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a b s t r a c t

In aeronautics, the issue of ice shedding prediction is of prime importance in the assessment of electro-

thermal ice protection systems. In this paper, an ice shedding mechanism based on pressure redistribu-

tion in the water film formed at the ice/airfoil interface is proposed. This pressure distribution induces a

stress concentration that leads to crack propagation in the ice. To determine whether this mechanism is

relevant or not, two numerical experiments are performed. The results of these numerical experiments

and the influence of a few material parameters are discussed, as well as their limitations and possible

consequences arising from some of the hypotheses.

The numerical modeling is based on recent works on damage/fracture mechanics which provide a

general framework for fracture mechanics computation. The effects of numerical parameters and mesh

size are discussed. A mixed mode test case based on experimental data is also performed. This test case

had not been attempted before on this particular numerical method, which therefore serves as further

validation.

1. Introduction

In typical flight icing conditions, the water droplets contained in

clouds are in a supercooled state. When an aircraft encounters such

conditions, those droplets freeze upon impacting its surface, there-

fore leading to ice build-up. In the aeronautical world, icing is one

of the most serious threats that can be encountered. Not only does

it increase mass but it may also lead to a degradation of aerody-

namic performances, blocked air intakes (among other undesirable

consequences).

Aircraft manufacturers must therefore comply with certifica-

tions and regulations regarding flight safety in icing conditions.

In order to achieve that goal, several ice protection technologies

may be used. One commonly used is the ‘‘bleed-air’’ system: hot

air is taken from the engines and blown onto the protected surface,

as shown in Fig. 1.

However, this system is energy-greedy, and in the context of

‘‘more electric’’ aircraft and reduction of fuel consumption, new

systems are being investigated. One of these systems is the electro-

thermal ice protection system (ETIPS). This system is composed of

heater mats installed within a multi-layered material and can be

used in anti-icing or deicing configurations [2,3].

The nominal functioning of an ETIPS in de-icing mode is as fol-

lows (illustrated in Fig. 2): A region called the parting strip, usually

located around the leading edge (for example the region corre-

sponding to heater C), is constantly protected from ice accretion.

More precisely, the corresponding heater mat is in anti-icing mode.

The other heaters are activated according to a given cycle. Thus ice

accretion is permitted in regions other than the parting strip. When

a heater mat is activated, it melts a part of the ice in contact with

the surface, creating a liquid water film and therefore lowering

ability of the ice block to adhere to the surface. The aerodynamic

forces are then able to detach the ice block (or part of it) from

the surface.

In order to assess the performance of such a system, it is essen-

tial to understand the mechanisms by which the aerodynamic

forces manage to detach the ice. The current state of the art in icing

codes is an empirical criterion. It states that, if the length of the

liquid water film has a sufficient length (typically 80% of the whole

contact length), then the ice block detaches [2]. However such an

empirical criterion is unsatisfactory. Therefore, to obtain more

physical ice shedding models, a better understanding of the

detachment process is needed.

In this paper a mechanism that could play a crucial role in the

process of detachment of the ice block (from the protected surface)
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is presented. First, the proposed detachment mechanism is

presented. Then, the modeling and numerical techniques used in

this study are introduced. This will be followed by a parameter

identification and validation against experimental data. After that

numerical experiments are presented and performed. Finally the

results are discussed.

2. Proposed mechanism

Let us consider a situation as depicted Fig. 3, where ice has

accreted just after the parting strip. The contact zone between

the ice and the surface extends over a curvilinear distance, say Lt .

The proposed mechanism is based on two observations. Firstly,

the flow over such a shape will induce pressure variations over

the lump. Fig. 4 depicts a typical pressure distribution. Secondly,

due to the ETIPS, a certain amount of ice in contact with the surface

has melted. This leads to the creation of a thin film of liquid water

extending over a distance Lf . A contact point, Pc , exists between the

external flow and the film. The pressure at this point will be

entirely redistributed by the film over the length Lf due to the

absence of motion in the liquid water film1 (hydrostatic pressure

equilibrium). The presence of the ice shape will cause an

acceleration of the flow when passing over it, which decreases

pressure at the same time. This means the pressure recovered in

the film will be higher than that acting on the external surface.

This pressure distribution creates a lifting force. To this force,

one has to add the viscous forces, which are tangential. Thanks

to these forces several outcomes may be possible:

� The whole length is melted (Lf ¼ Lt) in which case the ice no

longer adheres to the surface (or only by means of surface ten-

sion effects).

� Adhesive break: part of the length Lf ¼ x%Lt is melted and the

adhesion forces that maintain ice on the surface are no longer

strong enough.

� Brittle failure: part of the length Lf ¼ x%Lt is melted, ice can still

adhere, but a crack may nucleate due to stress concentration

and propagate through the ice, therefore tearing off a part of it.

� Cohesive break: part of the length Lf ¼ x%Lt is melted, ice can

still adhere, but a crack may nucleate due to stress concentra-

tion and propagate along the ice/protected surface interface.

� Ice shedding is due to a combination of the above possibilities.

The mechanisms leading to ice shedding are to this day not well

understood. Experimental observation shows that brittle failure

plays a crucial role. Hence, as a first approach to the problem,

the present study is confined to the third possibility presented

above, concerning brittle failure. To do so, a crack nucleation and

propagation model is required. This implies knowledge about the

mechanical properties of atmospheric ice.

3. Properties of atmospheric ice

One of the main problems that arises is to determine what

mechanical properties are going to be used in order to characterize

atmospheric ice. Unfortunately, very few studies on the subject

exist. Most studies are interested in the tensile or compressive

strength but do not provide many information on mechanical

characteristics in the form of well defined laws [4–6]. These

experiments are very difficult to conduct due to the vast number

of parameters on which those properties depend, making the issue

all the more complicated. For example, Eskandarian [7] reports a

determination of Young’s modulus and Poisson’s ratio for porous

ice.

Therefore, as a first approach, data and empirical laws given by

experiments for natural ice are used as a starting point. These laws

are more precise, and more widely studied. Nevertheless, they

Nomenclature

a angle of attack (°)
� strain
k;l Lamé coefficients (Pa)
H history function (J mÿ3)
m Poisson’s ratio
/ porosity
d damage variable
dgrain grain size (m)
E Young’s modulus (Pa)
Ecrack crack energy (J)
Eel elastic energy (J)
gc energy release rate (J mÿ2)
h mesh element characteristic size (m)
hfp thickness of the flat plate (m)
K IC fracture toughness (Pa

ffiffiffiffiffi

m
p

)

Lfp length of the flat plate (m)
Lf length of melted region between ice and protected

surface (m)
Lt total contact length between ice and protected

surface (m)
P1 freestream pressure (Pa)
Pc contact point between melted region and airflow (m)
pexterior exterior pressure distribution (Pa)
predistributed redistributed pressure (Pa)
T temperature (K or �C)
T1 freestream static temperature (K)
u displacement (m)

Fig. 1. Illustration of a bleed air system [1].

1 In fact, as liquid water takes up less volume than ice, a gap may form in the

melted region. That is to say, the water film may not entirely occupy the volume

formerly made out of ice and air may be allowed to fill in the gap. However, we would

still be in a case of hydrostatic pressure equilibrium. Therefore pressure redistribution

would still occur as described.



apply to different types of ice (natural, polycrystalline, sea water).

As such, they do not apply to atmospheric ice. Therefore only the

general form of the empirical laws is retained. In Section 6 their

parameters will be identified so as to fit experimental data for

atmospheric ice.

According to Schulson and Duval [8], the most precise results

for the elastic constants were obtained by Gammon et al. [9]. In

the case of a homogeneous polycrystalline ice aggregate, it may

be assumed that the grains (crystallites) are oriented randomly

making it elastically isotropic. The parameters characterizing

homogeneous isotropic elastic behavior of polycrystalline ice are

given in the following Table 1 [8,9]:

The temperature dependence of Young’s modulus is obtained

using the formula (1), given in [8]:

EðTÞ ¼ EðTrÞ 1ÿ aðT ÿ T rÞ½ � ð1Þ

Fig. 2. Operating of an ETIPS.

Fig. 3. Accreted ice and water film – geometric parameters.

Fig. 4. Schematic pressure distribution on ice lump.



where a ¼ 1:42� 10ÿ3 Kÿ1 and Tr is the temperature at which the

initial measurement was conducted.

Grain size (dgrain) and porosity (/) also affect the material

parameters. Their values depend on the way the ice was formed.

Effects of porosity on Young’s modulus are taken into account

by combining relation (1) with the empirical law: E ¼ E0 ÿ b/

[8]. For fracture toughness, two empirical laws,

K�
I0 ¼ K I0 þ c

ffiffiffiffiffiffiffiffi

dgrain
p 10ÿ1:5

� �

and K IC ¼ K�
I0ð1:0ÿ c/Þ [8], are combined

to give:

E ¼ EðTrÞ 1ÿ aðT ÿ TrÞ½ � ÿ b/ / 6 0:1 and E is in GPa ð2Þ

K IC ¼ K I0 þ
c
ffiffiffiffiffiffiffiffiffiffiffi

dgrain

p 10ÿ1:5

" #

ð1:0ÿ c/Þ with dgrain in meters ð3Þ

where b¼35:1GPa; c¼1:0; K I0 ¼58:3kPa
ffiffiffiffiffi

m
p

and c ¼ 42:4 kPa m.

K IC is the fracture toughness (the critical stress intensity factor). It

may be linked to the crack energy release rate with the relations:

gc ¼ ð1ÿ m2ÞK
2
IC

E
for plane strain ð4Þ

gc ¼
K2

IC

E
for plane stress ð5Þ

Moreover, according to Lui and Miller [10] the ambiant temper-

ature also has an effect on fracture toughness. The results of their

measurements are shown in Fig. 5.

As a first approximation this effect can be taken into account

with a linear relation which may be integrated into (3) in two

ways:

Law 1 : K IC ¼ K I0 ÿ cTðT ÿ 273:15Þ þ c
ffiffiffiffiffiffiffiffiffiffiffi

dgrain

p 10ÿ1:5

" #

ð1:0ÿ c/Þ

ð6aÞ

Law 2 : K IC ¼ K I0 þ
c
ffiffiffiffiffiffiffiffiffiffiffi

dgrain

p 10ÿ1:5

" #

ð1:0ÿ c/Þ ÿ cTðT ÿ 273:15Þ

ð6bÞ

where cT is a parameter which will be identified, and T < 273:15 K.

4. Fracture modeling method

Modeling techniques based on continuum mechanics have

already been applied to ice. Scavuzzo et al. performed a finite ele-

ment analysis of the stress distribution due to aerodynamic forces

in an accreted ice block [11]. More recently, Zhang et al. have used

a crack propagation and re-meshing technique to study ice break

up [12]. However these studies did not take into account the effect

of an ice protection system.

Here we choose to use a method close to those of continuum

damage mechanics. In the following paragraph we construct our

model by adapting the approach adopted by Miehe et al. [13] to

a stationary case. The idea is to introduce a parameter d that char-

acterizes the local state of damage/fracture [14] in the ice block.

The starting point is a principle of conservation of energy [15]

whose physical motivation is the following: When a solid is

deformed by action of external forces, it internally stores elastic

deformation energy. If, locally, this energy exceeds a certain critical

energy then it will cause an increase in crack surface. Therefore, if a

crack nucleates and/or propagates, a possible mechanism (from a

macroscopic point of view) is a process of energy transfer from

the applied forces to elastic deformation energy, which in turn

may be transformed into crack surface energy. Fig. 6 illustrates this

transfer from elastic to crack energy.

The main input parameters required for the model are a crack

surface energy (8) and an elastic energy (12). Let wð�; dÞ be the elas-
tic strain energy per unit volume, and /ðd;rdÞ be the fracture

energy per unit volume. � ¼ 1
2
ðruþ ðruÞTÞ is the strain and u the

displacement field. Therefore the total elastic energy will be Eel ¼
R

X
wð�; dÞdV and the total crack energy will be

Ecrack ¼
R

X
/ðd;rdÞdV . When external forces are applied, the

change in energy is equal to the work produced by those forces.

Thus we have:

dEcrack þ dEel ¼
Z

X

fvoldudV þ
Z

C1

fsurf dudC ð7Þ

where fvol is a volume force, C1 is a part of the boundary

@X ¼ C1 [ C2 where a surface force fsurf is applied. C2 is the part

of the boundary where a displacement ud is imposed.

The crack energy is obtained by using a regularized crack

energy functional given by Bourdin et al. [16].

Ecrack ¼
Z

X

/ðd;rdÞdV ¼
Z

X

gc

1

2l
d
2 þ l

2
rd �rd

� �

dV ð8Þ

where gc is the crack energy release rate, the damage variable d lies

between 0 and 1 (dðxÞ ¼ 0 corresponding to an undamaged state

and dðxÞ ¼ 1 to a fractured state).

The term 1
2l
d
2 þ l

2
rd �rd can be interpreted as a regularized

approximation of the Dirac d-function related to the crack surface.

l is an adjustable parameter that controls the width of the regular-

ized crack. From a minimization of surface energy view point, the

regularization involves an interplay between 1
2l
d
2
which tends to

localize and l
2
rd �rd which tends to spread. The elastic energy

density will be defined in more detail further.

By using variational arguments it can be shown that (9):

r ¼ @w

@�
in X

gc

l
dÿ gclMd ¼ ÿ @w

@d
in X

rd � n ¼ 0 on @X

ð9Þ

The stress tensor r is deduced from the choice of w. In the case

of a linear homogeneous isotropic elastic material, the elastic

energy is given by: wð�Þ ¼ k
2
trð�Þ2 þ ltrð�2Þ. However, considering

ÿ @w
@d

is the source term, the driving force of the fracture process,

w must also be chosen according to what part of the elastic

Table 1

Elastic constants of interest for isotropic polycrystalline ice at T ¼ ÿ16 �C.

Young’s modulus, E 9:33� 109 Pa

Poisson’s ratio, m 0:325

Fig. 5. Effect of testing temperature on fracture toughness at different loading rates

[10].



deformation energy creates or propagates a crack. It is considered

that in the case of brittle fracture, only the tensile energy interacts

with crack propagation. Thus the elastic energy is split into purely

tensile and compressive parts defined by using the eigenvalues of �
(�1 and �2 in two dimension) and a positive/negative part function

noted h�i�:

wþ
0 ð�Þ ¼

k

2
h�1 þ �2i2þ þ lðh�1i2þ þ h�2i2þÞ ð10Þ

wÿ
0 ð�Þ ¼

k

2
h�1 þ �2i2ÿ þ lðh�1i2ÿ þ h�2i2ÿÞ ð11Þ

wþ
0 and wÿ

0 represent respectively the undamaged tensile and com-

pressive elastic energies. As stated before, only tensile energy inter-

acts with crack propagation. Thus only wþ
0 ð�Þ, the tensile part, is

multiplied by a function of d, say f ðdÞ. The function f ðdÞ represents
the degradation of tensile energy due to crack formation and is cho-

sen accordingly:

Eel ¼
Z

X

½f ðdÞwþ
0 ð�Þ þ wÿ

0 ð�Þ�dV ð12Þ

Therefore f is a nonincreasing function, f ð0Þ ¼ 1 and f ð1Þ ¼ 0.

Moreover, when d ¼ 1 it is asked that the driving force

ÿ @w
@d

¼ ÿf 0ðdÞwþ
0 ð�Þ be equal to 0. To do so the additional condition

f 0ð1Þ ¼ 0 is imposed. Under these conditions Miehe et al. [13] pro-

posed the function f ðdÞ ¼ ð1ÿ dÞ2. Using these new relations the

complete set of equations becomes:

ÿ divðrðu; dÞÞ ¼ fvol in X

r � n ¼ fsurf on C1

u ¼ ud on C2

gc

l
dÿ gclMd ¼ 2ð1ÿ dÞwþ

0 ð�Þ in X

rd � n ¼ 0 on @X

ð13Þ

Eqs. (13) are nonlinear and describe a stationary damaged equilib-

rium state compatible with the external constraints. They translate

conservation of energy. In order to incorporate the irreversible

aspect of crack propagation, Miehe et al. [13] introduce a history

function H. They propose the following kind of iterative algorithm,

which we have implemented using a finite element method:

� Compute the history field:

Hi ¼ maxðHiÿ1;wþ
0 ð�iÿ1ÞÞ ð14Þ

� Compute the damage field:

gc

l
d
i ÿ gclMd

i ¼ 2ð1ÿ d
iÞHi in X ð15Þ

rd
i � n ¼ 0 on @X ð16Þ

� Compute the displacement field:

ÿ divðrið�i; diÞÞ ¼ fvol in X ð17Þ
ri � n ¼ fsurf on C1 ð18Þ
ui ¼ ud on C2 ð19Þ

This algorithm can be interpreted as follows. Let’s assume a first

purely elastic computation has been realized as an initialisation.

The locally available tensile energy may then be computed. This

energy then becomes a source term for the damage equation.

The evolution of damage then changes the way the material

deforms. The new deformed state is obtained by solving the

equilibrium equation, which in turn gives us a new tensile energy,

and so on.

However, it is not exactly the tensile energy that is used to

define the source term for the damage equation. Rather, it is a his-

tory function noted H. If we consider the iterative process as

pseudo-unsteady, the use of the history function can be interpreted

in the following manner: At a given iteration i the tensile energy

could locally be inferior to its value at iteration iÿ 1. Thus if, at a

given iteration d ¼ 1, nothing is preventing it from decreasing at

any following iteration. But, clearly in our case, the problem of

crack propagation is irreversible: d should not be allowed to

decrease. Thus the history function H aims at taking into account

the irreversibility of the crack propagation process. It records,

locally, the maximum of the tensile energy over all iterations. This

history function then becomes a source term for the equation that

governs the evolution of damage. Intuitively, if at a given iteration

there was enough tensile energy to increase the damage variable d,

then this information will be contained in H for the following iter-

ation. Nevertheless further investigation remains to be done in

order to determine the relevance of this pseudo-unsteady

interpretation.

The main advantage of this method is that it does not require an

initial crack. On the other hand it should be noted that the main

drawback is the need of a refined mesh. Especially in the case of

imposed boundary load, the crack tends to spread if the mesh is

not refined enough.

5. Model assessment

Now that the modeling strategy is established, it is interesting

to perform preliminary checks in order to assess its performance.

To do so, the effects of mesh size and spreading length l will first

be studied. Secondly, numerical predictions and experimental data

will be compared to see how the model performs. Due to the lack

of experimental data on atmospheric ice, an experimental test case

performed on concrete is reproduced [17].

All computations in this section will be based on the same gen-

eric test case (see Fig. 7). It consists of a square specimen (200 mm

� 200 mm) of plain concrete submitted to mixed mode loading,

shear and axial at the same time. The specimen has a thickness

of 50 mm which is relatively small compared to the other dimen-

sions, therefore a plane stress formulation is chosen. The material

parameters are chosen to be E ¼ 30 GPa;m ¼ 0:2 and

K IC ¼ 1 MPa mÿ1=2 [17,18].

5.1. Size effects

For the study of size effects two meshes (‘‘coarse’’: 30,000 ele-

ments, and ‘‘fine’’: 65,000 elements) are considered. These meshes

Fig. 6. Energy transfer in crack opening mode.



are designed to have an element characteristic size of respectively

h ¼ 2 mm and h ¼ 1 mm in the region where the crack is expected

to propagate. On each mesh two spreading lengths will be

investigated, l ¼ 2 mm and l ¼ 5 mm. A fixed displacement field

is imposed at the upper left corner boundary (Cu in Fig. 8):

ux ¼ 20 lm;uy ¼ 25 lm. A homogeneous Dirichlet boundary con-

dition is applied on C0 : ux ¼ 0 m;uy ¼ 0 m.

As can be seen in Figs. 9 and 10, the crack topology for this

problem consists of two curved symmetric branches that originate

at the notch tips. This topology is typical of this type of double

edged mixed mode setup, as presented in the next subsection.

Let’s start by taking a look at the effect of the spreading length.

Fig. 9 shows the results of two computations realized on the ‘‘fine’’

mesh with l ¼ 2 mm and l ¼ 5 mm. The crack paths obtained with

l ¼ 5 mm are clearly more spread out than those obtained with

l ¼ 2 mm. The crack paths change from one value of l to another,

especially near the end of the paths, but this effect is very slight.

The same effect is observed on the ‘‘coarse’’ mesh (see Fig. 10).

The effect of mesh size can be seen by comparing Figs. 9(a) and

10(a) for l ¼ 5 mm as well as Figs. 9(b) and 10(b) for l ¼ 2 mm. For

l ¼ 5 mm the effect is extremely slight. The same comment can be

made for l ¼ 2 mm.

The choice of l is not arbitrary, it cannot be chosen too small. For

example l ¼ 0:5 h yields an irregular solution (see Fig. 11(a)).

Choosing l ¼ 0:25 h, as shown in Fig. 11(b), completely kills the

solution and the crack branches fail to propagate. Thus, this implies

good knowledge of the mesh so as to correctly set the spreading

length. We join Miehe et al. [13] and consider that a good

compromise consists in choosing l ¼ 2 h.

To sum up this section on size effects:

� Reasonably increasing l will spread out the crack but will not

significantly change the results. l should not be increased too

much so as to maintain a good level of definition for the

solution.

� Decreasing l to under-resolved values kills the solution and

brings about misleading results.

� For lP 2 h the result will not be significantly mesh sensitive.

5.2. Comparison with experiment

The experimental setup is sketched Fig. 12. To be more precise,

the following load path is reproduced: first apply a shear load in

displacement control until Ps ¼ 10 kN (s axis). Then apply an axial

displacement till failure, while maintaining Ps ¼ 10 kN with lateral

displacement control (t axis).

To the authors knowledge, comparison of this numerical frac-

ture mechanics model with this kind of experiment has not yet

been performed. Therefore it also serves as an assessment of the

model itself. Numerically this was achieved by imposing displace-

ments at boundaries Cup and Cdown in the following way:

� Apply displacement ux and compute Ps.

� Adjust displacement ux so as to obtain Ps ¼ 10 kN.

� Apply displacement uy until failure.

� Adjust ux at each iteration to maintain Ps ¼ 10 kN while simul-

taneously enforcing failure with displacement uy.

Fig. 13 shows the crack paths obtained numerically and the

experimental crack paths (respectively at the front and rear faces

of the concrete specimen). The crack topology consists of two

curved branches each taking their origin at one of the notches.

The numerical results match the experimental paths quite well,

with a very good agreement for the lower branch. As for the upper

branch the model predicts a path that passes slightly lower than

the experiment. The crack paths predicted by the model are

symmetric with respect to one another. This comes as no surprise

given the symmetry of the setup and the hypotheses on the

material (linear homogeneous isotropic). This symmetry is not

observed for the experimentally obtained crack paths. This very

slight difference can be explained by the fact that the concrete

specimen is not really homogeneous and isotropic. It consists of

a mixture of cement, river gravel and sand among other

constituants [17]. Although the aggregates formed by the mixture

process are of small size compared to the dimensions of the

specimen (ratio 100 [17]) the resulting material will not be per-

fectly homogeneous and isotropic. Given the highly nonlinear

character of crack propagation it is not surprising to observe

slightly unsymmetric crack paths.

6. Parameter identification: experimental test case

As stated Section 3, the parameters defining the mechanical

properties of ice have to be redefined. Mohamed et al. have per-

formed experiments in order to characterize the tensile strength

of atmospheric ice [6]. We reproduce here these experiments and

evaluate the tensile strength given by the damage mechanics

model. This will serve to assess the applicability of this method

to more complex situations and the suitability of the chosen

mechanical properties. The goal here is not to provide extremely

precise laws. They serve to give a good enough framework so as

to confidently interpret the results that will come out of the

numerical experiments.

Fig. 7. Generic double edged notch problem illustration.

Fig. 8. Double edged notch problem with fixed Dirichlet boundary conditions.



The computational domain reproduces the shape of the experi-

mental specimen (minus the region in contact with the elastic

holder, via which stress in transmitted to the specimen during

the test). It has a dumbell shape with dimensions as shown

Fig. 14. All three experimental test temperatures are considered:

ÿ5 �C;ÿ 10 �C and ÿ15 �C. The accumulation temperature was

the same for all samples and set to ÿ10 �C. Mohamed et al. report

a grain size of 0:7 mm and a porosity of 3%.

If relations (2) and (3) are chosen in their initial form, the model

gives a tensile strength of 1:1 MPa for all temperatures. This means

tensile strength is underestimated and no test temperature effect

is captured. That is why test temperature effect are incorporated

through relation ((6)). To sum up, the following relations (law 1

for K IC) are used:

E ¼ EðT rÞ 1ÿ aðT ÿ TrÞ½ � ÿ b/ / 6 0:1 and E is in GPa

K IC ¼ K I0 ÿ cTðT ÿ 273:15Þ þ c
ffiffiffiffiffiffiffiffiffiffiffi

dgrain

p 10ÿ1:5

" #

ð1:0ÿ c/Þ

with dgrain in meters and T < 273:15. The values of a and b, which

define the law for Young’s modulus, are left unchanged:

a ¼ 1:42� 10ÿ3 Kÿ1 and b ¼ 35:1 GPa. With the law for Young’s

modulus now fixed, for each temperature, we apply the mean

experimental tensile strength and search for the values of K IC that

lead to a fractured state. We are then left with the problem of

defining a law which will yield these values. As cT defines the effect

of test temperature on K IC , it needs to be redefined. But an identifi-

cation involving only cT would yield 3 equations for 1 unknown.

Considering the initial relation (3) underestimates tensile strength,

a good choice is to also redefine the parameter K I0, which almost

acts as an offset value. With all other parameters fixed we are led

to the following set of 3 equations for 2 unknowns:

1 ÿðT1ÿ 273:15Þ
1 ÿðT2ÿ 273:15Þ
1 ÿðT3ÿ 273:15Þ

2

6

4

3

7

5

K I0

cT

� �

¼

K IC ðT¼T1Þ
1:0ÿc/

ÿ c
ffiffiffiffiffiffiffiffi

dgrain
p 10ÿ1:5

K IC ðT¼T2Þ
1:0ÿc/

ÿ c
ffiffiffiffiffiffiffiffi

dgrain
p 10ÿ1:5

K IC ðT¼T3Þ
1:0ÿc/

ÿ c
ffiffiffiffiffiffiffiffi

dgrain
p 10ÿ1:5

2

6

6

6

6

4

3

7

7

7

7

5

Fig. 9. ‘‘Fine’’ mesh computation; h ¼ 1 mm.

Fig. 10. ‘‘Coarse’’ mesh computation; h ¼ 2 mm.



where T1 ¼ 268:15 K;T2 ¼ 263:15 K and T3 ¼ 258:15 K. This over-

determined linear system is solved with a least squares method.

We obtain: K I0 ¼ 72:0 kPa
ffiffiffiffiffi

m
p

and cT ¼ 1:0 kPa
ffiffiffiffiffi

m
p

Kÿ1. Taking

law 2 ((6b)) for K IC yields the same values. Fig. 15(a) is a plot of

tensile strength with temperature, on which we compare our

numerical results with those of Mohamed et al.’s experiments.

The identification process is successful in providing a good match

between experiment and simulation. As shown Fig. 15(b), the crack

topology consists of a straight crack cutting through the ice at the

location of minimal section.

Law 1 (6a) and law 2 (6b) are compared in Fig. 16. Both laws

yield the same results when varying grain size. A slight effect is

noted with increasing porosity. However this effect is small and

switching laws did not produce any visible effect when performing

the subsequent simulations.

7. Numerical experiments

Icing and ice protection are complex unsteady phenomena.

Icing codes typically include several modules in order to determine

water droplet catch efficiency, ice growth and heat and mass trans-

fer. A true electrothermal de-icing numerical simulation requires

going through all of these steps and adding a shedding criterion.

But we will not use this whole panel of modules. What we are

examining is a very specific mechanism. We therefore use the

possibilities offered by numerical simulation to look into the

effects of varying only some parameters, all others being fixed.

We consider two cases (described below). In these cases time is

Fig. 11. ‘‘Coarse’’ mesh computation with under-resolved l.

Fig. 12. Double edged notch problem with axial and shear loads.

Fig. 13. Comparison between experiment and numerical simulation.

Fig. 14. Dumbell shape.



freezed: the ice shape is constant, the flow field is constant, and we

vary the length of the water film Lf , grain size dgrain and porosity /.

The numerical experiments are defined by using two elements:

� An aerodynamic shape: here a flat plate and a NACA0012 airfoil

are considered.

� A generic ice shape: it is chosen to be shaped as a teardrop. It

represents a simple form of inter-cycle ice shape. Its character-

istic thickness is noted hice and is set to 3:0 mm.

The ice shape is then placed on the aerodynamic shape. In the

case of the airfoil, a location that is coherent with the actual func-

tioning of an ETIPS is chosen (not far from the parting strip). The

in-house Igloo2D aerodynamics Euler solver is used to obtain the

pressure distribution on the ice shape. This pressure distribution

will define the Neumann boundary conditions for the crack propa-

gation problem. Fig. 17 is a generic sketch where that illustrates

the three different boundary conditions:

u ¼ 0 on Cu ð20Þ
r � n ¼ pexterior � n on Cexterior ð21Þ
r � n ¼ predistributed � n on Cp ð22Þ

As explained previously, the only varying parameters will be

Lf ; dgrain and /. Therefore the aerodynamic flow field is fixed once

and for all for each case i.e. we do not consider any feedback pro-

cess due to the eventual lifting of the ice shape, we discuss the

implications of this simplification further on.

Before we proceed to the actual test cases, we simplify a little

further our problem. First we do not substract from the ice shape

the melted region that constitutes the water film as we consider

it to be negligibly small. Moreover, at the time being, surface ten-

sion effects are not taken into account. Therefore what is being

considered is an idealized situation whose only goal is to help us

investigate and extract what phenomena may be relevant or not.

The empirical laws for atmospheric ice were identified using

experiments performed in on-ground accretion conditions (Sec-

tion 6). In-flight accretion conditions are usually quite different.

However, accumulation wind speed and pressure directly impact

the values of grain size and porosity. Hence, the main difference

between in-flight and on-ground conditions might only result in

different values of grain size and porosity. Therefore, we choose

(a) Experimental and Numerical Tensile Strength.
The error bars represent the standard deviation on
Mohamed et al ’s data

(b) Damage field: fractured state

Fig. 15. Tensile strength and damage field.

(a) Effect of porosity (b) Effect of grain size

Fig. 16. K IC as a function of grain size and porosity: Comparison between law 1 (6a) and law 2 (6b).

Fig. 17. Boundary curves used for specifiying boundary conditions.



to explore different values of porosity (0–10% with 1 point

increment, at fixed grain size of 0:7 mm) and grain size (0.1 mm,

0.3 mm, 0.5 mm, 0.7 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm,

3.0 mm, at fixed porosity of 3%) in order to evaluate their possible

impact. Of course the impact that may or may not be observed

numerically is directly linked to the empirical laws chosen and

identified in Sections 3 and 6.

In typical icing conditions, ice will build up along the whole

wing span. Therefore, in this case, plane strain seems to be the

better choice for the two dimensional formulation of elasticity,

for it corresponds to the case of a body of infinite span. However,

plane stress was also used in order to gauge the impact of the 2D

elasticity formulation.

To summarize two numerical experiments are defined, one

which is defined by a flat plate, and the other by a NACA0012

airfoil. The experiment consists in varying Lf until fracture occurs,

starting with Lf ¼ 0.

7.1. Flat plate configuration

This may be the simplest case we can consider: An ice shape

attached to a flat plate, illustrated Fig. 18 (not to scale). The total

length of the flat plate, Lfp is set to 0:9 m. The length of the beveled

region is Lb ¼ 0:05 m and L0 is set to 0:2 m. The thickness of the

plate is hfp ¼ 2:2 mm. In this case Lt ¼ 31:225 mm. The aerody-

namic conditions are the following (see Table 2):

Fig. 20(a) shows the pressure field as given by the Euler solver,

and the damage field for
Lf
Lt
¼ 72%; dgrain ¼ 0:7 mm and / ¼ 3%. The

pressure in the water film was set to 68,000 Pa and the external

pressure distribution is plotted in Fig. 19. As expected the pressure

decreases when the flow goes over the ice lump. The uplifting force

leads to a completely cracked state. If the ratio
Lf
Lt
is too low, damage

barely accumulates and fracture does not occur, as shown

Fig. 20(b) (
Lf
Lt
¼ 71%; dgrain ¼ 0:7 mm and / ¼ 3%).

Fig. 21 represent
Lf
Lt

as a function of grain size and porosity.

Increasing grain size clearly has the effect of lowering the critical

melted length. This is in agreement with the fact that grain size

reduces fracture toughness. Variation of porosity has a lower

impact in
Lf
Lt
. Still, the effect is visible: increasing porosity decreases

the critical value of
Lf
Lt
.

Switching from plane strain to plane stress has the effect of

reducing
Lf
Lt
. However the trends and conclusions remain the same

as in plane strain.

7.2. Airfoil configuration

Here a more realistic case is considered: a NACA0012 airfoil on

which an ice shape is attached. The aerodynamic conditions for

this test case are almost the same as for the flat plate, except for

the angle of attack which is set to 4�. The case is illustrated in

Fig. 22 (not to scale). The ice shape starts at x ¼ 0:02 m and extends

over a curvilinear distance of Lt ¼ 0:0337 m (see Table 3).

The pressure in the water film was set to 67,000 Pa and the

external pressure distribution is plotted in Fig. 19. As in the case

of the flat plate, a pressure decrease over the bump can be

observed. However the pressure decrease is more pronounced. This

leads to lower critical values of
Lf
Lt
. Fig. 23(b) shows the pressure

field as given by the Euler solver, and the damage field for
Lf
Lt
¼ 62%; dgrain ¼ 0:7 mm and / ¼ 3%.

As in the case of the flat plate, increasing grain size decreases

the critical value of
Lf
Lt

(see Fig. 24(a)). This decrease is sharp in

the range of small grain sizes and tends to stabilize for the higher

values of grain size. The effect of porosity is again much slighter

but still visible and has the same effect, as can be seen in

Fig. 24(b). Here again, switching to plane stress decreases the val-

ues of
Lf
Lt
.

8. Discussion

The results of the numerical experiments show that, in both the

flat plate and airfoil cases, a phenomenon of detachment before

complete melting of the interface is possible. At a given critical

value of
Lf
Lt
, the stress concentration is sufficient to enable crack

nucleation and propagation over the whole thickness, therefore

tearing off a certain amount of ice. The crack always nucleated

from the inner tip of the melted region.

The effects of grain size and porosity on
Lf
Lt
are visible. In both

cases, grain size has a prominent effect for values ranging from

0:1 mm to 1:5 mm, where the critical value of
Lf
Lt

is abruptly

decreased when grain size increases. For values ranging from

1:5 mm to 3:0 mm the effect of grain size tends to reach a limit.

As for porosity, its effect is lower but more regular. Increasing

porosity decreases
Lf
Lt
and it does so in a steady manner.

If we look back at Fig. 16 (b) and (a), and compare them to

Figs. 21 and 24, we observe that they exhibit the same trends with

Fig. 18. Flat plate test case.

Table 2

Aerodynamic conditions.

Mach P1 (Pa) T1 (K) a (°)

0:4 61640:0 263:15 0:0

Fig. 19. Exterior pressure distribution.



respect to grain size and porosity. The mathematical model resti-

tutes the effects of the empirical laws. One could argue that from

this point of view the conclusions concerning the effect of porosity

and grain size were predictable (qualitatively) and are somewhat

artificial. But we should bear in mind that the problem is nonlinear.

The pressure distributions could have been such that the

shedding would have always occured for the same value of
Lf
Lt
,

leaving dgrain and / to have insignificant effects. Or, it could have

been that their effects on E and K IC would have not been sufficient

to change the outcome of the simulations. The fact that an effect is

numerically predicted means that, for this specific kind ice

shedding situations, those two material parameters seem to be

relevant.

We also noted that changing the two dimensional formulation

from plane strain to plane stress reduces the predicted values of
Lf
Lt
.

However we must point out some limitations:

� In order to characterize the mechanical behavior of atmospheric

ice we have used empirical relations. Although these seem to

give good agreement they have their limitations. It is very

(a) Clear fractured state through the ice. (b) No fracture if
Lf

Lt
too low

Fig. 20. Pressure and damage fields.

(a) Effect of grain size (b) Effect of porosity

Fig. 21. Critical value of
Lf
Lt
as a function of porosity and grain size, for both plane strain and plane stress.

Fig. 22. Airfoil test case.

Table 3

Aerodynamic conditions.

Mach P1 (Pa) T1 (K) a (°)

0:4 61640:0 263:15 2:0



complicated to study the mechanical properties of atmospheric

ice. Most of the time experimental results are highly scattered

and no precise laws are available.

� A simplified inter-cycle ice shape was assumed.

� The ice shape may grow in time. This is not taken into account.

However we do not think that this would have a large effect.

The characteristic time of crack propagation is much lower than

that of ice accretion (as soon as the critical ice shedding condi-

tions are reached).

� Surface tension was not taken into account.

� Adhesion forces were not taken into account. The process may

actually be a mix of fracture and purely adhesive debonding.

� Viscous flow effects such as friction were not taken into

account. However the contribution of friction is negligible com-

pared to pressure.

� In reality, a feedback process between the lifting of the ice

shape and the flow field occurs. The lifting of the ice shape

occurs simultaneously with a corresponding change in the flow

field. And this change in flow field immediately induces a new

lifting force on the ice shape. This process is not taken into

account. The pressure distribution given by the first computa-

tion is considered as fixed. Still, the change in pressure distribu-

tion would lead to a higher uplifting force in this case. Therefore

this should not impact the results significantly.

That being said, the results of these numerical experiments are

in agreement with actual experimental observations made when

testing de-icing systems in icing wind tunnels. The fact that the

proposed ice shedding mechanism is the correct and/or dominant

one for electro-thermal ice protection systems remains to be tested

experimentally. Still, it constitutes an interesting way forward for

future investigation and modeling of ice shedding.

9. Conclusion and perspectives

A possible ice detachment mechanism has been proposed and

modeled using damage mechanics. Empirical relations were iden-

tified to determine the mechanical properties of atmospheric ice.

This modeling strategy was first assessed on a double edge notched

test case for which experimental results were available. We then

considered a simple dumbell specimen in order to calibrate and

identify the model parameters. With numerical results in good

agreement with experimental data, two numerical experiments

were defined. These simulations served to test the proposed ice

shedding mechanism. They were both based on the same kind of

teardrop ice shape. For both cases detachment was predicted

before the whole contact length was melted. We therefore

conclude that this type of shedding mechanism is relevant.

Hence we will take this mechanism into account when further

investigating the physical functioning of an ETIPS. These results

may also be helpful in developing simplified ice shedding

prediction models.

A new validation test case for the fracture mechanics model was

also performed. It was based on mixed mode fracture experiments

(a) Exterior pressure distribution (b) Clear fractured state through the ice

Fig. 23. Pressure distribution and damage field for the airfoil case.

(a) Effect of grain size (b) Effect of porosity

Fig. 24. Critical value of
Lf
Lt
as a function of porosity and grain size, for both plane strain and plane stress.



for concrete. Very good agreement between experiment and

numerical simulation was observed.

Further investigation on the mechanical properties of atmo-

spheric ice is needed, in particular concerning aspects linked to

in-flight accretion conditions. The empirical laws on which the

parameter identification was based only provide a first approach.

Grain size and porosity seem to play an important role in the ice

shedding mechanism. Some improvement could be obtained by

incorporating porosity and/or grain size directly in the constitutive

law or damage model. Work in this direction has already been

done by Eskandarian (poroelastic constitutive law) [7].

We have also pointed out several hypotheses that were made

when simplifying the problem to obtain the numerical experiment

cases. One of the main improvements we seek to add in further

work is an adhesion model. This will enable us to investigate the

competition between adhesive debonding and brittle failure.

Ongoing work also includes the investigation of ice thickness

effects.

Finally, experiments should also be conducted in order to vali-

date this process. They would also be needed to assess the domain

of validity of the chosen empirical laws for Young’s modulus and

fracture toughness.
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Appendix A. Numerical settings

All damage mechanics computations were realized with an in-

house finite element code. Triangular elements were used and

the meshes were generated using the open source code Triangle

[19]. The numerical settings are summed up in the following table

(see Table 4):

The aerodynamic computations were done with an in-house

compressible Euler solver (2nd order Roe scheme (MUSCL) and

implicit time stepping). Both meshes consisted of triangular ele-

ments (�35,000).
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Table 4

Numerical settings.

£ Number of elements Type of element l

Dumbell 40,000 Lagrange P1 5:0� 10ÿ4

Flat plate 40,000 Lagrange P1 4:0� 10ÿ5

Airfoil 45,000 Lagrange P1 4:0� 10ÿ5


