)
are not covered in this article. Moreover, hierarchy as in SDDs and continuous
input domains are not handled for simplicity.

2 Decision Diagram Principles

Decision Diagrams are representations of functions using Directed Acyclic Graphs
(DAGs) with maximal sharing from the leaves and roots. DD categories differ on
the signatures of represented functions. We note B the Boolean domain and N
the natural integers. Function signatures are for instance Bn → B for BDDs [3],
Bn → N for ADDs [4], and N∗ → B (unbounded sequences of integers as inputs)
for DDDs [5]. Categories also differ in the graph representation of functions.
In most cases, the result is stored in terminal vertices, but Edge-Valued Bi-
nary Decision Diagrams (EVBDDs) [6] and Edge-Valued Multi-Valued Decision
Diagrams (EVMDDs) [7] store them along the paths.

Represented functions are total. They return a value in their ouput domain
for each value of their input domain. These domains can be infinite, either be-
cause they are discrete but not bounded as in DDDs or ADDs [4], or because
they are continuous as in Interval Decision Diagrams (IDDs) [8]. As the DD is
a finite graph, not all functions have a DD counterpart. This excludes functions
that effectively return an infinite number of different values, as they cannot be
represented by a finite number of terminals in the DD categories presented here.

A DD represents a function, which can also be seen as an association of each
input element with an output one. We consider categories where every input
element is a path of the graph, ending with a terminal vertex labeled by the
function’s corresponding output value. Each vertex on the path is a variable
of the function, and edges are labeled by their possible values. An order over

4 http://www.sosy-lab.org/~dbeyer/CrocoPat/

variables specifies the allowed succession of vertices in the graph. For instance,
the Boolean function x ∨ y is represented by the BDD in Figure 1.

1

0

y

y

x

1

0

{0, 1}

1

0

The function is described by the following
set of paths:

x
0−→ y

0−→ 0, x
0−→ y

1−→ 1

x
1−→ y

0−→ 1, x
1−→ y

1−→ 1

Fig. 1. BDD for x ∨ y with variable order x < y, and its corresponding paths
We compare operations for two categories of DDs that have deep differences.

First, operations on BDDs and other categories with a fixed number of vari-
ables are presented in Sec. 3. Then, Sec. 4 presents operations on DDDs where
paths can use different variables, and even have different lengths. Sec.5 makes a
synthesis of these two kinds, by proposing a new language for operations.

3 BDD-like Operations

BDD-like operations are used on DDs representing functions with a finite and
homogeneous input domain. Their signatures are thus of the form Xn → O,
where X is a finite domain. This includes categories such as BDDs [3], ADDs [4],
MDDs [9,10], etc. Their paths are therefore of the form v1

x1−→ . . . vn
xn−−→ t.

Several operations are defined for BDDs in [3]. We give their extension to
finite edges [10] and terminal [4] domains. In practice, they are used in BDD
libraries, such as CUDD5.

The following operations form the BDD-like manipulation language. It is
composed of functions, which take DDs (noted di), variables (vi), input val-
ues (xi), output values (ti) or operators (�) as parameters. We give – informally
– the result of each operation as its set of returned paths.

constant(t) creates a DD where all paths lead to the terminal value t. It repre-
sents the constant function that returns t whatever its inputs are.
constant(t)=

{
v1

x1−→ . . . vn
xn−−→ t

}
6

make(v, x) creates a DD where only the variable v is relevant to the function’s
result. The paths where v has value x lead to terminal value 1, and others to
terminal 0, even for DD categories with unbounded terminals such as ADDs. We
explain this restriction in Problem 1.

make(v, x)=

{
v1

x1−→ . . . v
X\{x}−−−−→ . . . vn

xn−−→ 0

}
∪
{
v1

x1−→ . . . v
x−→ . . . vn

xn−−→ 1
}

apply(�, dl, dr) computes dl � dr. It takes two DDs dl and dr representing
functions of signature Xn → O, and a binary operator � : O×O→ O on their
output domain. It returns the DD of the function computed by:

apply(�, dl, dr)=

{
v1

x1−→ . . . vn
xn−−→ t1 � t2

∣∣∣∣∣
v1

x1−→ . . . vn
xn−−→ t1 ∈ dl

v1
x1−→ . . . vn

xn−−→ t2 ∈ dr
∧
}

5 http://vlsi.colorado.edu/~fabio/CUDD/
6 We omit universal quantification on xi for readability, as in other operations.

restrict(v, x, d) restricts d to the value x of the variable v, and then ignores
this variable’s values. The returned function’s result is similar to the original
one, when v has value x, so this operation computes f |v=x. The resulting DD
still has all variables, including v, which has no effect on its result.
restrict(v, x, d)=

{
v1

x1−→ . . . v
X−→ . . . vn

xn−−→ t
∣∣∣v1 x1−→ . . . v

x−→ . . . vn
xn−−→ t ∈ d

}

compose(v, dl, dr) substitutes the variable v in dl with the DD dr. Both DDs dl
and dr must represent functions of type Xn → X. This operation can be expressed
using apply and restrict, and does not appear in articles on BDDs other than [3].

satisfy-all(t, d) returns the set of paths with terminal value t. The result of
this operation is not a DD but an iterable enumeration of paths.
satisfy-all(t, d)=

{
v1

x1−→ . . . vn
xn−−→ t ∈ d

}

satisfy-one(t, d) chooses one element from those returned by satisfy-all.
Choice may be deterministic or not, depending on the implementation.

satisfy-count(t, d) Instead of returning paths, this operation counts them.
Again, the result is not a DD, it is an integer.
satisfy-count(t, d)=

∣∣∣
{
v1

x1−→ . . . vn
xn−−→ t ∈ d

}∣∣∣

The language for BDD-like operations is widely used, in many libraries and
applications. The example given below7 builds a BDD for x ∧ y ∧ z. It then
restricts the function for variable x = 0 and counts the paths leading to ter-
minal 1. Results of operations are given as comments, after //. Notice that all
operations, except satisfy-count, return a DD containing all variables x, y, z.
Their declaration is required before executing the operation. As the operation
is composed of nested function calls, it should be read from bottom to top. The
call to constant is common in BDD programming, but not useful here.
satisfy -count // =⇒ 2
(1

, restrict // =⇒ x
0,1−−→ y

0−→ z
0−→ 1 ∪ · · · → 0

(x, 0

, apply // =⇒ x
0−→ y

0−→ z
0−→ 1 ∪ · · · → 0

(∧
, make(z, 0) // =⇒ x

0,1−−→ y
0,1−−→ z

0−→ 1 ∪ x
0,1−−→ y

0,1−−→ z
1−→ 0

, apply // =⇒ x
0−→ y

0−→ z
0,1−−→ 1 ∪ · · · → 0

(∧
, make(y, 0) // =⇒ x

0,1−−→ y
0−→ z

0,1−−→ 1 ∪ x
0,1−−→ y

1−→ z
0,1−−→ 0

, apply // =⇒ x
0−→ y

0,1−−→ z
0,1−−→ 1 ∪ x

1−→ y
0,1−−→ z

0,1−−→ 0
(∧
, make(x, 0) // =⇒ x

0−→ y
0,1−−→ z

0,1−−→ 1 ∪ x
1−→ y

0,1−−→ z
0,1−−→ 0

, constant(1) // =⇒ x
0,1−−→ y

0,1−−→ z
0,1−−→ 1

)))))

7 Inspired by the documentation of CUDD.

This language for BDD-like operations has several drawbacks. We describe
them in the remainder of this section. Note that these drawbacks do not prevent
wide use of this language.

Problem 1 (make restricts terminal values). Creating a DD with this oper-
ation requires a default value for other paths. For instance, make(x, 0) creates
a DD returning 1 whenever x = 0, but implicitly also 0 for the other cases.

Boolean functions have a trivial implicit result, as only two terminal values
are available. But it is not the case for ADDs, which represent functions Bn → N.
Their implicit result is chosen as the identity element 0 of addition. With addi-
tion, all terminal values can be obtained, as in apply(+, make(x, 0), make(x, 0))

which returns x 0−→ y
0,1−−→ z

0,1−−→ 2 ∪ x 1−→ y
0,1−−→ z

0,1−−→ 0.
So, the set of terminal values should be a monoid for BDD-like operations.

It requires defining a + operation to generate all possible terminal values. Note
that constant can then be also restricted to the terminals’ generator only.

Problem 2 (The language is not minimalist). The compose operation is
redundant. It can be expressed using two other operations, apply and restrict.
Usually, this is not a problem, as redundant operations can be safely removed
from the language to get a minimal one. But the operation is specifically de-
fined because its algorithm is more efficient. So, this BDD-like language is not
minimalist, but removing the redundant operation has an efficiency cost.

The same task can be defined in several ways, that are not equivalent regard-
ing efficiency. Writing a complex operation therefore requires knowledge from the
user on how its evaluation internally works.

Problem 3 (The language requires embedding). A usual operation in
model checking is to compute the fixed point of next states computation. But the
BDD-like language has no operations for iteration or recursion. So, it requires to
be embedded into a general-purpose language, that can compute the fixed point.

The BDD-like languages are thus truly DSLs. They describe an operation in
a concise and readable manner, but are not as expressive as a general-purpose
programming language. They can express only very simple computations.

Problem 4 (Operations cannot be optimized). In [11] it has been shown
that rewriting the operations can lead to huge performance improvements. This
has been partially automated in DDD-like languages [2]. Because of embedding
(see Problem 3), a library with BDD-like operations cannot see the whole opera-
tion to perform. It only processes it in small operations. Only few optimizations
are available for these, whereas most improvements require access to the full
syntax tree of the operation.

This problem is very similar to Problem 2, which occurs because the compose
operation cannot be expressed efficiently enough using other operations. The lan-
guage is not low-level enough to enable optimizations that could bring the same
efficiency. Its operations take whole DDs as parameters and return a whole DD.
So, the language lacks more intrusive operations, that apply to parts of the DDs.
DDD-like operations presented in Section 4 define them, and have shown great
optimizations thanks to lower-level operations.

4 DDD-like Operations

The main difference between BDD-like and DDD-like structures is the input
domain of represented functions. In [5], paths are defined as “sequences of as-
signments”, because in the same DD, paths can be of various lengths, and the
same variable can appear several times along a path. We cannot describe the do-
main of functions represented by DDD-like structures with a cartesian product
notation. We propose in [12] a specification of their domain.

These categories include DDDs [5] and SDDs [13] which represent sets and
have Boolean terminals, and MultiSet Decision Diagrams (MSDDs) [14] which
represent multisets with natural integer terminals. We propose in [12] a unifi-
cation of BDD-like and DDD-like structures, where they represent functions on
complex data types rather than functions with multiple arities. We do not give
importance to these subtleties in this article, so readers only need to be aware
of paths with different lengths and variable repetition.

DDD-like operations are partitioned in two languages: a language of binary
set operations (Sec. 4.1) and a language of unary set transformation (Sec. 4.2).
They are not totally disjoint, as bridges exist between them.

4.1 Binary Set Operations

The language of set expressions is composed of the usual binary set opera-
tions ∪,∩, \ – or their multiset counterparts – applied to two DDs. These three
operations are distinct, whereas they are all covered by apply in BDD-like op-
erations. A general definition is difficult, because domains of variables can be
unbounded. To preserve the finite graph representation of the function, an infi-
nite number of paths must lead to terminal 0, whereas a finite number lead to
other terminals. So, the operation applied to terminals should always return 0
when both its operands are 0 to ensure termination. A general apply could exist,
given operator on terminals respects this constraint.

These operations are a small subset of BDD-like operations. For instance,
they are not sufficient to compute a state space. So, they are completed with a
language for set transformations.

4.2 Unary Set Transformations

The unary set transformations, initially proposed in [5], have nothing in common
with BDD-like operations. They are close to the map functions found in most
functional languages: for a DD category representing sets, an operation is applied
to each path. But instead of returning a transformed path, application on each
path returns a set of paths, each set represented by a DD.

These transformations are homomorphisms. They must therefore enforce a
constraint: all must be linear for a union ∪ operator defined in the DD category:
h(d1 ∪ d2) = h(d1) ∪ h(d2). The linearity property means that every input DD
can be split in several DDs, then the operation applied to each, and the result
obtained by union of their results. For simplicity, operations given below do not

mention particular cases required by linearity. These cases are common to all
operations, and are discussed in Problems 8 and 9. Note that these operations
are applied on quasi-reduced DDs, i.e. without level skipping.

Unary transformations are parametric: they take parameters that define their
behavior in addition to the DD to transform. To describe the language of such
operations, we show each one with both kinds of parameters. The first one,
between brackets, contains all parameters except the DD to transform. The
second one, between parentheses, is this DD. We thus clearly distinguish between
parameters that define the operation, and the parameter to which it is applied.

terminal[t] is the only operation that allows to create a DD outside unary set
transformations. It is therefore crucial, as the basis for each operation. This
nullary operation creates a DD terminal valued by t. It is close to the constant
BDD-like operation. But they differ because the DD returned by terminal repre-
sents the nullary function that returns t, whereas the DD returned by constant
represents a n-ary function.
terminal[t]()= {7→ t}
constant[dc] returns the constant DD dc, whatever its input DD is. This opera-
tion is parameterized by the DD to return, and is applied to a DD that it ignores
(almost, see Problem 8). The name of this operation can be misleading. The re-
turned DD represents a function that can be constant or not: all its paths do
not necessarily lead to the same terminal. But the constant operation returns
this DD independently of its input. It thus differs from constant of BDD-like
operations, which returns a constant function.
constant[dc](d) = dc

identity[] returns its input with no modification. This operation can be ex-
pressed using other operations, but is introduced in DDDs for efficiency.
identity[](d) = d;

make[v x−→] adds a prefix v x−→ to a DD. It differs from the BDD-like make opera-
tions, because it adds a variable to the represented function given as parameter,
whereas the BDD-like creates an n-ary function from scratch.

make[v x−→](d)=

v
x−→ v1

x1−→ . . . vn
xn−−→ t

v
{y 6=x}−−−−→ v1

x1−→ . . . vn
xn−−→ 0

∣∣∣∣∣∣
v1

x1−→ . . . vn
xn−−→ t ∈ d

match[v x−→, h] is the inverse operation of make. It selects paths where v x−→ is a
prefix of the DD, and then applies another operation h to the subDD that prefix
leads to. Other paths return the identity DD.
match[v x−→, h](d)= h

({
v1

x1−→ . . . vn
xn−−→ t

∣∣∣ v x−→ v1
x1−→ . . . vn

xn−−→ t ∈ d
})

This operation is overloaded, as it also exists to match a terminal.
match[t, h](d)= h ({t | t ∈ d})
composition[h1, h2] computes the composition h1◦h2, and applies it to its input
DD. It has no relation with compose of BDD-like operations, which substitutes
a variable with the result of a DD.
composition[h1, h2](d) = (h1 ◦ h2)(d) = h1(h2(d))

union[h1, h2] (respectively intersection) computes the union (resp. intersec-
tion) of results of h1 and h2 applied to the input DD. This operation wraps
some of the set operations presented in Sec. 4.1. Set difference \ is not wrapped
because it is not a linear operation. Note that these two operations can be easily
extended to n-ary versions as they are associative and commutative.
union[h1, h2](d) = h1(d) ∪ h2(d) intersection[h1, h2](d) = h1(d) ∩ h2(d)

fixpoint[h] has been introduced for model checking applications. Problem 3
shows that BDD-like languages lack operations for iteration. fixpoint provides
such an operation. It computes the fixed point of h, applied to the input DD.
fixpoint[h](d) = h∞(d) = h(. . . h(d) . . .)

The DDD-like unary set transformations are much more expressive than the
BDD-like operations. Figure 2 shows a Petri net and an operation that computes
its state space, which will be improved later. The operation uses the fixpoint
operator where BDD-like operations require to be embedded in a general purpose
language. To encode an least fixed point, identity is used to keep previously
computed states.

We show how the operation works by applying the operation for transition t
to the DDD path q 1−→ p

2−→ r
0−→ 1 representing the initial state of the Petri net.

match[q 1−→, . . .] (q 1−→ p
2−→ r

0−→ 1)
=⇒ make[q 0−→, . . .] (p 2−→ r

0−→ 1)
=⇒ q

0−→ match[p 2−→, . . .] (p 2−→ r
0−→ 1)

=⇒ q
0−→ make[p 0−→, . . .] (r 0−→ 1)

=⇒ q
0−→ p

0−→ match[r 0−→, . . .] (r 0−→ 1)
=⇒ q

0−→ p
0−→ make[r 1−→, . . .] (1)

=⇒ q
0−→ p

0−→ r
1−→ match[1, . . .] (1)

=⇒ q
0−→ p

0−→ r
1−→ identity[] (1)

=⇒ q
0−→ p

0−→ r
1−→ 1

Problem 5 (Operations usually must be lazily defined). The operation
given in Figure 2 has a bug, because the match operation for transition u requires
exactly one token in p. So, it cannot be applied from the initial state. We have
to enumerate all possible cases, by adding :

, match[q 1−→, make[q 0−→, match[p 1−→, make[p 0−→,

match[r 0−→, make[r 1−→, match[1, identity []. . .] // u
We cannot express “add n tokens” or “remove n tokens”, only “set to n tokens”.

In practice, an operation usually has an a priori unbounded number of match
calls. They will be discovered during computation. Description of the operation
would be infinite, so it is in practice rather defined lazily. Then match uses a
function returning the operation associated with each encountered value.

Problem 6 (Lazy operations cannot be optimized). The operations that
compute the state space of Petri net in Figure 2 can be optimized. The operation

p q

r

t
2

1

1

u

1

1

1

v

11 1

fixpoint[
union[

identity

, match[q 1−→, make[q 0−→, match[p 2−→, make[p 0−→,

match[r 0−→, make[r 1−→, match[1, identity []. . .] // t

, match[q 1−→, make[q 0−→, match[p 1−→, make[p 0−→,

match[r 0−→, make[r 1−→, match[1, identity []. . .] // u

, match[q 0−→, make[q 1−→, match[p 0−→, make[p 1−→,

match[r 1−→, make[r 0−→, match[1, identity []. . .] // v
]]

Fig. 2. A Petri net and the operation encoding its firing rule. The variable order used by
operations is q < p < r. Transitions’ names are given as comments after their encoding.
We use]. . .] instead of numerous closing brackets, so indentation is meaningful.

is rewritten to an equivalent but more efficient one, given below, by merging
identical match calls. It is more efficient because some parts of the operation
are merged, and thus require fewer application of the operations. The currently
most advanced optimization technique, called “automatic saturation” has been
introduced in [2]. It follows the same principle of rewriting an operation into a
more efficient one.
fixpoint[

union[
identity

, match[q 1−→, make[q 0−→, union[

match[p 1−→, make[p 0−→, match[r 0−→, make[r 1−→,
match[1, identity []. . .]

, match[p 2−→, union[

make[p 0−→, match[r 0−→, make[r 1−→, match[1, identity []. . .]

make[p 1−→, match[r 0−→, make[r 1−→, match[1, identity []. . .]
]. . .]

, match[q 0−→, make[q 1−→, match[p 0−→, make[p 1−→,

match[r 1−→, make[r 0−→, identity []. . .]
]]

Non-optimized and optimized ones are expressed in the same language. So,
the language is suitable for optimization by program transformation. It solves
the Problem 4 of BDD-like languages.

Lazy operations seen in Problem 5 are useful to deal with a priori unbounded
structures. But they have a drawback: they cannot be optimized, because their
suboperations are not known until execution. To circumvent the problem, new
operations have been added in DDD-like languages. They are redundant with
existing ones, but provide the missing information. However, as more optimiza-
tions are added, more specific operations like these must also be added. This
approach creates several redundant ways to define the same operations. Users
have to know which one is better to enable most optimizations.

Problem 7 (Weak typing). Each operation is designed to work on DDs of
a given type, i.e. a variable order and a category that defines the variables’
domains and output domain. For instance, the following operation can only be
applied to DDDs of variable order x < y. It detects the path x 1−→ y

1−→ 1.
match[x 1−→, match[y 1−→, match[1, constant[terminal[1]]]]]

Operations’ operands which are DDs are not explicitly typed. Only the user
knows their type. So, an operation can discover at runtime that it is not applied
to an intended operand. The operation then fails, but how this failure is reported
is unclear in the DDD-like languages: return of a special terminal >, assertion to
stop the program, exception that can be caught. . . or even return of terminal 0
which is in fact silent.

Instead of giving a DD of the wrong type to an operation, typing errors can
also appear because of DDs returned by inner operations. This leads to errors
(known in DDDs as the “top” > terminal) that are hard to debug8. Such a typing
error occurs when operands of union or intersection do not return DDs of the
same type. For instance, the following operation is erroneous because the first
part of union returns a DDD with variable order x < y whereas the second has
variable order y < x.
union[make[x 1−→, make[y 0−→, constant[terminal[1]]]

, make[y 1−→, make[x 0−→, constant[terminal[1]]]]

It seems easy here to check the typing problems. But lazy operations, required
for Problem 5, prevent checking in most practical cases.

Problem 8 (An identity DD is only transformed to an identity DD).
The linearity constraint of homomorphisms requires that every DD can be split
in several other DDs, operations applied to them, and their results merged.

Each DD can be decomposed to itself and the identity DD (noted d0), where
all paths lead to terminal 0. From the definition of linearity, a DD can be de-
composed in itself and the identity, as in h(d) = h(d ∪ d0) = h(d) ∪ h(d0). So,
every operation must return the identity DD when applied to the identity d0.

8 Users that have used at least once a DDD library know the pain to look at thousands
of lines of DD paths to search where something went wrong.

For instance, all operations applied to the DDD representing the empty set
return the empty set. Even constant[dc](d0) cannot return its DD parameter dc
when applied to d0. In this particular case, it must return the identity d0. This
constraint does not exist in BDD-like operations. They can return any DD when
applied to the identity one.

This requirement prevents the user of DDD-like operations to start its ap-
plication with the identity DD, and then filling it through operations. In model
checking applications using DDDs, we have to start therefore with an initially
non-empty set of states, which is usually the initial state.

Problem 9 (Operations on terminals must also be linear). This is an-
other consequence of homomorphisms, as in Problem 8. Consider a DD repre-
senting multisets. Each path represents an element of the multiset, its terminal
represents its cardinality. The multiset union sums the terminals of identical
paths. Because each DD can be decomposed, the result computed for a path
leading to n must be the same as the sum of results for the same path ending
with n1 and n2, where n = n1 + n2.

For instance, Fig. 3 shows an operation that tries to count paths leading to
terminal 1. Its result is computed by adding all subresults, given as destinations
of red bold arrows. The final result is shown for a DD (left part) and for one ar-
bitrary decomposition of the DD (right part). They differ, because the operation
on terminals is not linear.

x

2

1

0

1

0

+

1

⇔ x 1
0

1

+ x 1
0

1

+ x 0
0

0

+ . . .

x 1
1

1

+ x 0
1

0

+ . . .

= 1 6= = 3
Fig. 3. Counting paths leading to terminal 1 is not a linear operation

Users specify operations only for paths leading to 1 in DDDs. This category
has Boolean terminals, and homomorphisms always return the identity DD d0
when paths end with 0. For DDs representing multisets (MSDDs in [14]), letting
the user specify the operation for any non-zero terminal value is dangerous, as
it might break linearity. To ensure this property, user should still define the
operation only for terminal 1.

Problem 10 (Goal of restriction to linear operations is unclear). Even
if we allow operations to return not only DDs, but also other data types such
as integers, the linearity constraint is too restrictive for many operations. For
instance, even a simple operation like counting the number of paths leading to
a particular terminal value is not a linear operation (see Fig. 3 of Problem 9).
DDD-like languages have an operation to count paths, but it cannot be used
within linear operations. So, this special operation is doomed to appear only
at the end of a computation. The reason why DDDs define their operations
as homomorphisms is not explicitly given in [5]. They are well adapted for set
transformation, but they restrict drastically the expressiveness of their language.
We believe that the main justification for such constraints is efficiency.

Linearity, h(d1 ∪ d2) = h(d1) ∪ h(d2), ensures not only that a DD can be
decomposed to its paths to compute the operation’s result, but also that the
subresults can always be combined before the next computation. Consider the
operation (f ◦ g)(d1 ∪ d2). It can be rewritten as the union of two compositions
(f ◦ g)(d1)∪ (f ◦ g)(d2), or as f(g(d1)∪ f(g(d2)). In both cases, the result if the
same, whether f is applied to two subresults g(d1) and g(d2), or to their union
g(d1) ∪ g(d2). The second case is likely to do less computations9 than the first
one, thus saving time and memory.

This optimization is possible because of the linearity constraint. We propose
in Sec. 5 to move this constraint where it should be: as an optimization enabled
only when operations can be proven linear.

Problem 11 (Unary operations are not enough). Some operations, such
as set union ∪, intersection ∩ or difference \ for DDDs are not unary. As DDD-
like set transformations are unary only, there is no way for a user to describe
them inside the homomorphisms framework.

Restriction to unary functions is useful to define operations as combina-
tors. For instance, composition[match[x 1−→, identity], make[y 0−→, identity]]
is a unary operation, because each suboperation is also unary and returns ex-
actly one result. The input DD argument of composed functions is implicit.

Composition of n-ary operations does not allow such shortcuts, because sev-
eral links can exist between the inputs and outputs of composed operations. But
n-ary operations are the general case, that is missing in DDD-like operations.

5 Generalized Operations

We propose in this section a language for generalized operations, that solves the
problems identified in Sections 3 and 4. This language covers both BDD-like and
DDD-like languages. Throughout the section, a simple program given in Fig. 4 is
used as example. It counts the similar paths in two DDs. Note that the proposed
operations are applied to quasi-reduced DDs, as in DDD-like unary operations.
Missing parts must be rebuilt on-the-fly when the operations are applied.

Program A program is a set of named operations, like check , checky, checkx<y

and count in Fig. 4. Naming enables recursion. There is therefore no need for
a particular fixpoint operation, nor embedding loops in a general-purpose lan-
guage (Problem 3). One of these named operations is called by the user.

Typed inputs and outputs Each named operation has typed inputs and outputs
(Problem 7). For instance, count(l: in t, r: in t, o: out int) has two inputs l
and r of the same type t, and one output o of type int . To handle n-ary operations
(Problem 11), several – or no – inputs and outputs are possible. All of them are
DDs, for homogeneity, even values (int) are considered as terminals. Operand
types are defined by a DD category (BDD, DDD, etc.) and a variable order. We
9 But in DDs, who knows?

check (l: in v, r: in v, o: out int) =
match | l: |t|, r: |t| ⇒ o←make |1|

| l: |t|, r: |u| ⇒ o←make |0|
checky(l: in u, r: in u, o: out int) =

match | l : y
v−→ dl, r : y

v−→ dr ⇒ check(l← dl, r ← dr, o→ o)

| l : y
u−→ dl, r : y

v−→ dr ⇒ o←make |0|
checkx<y(l: in t, r: in t, o: out int) =

match | l : x
v−→ dl, r : x

v−→ dr ⇒ checky(l← dl, r ← dr, o→ o)

| l : x
u−→ dl, r : x

v−→ dr ⇒ o←make |0|
count(l: in t, r: in t, o: out int) =

merge o from checkx<y(l← l, r ← r, o) with +

Fig. 4. Program that counts the similar paths in two DDs with variables x < y

propose in [12] a way to define types with an automaton describing the domains
of variables and their order.

We use four types of DDs in our example. Three types correspond to DDs
with Boolean terminals and unbounded variables: no variable (type v), variable y
(type u) and variables x < y (type t). The fourth type corresponds to DDs with
natural terminals and no variables (type int), used to count the results.

Predefined operation templates Operations can be of three kinds, that we call
“operation templates”. They are inspired from DDD-like operations, but are min-
imalist as each one has a very specific role. They thus solve Problem 2.

match | prefixn ⇒ call | . . . takes as parameter a finite mapping from prefix pat-
terns to operation calls. As we deal with n-ary operations, a pattern is composed
of n prefixes, one for each input operand. For each set of DD paths, one taken
from each operand, this operation finds the first matching pattern, and applies
the associated operation. A prefix can be:

– a terminal constant or placeholder10 for instance |1| or |t|,
– a DD placeholder (which also covers a terminal), for instance d,
– a prefix with constants or placeholders as variable or/and edge values, and

another prefix for the successor, for instance 1
x−→ d, x 0−→ d, or x

y−→|t|.

As in functional languages with pattern-matching, all the patterns of a match
must cover all possible prefixes of the input DDs. They also must bind all the
outputs of the operation. The following binary operation, which uses the value
of x as discriminant, is only valid when x has a Boolean domain.
match | d1 : x

1−→ d, d2 : x
y−→ d′ ⇒ . . . | d1 : x

0−→ d, d2 : x
y−→ d′ ⇒ . . .

di are the names of input parameters that are matched against a prefix, and
“. . . ” is here the next operation to perform (not given). Scope of placeholders
is in their pattern, so the two ys are distinct in the previous example, but the
two xs in a pattern x x−→ have the same value. The following unary operation is
valid even for unbounded domains, as placeholder y can take any value.
10 We name terminal placeholder a language variable that can store a terminal value.

The term “variable” is already used in DDs, so we do not use it to avoid ambiguities.

match | d1 : x
x−→ d⇒ . . . | d1 : x

y−→ d⇒ . . .

Note that patterns overlap in the previous examples. We chose the usual
policy of functional languages: only the first matching pattern is applied. This
is useful to define default cases.

Operation calls bind inputs and outputs of caller and callee. We can wrap a
placeholder with an expression, to compute a value from its content. However,
we do not describe expressions here, by lack of space. So, placeholders are simply
bound to inputs and outputs of operations.

make | pattern | . . . creates a DD from patterns using constants and placehold-
ers. Patterns are expressed in the same way as in match. They must also cover
all possible prefixes of created DD. In Fig.4, we only create terminals, but this
operation can also create DD nodes. For instance, the code below creates the
DD x

0−→ 0 ∪ x 1−→ 1, when d is a placeholder holding the terminal 0, x is a
variable and y is a free placeholder of Boolean domain. Placeholders used in the
patterns can be bound to a value or be free. The latter case is useful to fill a
whole unbounded domain.
make | x

0−→ d | x
y−→|1|

As patterns may overlap, we chose a policy consistent with match: when a
prefix can be created using several patterns, the first one prevails. Note that this
operation template does not require a default value, and thus solves Problem 1.

merge placeholder from call with operator is a new operation. It is required be-
cause there is no more a global ∪ operator as in DDD-like languages. Each match
operation does not return a single DD, but a multiset of DDs, because it gen-
erates one or several DDs for each matching prefix. merge maps operations to
how their results should be merged. The operator used to merge results (+ in
Fig 4) is specified only for terminals, following the BDD-like apply mechanism.
It is applied on terminals of paths that differ only by their terminal values.

This operator must be associative and commutative, because there is no order
on generated DDs. Moreover, when dealing with unbounded domains, it must
have an identity element. Homomorphisms are a special case, where the merge
operator respects linearity.

6 Conclusion

This article does a critical comparison of BDD-like and DDD-like manipulation
languages. It also proposes a new language for manipulation of DDs, that takes
inspiration from both BDD-like languages and DDD-like languages, and cov-
ers them. This language also enables more operations. We give the example of
counting paths that are similar in two DDs. This operation cannot be defined
in the BDD-like and DDD-like languages, but is available in our proposal. The
proposed language solves the problems we identify, such as minimalism of the
language or expressiveness. It provides a small number of operations that have
been carefully designed to allow future optimizations and are general enough to
handle n-ary typed operations.

We plan to extend the proposed language to hierarchical DDs, as they are
useful DD categories. Moreover, we have to redefine the optimizations that al-
ready exist for SDDs. Adding some kind of genericity to the language is also
required, because the proposed specification of types can prevent code reuse.

References

1. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
Model Checking: 1020 States and Beyond. In: LICS ’90: 5th Annual IEEE Sym-
posium on Logic in Computer Science. (1990) 428–439

2. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Hierarchical Set Decision Diagrams
and Automatic Saturation. In: Petri Nets ’08: 29th International Conference on
Applications and Theory of Petri Nets. (2008) 211–230

3. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35(8) (1986) 677–691

4. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic Decision Diagrams and Their Applications. Formal Meth-
ods in System Design 10(2/3) (1993) 188–191

5. Couvreur, J.M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.A.:
Data Decision Diagrams for Petri Net analysis. In: ICATPN ’02: 23rd International
Conference on Applications and Theory of Petri Nets. (2002) 101–120

6. Lai, Y., Sastry, S.: Edge-Valued Binary Decision Diagrams for Multi-Level Hierar-
chical Verification. In: DAC ’92: 29th ACM/IEEE conference on Design automa-
tion. (1992) 608–613

7. Ciardo, G., Siminiceanu, R.: Using Edge-Valued Decision Diagrams for Symbolic
Generation of Shortest Paths. In: FMCAD ’02 : 4th International Conference on
Formal Methods in Computer-Aided Design. (2002) 256–273

8. Strehl, K., Thiele, L.: Symbolic Model Checking of Process Networks Using Interval
Diagram Techniques. In: ICCAD ’98: 1998 IEEE/ACM international conference
on Computer-aided design. (1998) 686–692

9. Srinivasan, A., Kam, T., Malik, S., Brayton, R.K.: Algorithms for Discrete Func-
tion Manipulation. In: ICCAD ’90: International Conference on CAD. (1990) 92–95

10. Corella, F., Zhou, Z., Song, X., Langevin, M., Eduard, C.: Multiway Decision
Graphs for Automated Hardware Verification. Formal Methods in System Design
10(1) (1997) 7–46

11. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An Efficient Iteration Strat-
egy for Symbolic State-Space Generation. In: TACAS ’01: Tools and Algorithms
for the Construction and Analysis of Systems. (2001) 328–342

12. Linard, A., Paviot-Adet, E., Kordon, F., Buchs, D., Charron, S.: polyDD: Towards
a Framework Generalizing Decision Diagrams. In: ACSD’10: 10th International
Conference on Application of Concurrency to System Design. (2010)

13. Couvreur, J.M., Thierry-Mieg, Y.: Hierarchical Decision Diagrams to Exploit
Model Structure. In: FORTE ’05 : Formal Techniques for Networked and Dis-
tributed Systems. (2005) 443–457

14. Lucio, L., Hostettler, S.: Multi-set decision diagrams. Technical Report 205,
Centre Universitaire D’Informatique, Université de Genève (2009) Available as
http://smv.unige.ch/technical-reports/TR205-MSDD.pdf.

