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Approximate unconditional maximum likelihood
direction of arrival estimation for two closely

spaced targets
François Vincent, Olivier Besson and Eric Chaumette

Abstract—We consider Direction of Arrival (DoA) estima-
tion in the case of two closely spaced sources. In this case,
most high resolution techniques fail to estimate the two DoAs
if the waveforms are highly correlated. Maximum Likelihood
Estimators (MLE) are known to be more robust, but their
excessive computational load limits their use in practice. In
this paper, we propose an asymptotic approximation of the
Unconditional Maximum Likelihood (UML) procedure in the
case of a Uniform Linear Array (ULA) and two closely spaced
targets. This approximation is based on an asymptotically (in
the number of observations) equivalent formulation of the UML
criterion, and on its Taylor series approximation for small DoA
separation. This simplified procedure, which requires solving
a 1D-optimization problem only, is shown to be accurate for
source separation lower than half the mainlobe. Furthermore, it
outperforms conventional high resolution algorithms in the case
of two correlated sources.

Index Terms—Maximum Likelihood, Direction Of Arrival,
Uniformly Linear Array

I. INTRODUCTION

Spatially separating sources is a central problem in many
applications such as astronomy, seismology, radar, and sonar,
and it has been one of the most addressed signal processing
problems in the last forty years. The main goal of these
techniques is to improve over the Rayleigh resolution for DoA
estimation of plane waves impinging on an array of sensors.
Most popular techniques include Capon [1], MUSIC [2] [3]
or root-MUSIC [4], [5], ESPRIT [6] and Min-Norm [7] in
the case of a ULA. Most of these techniques can achieve
near optimal performance whenever sources are uncorrelated
[8] but degrade rapidly when source amplitudes tend to be
correlated or even coherent. This is the case when one has
to deal with multipath which is a common situation in many
practical applications (Radar, Sonar, telecommunications and
satellite navigation for instance). Some methods such as
spatial smoothing [9] are known to improve robustness to
correlation, but the price to be paid is a loss of resolution.
Moreover this kind of technique is difficult to use with arrays
comprising a low number of sensors. In this challenging
scenario, one has to turn to optimal techniques such as
Maximum Likelihood (ML). Two ML criterion can be
derived, depending upon whether the source amplitudes
are considered to be unknown deterministic or stochastic.
The Conditional ML (CML) estimator is more general as it
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doesn’t make any assumptions on the source model; however,
it is known to be less accurate than the UML which assumes
that the source amplitudes are temporally white Gaussian
variables [10]. The deterministic and stochastic Cramer Rao
Bounds (CRB) have also been derived [10] and it has been
shown that the UML is efficient whereas the CML is not,
because the number of unknown parameters in the model
grows with the number of snapshots. The main drawback
of such algorithms remains their computational cost. Indeed
one has to solve a non-linear multidimensional optimization
problem to estimate the DoA. To reduce this complexity,
some recursive simplified procedures have been proposed
in the literature such as the Alternating Projection [11], the
Expectation Maximization principle [12], the IQML [13] or
IMODE [14]. More recently, a data-supported grid search
approach has been proposed [15] and the use of genetic
algorithms to solve the multidimensional optimization has
shown very good results [16] [17]. But the majority of
these techniques requires a good initialization and are not
guaranteed to converge to the global solution.

In this paper, we consider the case of two closely spaced
sources. It is the natural framework when dealing with
high resolution problems. Moreover, this scenario usually
appears in real life applications such as over-the-sea radar
target measurement, where one principal multipath is highly
correlated with the direct path, or geostationary satellite
communications. This problem has been addressed in several
papers, see e.g., [18]. In [19], we proposed a procedure to
simplify the CML when dealing with two closely spaced
targets. In this paper, we now focus on the UML estimator
which is known to have higher performance. For this last
criterion, the approximation proposed in [19] cannot be
directly applied. We propose to use an equivalent, asymptotic
expression of the UML criterion and an approximation of it in
case of closely spaced targets approximation, which leads to
a simple 1D search algorithm to estimate the two frequencies
of interest. These Approximate UML (AUML) estimates
are shown to be very close to the exact UML solution and
outperform common estimators such as Root-MUSIC or
ESPRIT in the case of correlated sources.

This paper is organized as follows. In the following sec-
tion, we introduce the framework at hand and we recall the
expressions of the UML and the corresponding CRB. Then, as
described in [19], we perform a Taylor expansion of the noise
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subspace projection with respect to the spatial frequency dif-
ference in section III. This approximation, applied to an equiv-
alent UML expression [20] allows us to calculate an estimate
of the frequency difference. Then, the two spatial frequencies
can be easily estimated using a 1D-minimization. Numerical
simulations illustrate the performances of the AUML in section
IV and our conclusions are drawn in section V.

II. DATA MODEL

We assume that two closely spaced sources impinge on a
narrow-band uniform linear array of M sensors with inter-
element spacing d. Their respective DoA θ1 and θ2 correspond
to two spatial frequencies fi = d

λ sin θi, i = 1, 2. For
convenience, we prefer to use f1 and ∆f = f2−f1, where ∆f

is much smaller than the Rayleigh resolution (∆f � 1/M ),
so that the model at hand can be written as:

xt = A(f1,∆f )st + nt t = 0, · · · , (N − 1) (1)

where

• N is the number of snapshots.
• A(f1,∆f ) = [a(f1) a(f1 + ∆f )] ∈ CM×2 with a(f) =

1√
M

[1 e2iπf ... e2iπf(M−1)]T denoting the normalized
steering vector.

• st ∈ C2 stands for the vector of the Gaussian ampli-
tudes of the sources. st is supposed zero mean circu-
larly and temporally white : E

{
sts

H
t′

}
= Rsδt−t′ and

E
{
sts

T
t′

}
= 0 where Rs is non-singular (|Rs| 6= 0).

• nt ∈ CM denotes the noise vector and is assumed to
be zero-mean circularly Gaussian with covariance matrix
σ2I where σ2 is an unknown scalar and independent from
st. Moreover, nt is supposed to be temporally white, so
that E

{
ntn

H
s

}
= σ2Iδt−s and E

{
ntn

T
s

}
= 0.

The problem at hand consists in estimating f1 and the fre-
quency difference ∆f . The UML solution is obtained by
maximizing the log-likelihood function with respect to the
unknown parameters. Concentrating the likelihood function
with respect to σ2 and Rs, it is well known that the UML
estimator of f1 and ∆f is given by [21]

f̂1, ∆̂f = arg min
f1,∆f

∣∣∣∣∣∣PR̂P +
Tr
{
P⊥R̂

}
P⊥

M − 2

∣∣∣∣∣∣ (2)

where Tr {.} and |.| are respectively the trace and the determi-
nant of matrix between braces. P = P (f1,∆f ) is the projec-
tion onto the subspace spanned by the columns of A(f1,∆f )
(signal subspace) and P⊥ = I −P is the projection onto the
noise subspace. R̂ = 1

N

∑N−1
t=0 xtx

H
t is the signal covariance

matrix estimate of R = E
{
xtx

H
t

}
= ARsA

H + σ2I .
Based on this stochastic model, one can also derive the
associated CRB [10] :

Bu =
σ2

2N

(
Re
[
RsA

HR−1ARs �HT
])−1

(3)

where H = ∆HP⊥∆ with ∆ = [∂a(f)
∂f |f1

∂a(f)
∂f |f1+∆f

].

III. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION
FOR TWO CLOSELY SPACED SOURCES

As stated before, we focus on the case of two close spatial
frequencies. We can then conduct a Taylor series expansion
of the UML criterion with respect to the frequency difference
∆f . However, it appears to be difficult to directly apply this
Taylor expansion to the UML criterion from eq. (2). Therefore,
we turn to the following asymptotic (for large N ) equivalent
expression, V (f1,∆f ) of the UML criterion in (2), namely
[20]:

V (f1,∆f )

(M − 2)
=

Tr
{
P⊥R̂

}
(M − 2)

− (M − 2)

Tr
{
P⊥R̂

−1
} (4)

As stated in [20], it is noteworthy that this equivalent criterion
is the difference of two estimators of the noise power σ2.

The first term,
Tr{P⊥R̂}

(M−2) corresponds to the CML criterion,
to be minimized when the sources are supposed deterministic
[8]. The second one, (M−2)

Tr
{
P⊥R̂

−1
} is another noise power

estimator as it can be noticed that (P⊥R̂
−1

) tends towards
(P⊥

σ2 ) when the number of snapshots increases.

This alternative criterion shows a simpler dependence with
respect to the noise subspace projection matrix which contains
the frequencies we are looking for. Considering the following
relationship between the two steering vectors,

a(f1 + ∆f ) = D(∆f )a(f1) (5)

where D(∆f ) = diag
(
[1 e2iπ∆f ... e2iπ∆f (M−1)]

)
in the case

of ULA, we can easily develop the expression of P and exhibit
its dependence on ∆f :

P (f1,∆f ) =
1

1− |c(∆f )|2
[a(f1)aH(f1)+

D(∆f )a(f1)aH(f1)DH(∆f )−c(∆f )a(f1)aH(f1)DH(∆f )

− c(∆f )∗D(∆f )a(f1)aH(f1)] (6)

where c(∆f ) =
Tr{D(∆f )}

M .

As we are interested in the case where ∆f � 1, we can
then conduct a similar Taylor series expansion as we have done
in [19] both for D and c (where, for the sake of notational
simplicity, we have temporarily dropped the dependence with
respect to f1 or ∆f ) :

D =
∑
k

Dk∆k
f ; (7)

c =
∑
k

ck∆k
f ; ck =

Tr {Dk}
M

(8)

where Dk = (2iπ)k

k! diag
(
[0k 1k... (M − 1)k]

)
.

Substituting these expressions into equation (6), it is
straightforward to show that

P = −
∑
n=1 ∆n

fMn∑
n=1 ∆n

fdn
(9)
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with

Mn =
n∑
k=0

Dkaa
HDH

n−k − ckaaHDH
n−k − c∗kDn−kaa

H

dn =
n∑
k=0

ckc
∗
n−k.

Since c∗1 = −c1 (due to pure complex phase terms in the
steering vector), it follows that M1 = 0 and d1 = 0.
Therefore,

P⊥ = I +
M2 + M3∆f + M4∆2

f +O(∆3
f )

d2 + d3∆f + d4∆2
f +O(∆3

f )

' I +
1

d2
(M2 + M3∆f + (M4 −

d4

d2
M2)∆2

f ) +O(∆3
f )

(10)

where we used the fact that d3 = 0. Substituting (10) in (4)
(retaining only the terms up to ∆2

f ) and differentiating with
respect to ∆f , the following closed-form expression of the
frequency difference is obtained:

∆AUML
f (f1) = − β1 + α1β

2
0

2(β2 + α1β0β1 + α2β2
0)

(11)

where

α1 =
Tr
{
M3R̂

}
d2(M − 2)

(12)

α2 =
Tr
{

(M4 − d4
d2
M2))R̂

}
d2(M − 2)

(13)

β0 =
Tr
{

(I + M2

d2
)R̂
−1
}

(M − 2)
(14)

β1 =
Tr
{
M3R̂

−1
}

d2(M − 2)
(15)

β2 =
Tr
{

(M4 − d4
d2
M2))R̂

−1
}

d2(M − 2)
(16)

To estimate the lower frequency, f1, we just have to substitute
this expression into (4) and to minimize the remaining 1D-
criterion, i.e.,

f̂UML
1 = arg min

f1
V (f1,∆

UML
f (f1)) (17)

Hence, we have replaced the computationally intensive 2D
UML procedure by a simpler 1D search algorithm providing
an equivalent estimation precision, as shown in section IV.

IV. NUMERICAL ILLUSTRATIONS

In this section, we compare the performance of this approx-
imate UML procedure with that of the exact UML estimator
and its asymptotic formulation,V (f1,∆f ) from (4), based on
a 2D grid-search over f1 and f2. For comparison purposes,
we also display the results from the CML estimator and
its approximate version for two closely spaced targets from
[19] (ACML), as well as the performance of two popular
algorithms, namely ESPRIT and root-MUSIC. We use the
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Fig. 1. Uncorrelated sources, SNR variation

frequency vector Mean Square Error (MSE) (calculated from
[f1 f2]T ) as a figure of merit to compare the different
algorithms and the deterministic and stochastic CRB.
For all the following simulations we consider a uniformly
spaced linear array of M = 8 isotropic sensors. The spatial
frequencies of the sources are f1 = 0.1 and f1 + ∆f with
∆f = 1

5M . The sample covariance matrix is estimated from
N = 3 ×M snapshots. The MSE are computed from 1000
Monte-Carlo runs where the Gaussian vectors nt and st vary
in each trial. The signal to noise ratio is defined as

SNR =
Tr
{
AHARs

}
σ2M

. (18)

We first compare all the above mentioned algorithms for
Gaussian and uncorrelated sources, as a function of the SNR,
in order to identify the so-called threshold region where the
MSE departs from the CRB. According to Fig. 1, the following
comments are provided. First of all, in the asymptotic region,
as it is well known in the literature, all algorithms are close
to the CRB and the two CRB tend one towards the other. We
can also notice that the deterministic CRB (CRBc) is always
lower than the stochastic one (CBRu) as mentioned in [10].
The first algorithm to depart from the CRB is root-MUSIC,
then ESPRIT and the non-approximated UML algorithms
some 4dB less, the approximated UML procedure, one dB
less and finally the deterministic ML algorithms. It is first
noteworthy that the UML is less accurate than the CML in
the threshold region, but performs similarly in the asymptotic
region. Hence, the superiority of the UML over the CML is
questionable as the former requires stronger hypotheses about
the sources, and even in this case, its performance is close
to that of the CML in the asymptotic region and degrades
more rapidly when SNR decreases. Secondly, in our case of
interest of two closely spaced targets, we can notice that the
asymptotic expression of the UML criterion in (4) gives more
precise results than the exact formulation showing a kind
of robustness in the threshold region. To finish, the AUML
algorithm, proposed in this paper, exhibits similar and very
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Fig. 2. Uncorrelated sources, frequency difference variation
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Fig. 3. Correlated sources, correlation coefficient variation

good results proving the validity of the procedure and its
efficiency.

Now, we examine the robustness of the proposed algorithm
with respect to the spatial frequency difference between the
two targets. Fig. 2 represents the MSE as a function of ∆f

for SNR = 12dB and allows to analyze to what extent the
Taylor expansion derived in this paper is valid. We observe
that the MSE of the AUML departs from that of the exact
UML when the frequency difference reaches approximately a
third of main lobe width and does not degrade too much up
to half the main lobe. It can be noticed that over this point
high resolution methods may not be necessary. On the left
side of the ∆f axis, we observe, again, a kind of robustness
of the proposed algorithm compared to the exact UML as
it can resolve 30% more closely spaced targets for a given
SNR. This point has to be emphasized and should be of
great importance when one has to resolve two very close
frequencies. Moreover, the behavior of the AUML is similar
to that of the ACML.

Finally, we examine the robustness of the algorithms to
source correlation in Fig. 3. This last simulation has been

conducted with a frequency difference ∆f = 1
5M and for

SNR = 15dB. First of all, we can see that the optimal perfor-
mance degradation when the correlation coefficient increases
is very progressive as the two CRB only increase of 7dB when
ρ = 1. We can notice that the UML is more robust to source
correlation than the CML. Although the UML assumes that
the sources are not coherent (Rs must be full rank), Stoica
and al. [22] has shown that it gives as precise results as the
UML tailored for coherent sources. Once again, the AUML
is as robust as the original UML and provides outstanding
performance in this complicated scenario where the best of
the classical high resolution techniques cannot resolve the two
targets if ρ > 0.4.

V. CONCLUSIONS

This paper proposed to exploit a little known asymptotic
formulation of the UML criterion together with an asymptotic
approximation for small separation between two frequencies.
As a result, a 1D-minimization procedure only is needed to
estimate the two frequencies, which yields a computationally
simple algorithm. The latter exhibits near efficient perfor-
mance up to half the main lobe width frequency difference
and an even better resolution than UML in case of very close
sources. Moreover, we also get equivalent UML performance
in case of highly correlated or coherent sources where the
proposed method outperforms the CML algorithm as well as
common high resolution techniques.
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