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ABSTRACT

Dimensionless analysis is used to improve the computational performance when using operator splitting meth-
ods to model the heat and mass transfer during pyrolysis. The specific examples investigated are thermal de-
composition of polymer composite when used as heat shields during space-craft re-entry or for rocket nozzle’s
protection, and the In-Situ Upgrading (ISU) of solid oil shale by subsurface pyrolysis to form liquid oil and
gas. ISU is a very challenging process to model numerically because a large number of components need to
be modelled using a system of equations that are both highly non-linear and strongly coupled. Inspectional
Analysis is used to determine the minimum number of dimensionless groups that can be used to describe the
process. This set of dimensionless numbers is then reduced to those that are key to describing the system
behaviour. This is achieved by performing a sensitivity study using Experimental Design to rank the numbers
in terms of their impact on system behaviour. The numbers are then sub-divided into those of primary im-
portance, secondary importance and those which are insignificant based on the t-value of their effect, which
is compared to the Bonferroni corrected t-limit and Lenth’s margin of error. Finally we use the sub-set of
the most significant numbers to improve the stability and performance when numerically modelling this pro-
cess. A range of operator splitting techniques is evaluated including the Sequential Split Operator (SSO), the
Iterative Split Operator (ISO) and the Alternating Split Operator (ASO).
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1. INTRODUCTION

Modelling the thermal decomposition in porous media by pyrolysis is challenging because the outcome of this
process depends upon a large number of physical mechanisms and their parameters. Many of these parameters
are uncertain, e.g. the reaction constants and the temperature dependence of the material properties [9, 10].
In addition, the relative importance of these parameters depends upon the application. Examples of such ap-
plications include thermal decomposition of polymer composites when used as heat shields during spacecraft
re-entry or for rocket nozzle’s protection [2, 11], wood and biomass pyrolysis for heat generation [16], or
In-Situ Upgrading of oil shale or heavy oil [5, 18].

Numerical simulation is typically used to predict the outcome of these processes, calibrated and validated by
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reference to laboratory studies. In most cases these laboratory investigations are performed on different length
scales and under different conditions from the planned application and so their results cannot be used directly
in designing that application [11]. Before the advent of numerical simulation, dimensionless numbers were
often used to scale laboratory results to the application length scale and conditions. These were developed
using techniques such as Dimensional Analysis (DA) [26] and Inspectional Analysis (IA) [27].

Despite the advent of faster and more powerful computers, numerical simulation of the outcome of the pyrolysis
of porous media remains challenging because of the large number of processes that need to be modelled and
the non-linearity of the equations describing these processes. Accurate prediction is further complicated by the
fact that many of the inputs needed to describe these processes are uncertain, e.g. the reaction constants and the
temperature dependence of the material properties [9, 11]. As well as scaling from laboratory to application
scale, dimensionless numbers can also be used to identify the key processes in a given application, thus enabling
the development of more efficient numerical schemes.

Various methods for reducing the Central Processing Unit (CPU) time in simulations involving thermal com-
positional flow coupled with chemistry can be considered. One can identify several numerical operators in
the simulation of such processes: heat transport and diffusion, mass transport, and chemical reactions. The
time constant of the system is driven by the most penalizing operator. Decoupling techniques, or so-called
operator splitting methods, provide a framework to deal separately with each operator and then propose a dedi-
cated resolution (special numerical schemes, explicit/implicit) that leads to smaller systems and more efficient
resolution.

Operator splitting is a widely used method for solving reactive transport problems [6, 14]. The basic idea is
to split the original problem into a sequence of smaller problems. However, a significant drawback of splitting
technique is that decoupling the governing equations introduces an additional source of numerical error, known
as splitting error [29].

In this paper, Inspectional Analysis was used to determine the minimum number of dimensionless groups that
can be used to describe the process. We then described several operator splitting methods to solve the non-
linear systems. The set of dimensionless numbers was then reduced to those that are key to describing the
non-linear behaviour of the system by performing a sensitivity study using Experimental Design.

2. MATHEMATICALMODEL AND DIMENSIONLESS NUMBERS

In this work, we developed a model for the thermal decomposition of polymer composite when used for heat
shielding during spacecraft re-entry or for rocket nozzle’s protection. Figure 1 illustrates our conceptual model
of this process as represented in Henderson andWiecek experiment [11]. Radiative heat flux caused the thermal
decomposition and were represented by the incident heat flux on the left end of the domain. The material could
exchange heat at both ends by radiation. The boundary pressure on both ends were equal to the initial pressure
P0.

The following assumptions were made:

1. The solid phase decomposes into a non-reactive gas

2. The decomposition gas behaves ideally

3. Gas flows are described by Darcy’s law

4. The gas viscosity has a linear dependence on temperature

5. The permeability has a linear dependence on the solid saturation

6. Local thermal equilibrium (LTE) exists between the solid and the decomposition gas



Fig. 1 Model for thermal decomposition of polymer composite as represented in Henderson and Wiecek ex-
periment [11]. Figure from [22].

7. Thermal expansion of the solid is negligible

8. Solid and gas heat capacities and thermal conductivities are constant

9. The thermal conductivities of the inert solid and the solid phase are equal.

These assumptions have been discussed in previous work [7, 11, 16, 22, 25]. They allow the system to be
described by only the pressure P , the temperature T , the solid saturation Ss and the gas saturation Sg. The rate
of decomposition was modelled using an Arrhenius law of order n:

∂φρsSs

∂t
= −A (φρsSs)

n exp

(
−

Ea

RT

)
(1)

The total mass conservation equation was:

∂φρgSg

∂t
= −

∂ρgvg
∂x

−
∂φρsSs

∂t
(2)

The left-hand side of equation (2) is the rate of mass accumulation of gas in the pores. The first term on the
right represents the rate of change of the mass flow and the last term the rate of gas generation by pyrolysis.
The ideal gas equation of state was used for gas density:

ρg =
MgP

RT
(3)

The velocity of the gas was given by Darcy’s law:

vg = −ks
K

μg

∂P

∂x
(4)

with the gas viscosity given by:

μg = μg,0 +
∂μg

∂T
(T − T0) (5)

and the solid mobility multiplier ks:

ks = 1−
K −K0

K

Ss

Ss,0
(6)

Assuming LTE, the energy conservation equation was:

∂

∂t
((1− φ) ρIγI + φρsSshs + φρgSghg) = −

∂

∂x
(ρgvghg)−

∂q

∂x
−Δhr

∂φρsSs

∂t
(7)



The first term in Equation (7) is the rate of energy accumulation in the domain; the second term represents the
rate of energy transferred by convection; the third term represents the rate of energy transferred by conduction;
the last term accounts for energy consumption or generation by chemical reaction. This equation was modified
by expanding the accumulation and convection terms and then substituting in the mass conservation equation
(2), to yield:

((1− φ)ρIγI + φρsSsγs + φSgρgγg)
∂T

∂t
= −ρgvgγg

∂T

∂x
−

∂q

∂x
− (Δhr0 + hs − hg)

∂φρsSs

∂t
(8)

Finally, the heat flow by conduction q was modelled by Fourier’s law:

q = − ((1− φ)κs + φκsSs + φκgSg)
∂T

∂x
(9)

In Equation 9, we adopted for convenience a simple estimate of the effective thermal conductivity which de-
pends on the volume fraction of the solid and gas in the material. This approximation was previously used in
Bennon and Incropera [4]. More complex expressions would not fundamentally change the analysis. Equations
(1), (2), (4), (8) and (9) formed a set of coupled non-linear equations to be solved simultaneously for P , T , Ss,
vg and q.

For the heat flow boundary conditions, we assumed constant flux with heat loss by radiation. This gave:

at x = 0 ∀t

q = qi − εsσT
4

at x = L ∀t

q = −εsσT
4

(10)

For the mass flow boundary conditions, we assumed constant pressure equal P0. This gave:

at x = 0 ∀t

P = P0 or vg = 0

at x = L ∀t

P = P0 or vg = 0

(11)

Finally, we applied the following initial conditions:

Ss = Ss,0

T = T0 at t = 0 ∀x

P = P0

(12)

Next, we used Inspectional Analysis (IA) to determine the set of dimensionless numbers that fully describe our
mathematical model. This work is described in more details in Maes et al [22]. By employing their method,
we obtained a minimal form of the dimensionless groups [27]. The groups are summarized in Table 1, where
τ is defined as the time scale of thermal diffusion in the domain:

τ =
(1− φ) ρIγIL

2

κs
(13)

The dimensionless numbers defined a scaling relationship between different values of the dimensional pa-
rameters. The non-linear behaviour of various numerical methods was then tested by performing a sensitivity
analysis with these parameters.



Table 1 Summary of Scaling Groups

Name Notation Definition Description
Damköhler number DK Aτ (φρs)

n−1 chemical reaction rate
heat diffusion rate

Arrhenius number Na
Ea

RΔT

activation energy
potential energy

Reduced reaction enthalpy Δh∗

r
Δhr

γsΔT

energy liberated
energy stored

Reduced initial temperature T ∗

0
T0

ΔT

Reduced final porosity δ φ

φ0

= 1
1−Ss0

Reduced final permeability ξ K
K0

Lewis number Le
φμg,0κs

K0P0(1−φ)ρIγI

heat diffusivity
pressure diffusivity

Reduced gas density ρ∗g
MgP0

ρsRΔT

Solid specific heat decomposition fraction Δγ∗

s
φρsγs

(1−φ)ρIγI

Reduced gas specific heat γ∗

g
γg

γs

Reduced gas viscosity derivative Δμ∗

g
∂μg

∂T
ΔT
μg,0

Gas heat conductivity reduction factor Δκ∗g
φ0(κs−κg)

κs

Radiative heat loss number ε∗ εsσΔT 3

κs

radiative heat loss
heat flux by conduction

Reaction order n

3. OPERATOR SPLITTING METHODS

The practice of splitting the reaction and transport steps in simulations of reactive chemical transport has
been used in various applications, such as groundwater transport simulations [3], air pollution modelling [19]
and combustion-reaction problems [24]. Operator splitting methods provide a framework to deal separately
with the transport and the chemical reactions. This has two main advantages. First, dedicated solvers can be
applied to each operator. IMPES (Implicit Pressure Explicit Saturation) based transport codes can be coupled
with chemical reaction models. For example, accurate ODE (ordinary differential equation) solvers can be
employed to cope with the sometimes stiff systems of equations describing the chemical reactions. In addition,
different time step strategy can be applied to the different operators, and in the case of ODE, local time steps
may be used. The second advantage concerns the number of variables necessary to solve each operator. In
some cases, the chemical reaction operator depends on variables that do not affect the transport. This happens
for example when a solid immobile phase decomposes through pyrolysis. In addition, complex kinetic models
sometimes require a large number of component, while the transport step can be described with a small number
of pseudo-components [18].

Operator splitting methods have been widely used for linear or quasi-linear operators [8, 12]. The potential of
applying these methods to the thermal decomposition of charring material by pyrolysis can improve precision
and performance.

In our investigation, we described our methods on the Cauchy problem of the form:
⎧⎨
⎩

∂u

∂t
= A (u)u+K (u)u, t ∈ (0, T ] .

u(0) = u0

(14)

In (14), A represents the advection and thermal conduction operator, and K the chemical reaction operator.
Operator splitting methods offer two distinct approaches.



In a Sequential Non-Iterative Approach (SNIA), each operator is applied once sequentially. The simplest and
most common of these methods is the Sequential Split Operator (SSO) [15], which is a sequence of one
transport step followed by one chemical step (SSO-AK, equation 15).

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u∗

∂t
= A (u∗)u∗, t ∈

[
tn, tn+1

]
.

u∗(tn) = u(tn)

∂un+1

∂t
= K

(
un+1

)
un+1, t ∈

[
tn, tn+1

]
.

un+1(tn) = u∗(tn+1)

(15)

SSO can be done the opposite way with one chemical step followed by one transport step (SSO-KA, equation
16). ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u∗

∂t
= K (u∗) u∗, t ∈

[
tn, tn+1

]
.

u∗(tn) = u(tn)

∂un+1

∂t
= A

(
un+1

)
un+1, t ∈

[
tn, tn+1

]
.

un+1(tn) = u∗(tn+1)

(16)

A significant drawback of the SNIA is that decoupling the governing equations introduces an additional source
of numerical error, known as splitting error [29]. The splitting error has been studied extensively for linear
operators [12], however this findings may not necessarily apply to non-linear systems. For constant linear
operators, the error generated by such methods can be linked to the asymmetry of the operator decoupling. The
classical SSO can be modified by using two time steps in an effort to cancel the splitting error, as is done in
the Strang-Marchuk Split Operator (SMSO, equations 17 and 18) sometime called the Alternate Split Operator
(ASO) [28]. ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u∗

∂t
= A (u∗)u∗, t ∈

[
t2n, t2n+1

]
.

u∗(t2n) = u(t2n)

∂u2n+1

∂t
= K

(
u2n+1

)
u2n+1, t ∈

[
t2n, t2n+1

]
.

u2n+1(t2n) = u∗(t2n+1)

(17)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u∗∗

∂t
= K (u∗∗) u∗∗, t ∈

[
t2n+1, t2n+2

]
.

u∗∗(t2n+1) = u2n+1(t2n+1)

∂u2n+2

∂t
= A

(
u2n+2

)
u2n+2, t ∈

[
t2n+1, t2n+2

]
.

u2n+2(t2n+1) = u∗∗(t2n+2)

(18)

The second category of operator splitting methods is the Sequential Iterative Approach (SIA), which attempts
to eliminate or control the splitting error through an iterative process. Unlike SNIA, each sub-step of an iterative
scheme solves an approximation to the fully coupled PDE system. The simplest of these methods is the Iterative
Split Operator (ISO). In this work, we focused our investigation on SNIA.

Pyrolysis of polymer composites and ISU of oil shale are two processes which are challenging to simulate
numerically because they involve the non-linear coupling of chemical reactions and advection. In this paper
we investigate the application of operator splitting to these processes, focussing specifically on simulating the
experiments of Henderson and Wiecek [11]. They investigated the decomposition of a polymer composite at
high temperatures, also developing a 1D numerical model to describe the process, which is similar to the one



presented in this paper but also accounts for the thermal expansion of the material and the evolution of the
thermal properties (heat capacity and thermal conduction) with the temperature. The model was validated by
performing laboratory experiments using basic phenolic resin, which displays typical decomposition behaviour
for glass-filled composites and is used in a large number of high-temperature protection systems [7, 10]. The
experimental study was conducted using a 3 cm thick slab. The pressure at both ends, as well as the initial
pressure, was 1 × 105 Pa and the initial temperature was 24 oC . The solid and gas properties, along with the
initial and boundary conditions that we used in our simulation are summarized in Table 2.

Table 2 Summary of parameters for test case 1

Property Test Case 1
Length L (cm) 3.0
Initial porosity φ0 0.113
Final porosity φf 0.274
Initial permeabilityK0 (m2) 2.6× 10−18

Final permeabilityKf (m2) 2.19× 10−16

Inert solid density ρI (kg/m3) 1981.5
Solid phase density ρs (kg/m3) 2304
Inert solid specific heat capacity γI (kJ/kg) 2.0
Solid phase specific heat capacity γs (kJ/kg) 2.0
Solid thermal conductivity κs (W/m/K) 1.2
Activation energy Ea (kJ/kmol) 2.6× 105

Pre-exponential factor A (1/s) 1.26× 10−24, Ss ≥ 0.33
44.41, 0.33 ≥ Ss ≥ 0.0

Order of reaction n 17.33, Ss ≥ 0.33
6.3, 0.33 ≥ Ss ≥ 0.0

Heat of decompositionΔhr (kJ/kg) 234.0
Gas molecular weightMg (kg/kmol) 18.35
Gas initial viscosity μg,0 (Pa.s) 1.54× 10−5

Gas viscosity derivative ∂μg

∂T
(Pa.s/K) 2.5× 10−8

Gas specific heat capacity γg (kJ/kg) 3.0
Gas thermal conductivity κg (W/m/K) 0.1
Initial pressure P0 (Pa) 105

Initial temperature T0 (0C) 24
Emissivity ε 0.85
Incident heat flux qi (W/m2) 2.8× 105

First, we solved the full system of equations with no splitting using an implicit solution technique with
the Newton-Raphson algorithm to handle non-linearities [17]. We chose a small dimensionless time step
(ΔtD = 10−5) in order to obtain a reference solution. Figure 2 compares our simulated predictions of the
temperature, pressure and total solid mass (inert and reactant) profiles with those obtained experimentally and
numerically by Henderson and Wiecek [11].

Our simulation model did not include thermal expansion, unlike the model of Henderson and Wiecek [11]. To
compare the numerical results with ours, we plotted the temperature evolution for different initial position x0
of the control volumes (figure 2a). The values of the thermal properties of the solid and gas (heat capacity and
thermal conductivity) were chosen so that the temperature profiles were similar [22]. This resulted in similar
profiles for the dimensionless pressure and the solid mass fraction (figures 2b and 2c).

We then studied the evolution of the relative error between our reference solution (using the fully implicit
Newton method) and the three SNIA described above (SSO-AK, SSO-KA and SMSO). We used the following
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Fig. 2 Figure (a) shows the temperature evolution for various initial positions, figure (b) shows pressure profile
in the domain at various times and figure (c) shows the solid mass fraction profile in the domain at various times.
We observed good agreement between our numerical results and Henderson’s experimental and numerical
simulation results

definitions for the normalized error for each variable:

errP = max
n

⎛
⎝ 1

nd

∑
xj

|P (tn, xj)− Pref (t
n, xj)|

P0

⎞
⎠ (19)

errT = max
n

⎛
⎝ 1

nd

∑
xj

|T (tn, xj)− Tref (t
n, xj)|

ΔT

⎞
⎠ (20)

errS = max
n

⎛
⎝ 1

nd

∑
xj

|Sg(t
n, xj)− Sg,ref (t

n, xj)|

⎞
⎠ (21)

For this simple example, we used the Newton-Raphson algorithm for both operators, so the only perfor-
mance improvement concerned the number of variables. For the fully implicit scheme, we needed to solve
for pressure, temperature and gas saturation for each non-linear iterations. The complexity of the algorithm
was ∼ nv log(nv) where nv is the number of variables, so we estimated the CPU time for one non-linear iter-
ation using 3nd log(nd) with nd the number of control volumes in our discretization scheme. For the splitting
methods, we neglected the CPU cost of the chemical reaction operator because it was fully local. Its resolution
complexity was ∼ nv and it could be solved simultaneously on all control volumes. Therefore, the estimated
CPU time for the splitting method was the estimated CPU time for the advection-conduction operator. We used



an IMPES scheme with implicit temperature to solve the transport step, so the estimated CPU time for one
transport iteration was 2nd log(nd)

Figure 3 shows the evolution of the normalized errors with the dimensionless time step and the estimated CPU
time. We observed that the SSO-AK gave a non-physical pressure error. The pressure rose during a chemical
reaction step and can reach non-physical values if not relaxed by a transport step afterwards. However, we
obtained a small saturation error. On the other hand, SSO-KA had a limited pressure error but the saturation
error was large. SMSO gave an interesting compromise between the two methods but the pressure error was
still too big.

�

�

Fig. 3 Figure (a) shows the evolution of the normalized pressure error, figure (b) the evolution of the normal-
ized temperature error and figure (c) the evolution of the normalized saturation error with respect to the time
step size. We observed that the SSO-CKA gives the best compromise in term of error for the pressure, the
temperature and the saturation. Figure (d) shows the advantage of the splitting methods in term of estimated
CPU time

Looking more closely at the error arising from the SSO-KA splitting, we observed that the main component
was coming from the temperature in the chemical reaction step. Indeed, the operator K was performed with a
temperature that had not been transported yet. As the thermal conduction was the dominant process controlling
the temperature, we tried to solve this problem by using a splitting scheme where the thermal conduction was
performed first (operator C), followed by a chemical reaction step (operator K) and finally the advection part
with no thermal conduction (operator A’). This method was defined as SSO-CKA (equation 22).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u∗

∂t
= C (u∗) u∗, t ∈

[
tn, tn+1

]
.

u∗(tn) = u(tn)

∂u∗∗

∂t
= K (u∗∗) u∗∗, t ∈

[
tn, tn+1

]
.

u∗∗(tn) = u∗(tn+1)

∂un+1

∂t
= A′

(
un+1

)
un+1, t ∈

[
tn, tn+1

]
.

un+1(tn) = u∗∗(tn+1)

(22)



The evolution of the normalized errors with the dimensionless time step for SSO-CKA was also plotted on
figure 3. We observed that it gave the best compromise in term of error for the pressure, the temperature and
the saturation. Figure (d) shows the advantage of the splitting methods in term of estimated CPU time. For SSO-
CKA, we needed to solve an additional transport step for the thermal conduction (complexity ∼ nd log(nd)),
but because we removed the thermal conduction from the advection step, the temperature could be treated
explicitly in the advection step [21]. Therefore, the estimated CPU for the SSO-CKA was equivalent to the
estimated CPU of SSO-KA.

We concluded that the SSO-CKA was showing many advantages when applied to Henderson and Wiecek’s
experiment. The splitting error was small compared to those arising from the other SNIA. The estimated CPU
time was reduced compared to the fully implicit Newton method, and the time discretization error could be
reduced by using dedicated solver and local time stepping for the reaction step. However, due to robustness,
this method could not be applied to any test case without an algorithm to control the splitting error.

4. EVALUATION OF COMPUTATIONAL EFFICIENCY USING EXPERIMENTAL
DESIGN

The objective of using operator splitting for these problems is to improve computational speed whilst main-
taining accuracy. This can only be achieved by choosing the largest possible time step that is consistent with
minimizing the splitting error. Unfortunately, the splitting error can not be evaluated a priori especially for
non-linear system. However, we can study it as a function of the physical parameters using the dimensionless
numbers to characterise for which values of those numbers the splitting error is small and SNIA can be used.

The objective of this part of our study is to identify the primary dimensionless groups that influence the splitting
error of the SSO-CKA method. For this, we used a general algorithm for adapting the time step size to control
the time discretization error. The algorithm used an a posteriori error estimator derived from two solutions, one
obtained using a full-size time step Δt, and one using two time steps Δt/2 [8].

The time discretization error for the approximate solution u1 obtained with a single time step of size Δt using
a fully implicit Newton or SSO-CKA is:

u
(
tn+1

)
− u1

(
tn+1

)
= λ (Δt)2 +O(Δt)3 (23)

where u(tn+1) is the exact solution, n is the time index and λ is a constant. Similarly, for the approximate
solution u2, we applied two consecutive time steps of size Δt/2. The time discretization error is:

u
(
tn+1

)
− u2

(
tn+1

)
= 2λ

(
Δt

2

)2

+O(Δt)3 (24)

Subtracting the two equations and solving for λ, we obtain:

λ =
2

Δt2
(un2 − un1 ) (25)

So the order 2 error estimate for u2 is:

ε =
1

nd

nd∑
i=1

|un+1

2,i − un+1

1,i | (26)

where the sum is applied to the nd control volumes. This error is then used to control the time step in order to



limit the discretization error using:

Δtn+1 = min

{
fsΔtn

√(εa
ε

)
, fmΔtn

}
(27)

where εa is the error tolerance, fs ≤ 1 is a safety factor intended to reduce solver failures due to inaccuracies
in the error estimation, and fm ≥ 1 is a maximum time step growth rate factor

In this case the method is used to investigate the dependency of the splitting error with the physical parameters
of the problem. Since the time step size is controlled by the estimated time discretization error (equation
27), the difference between the number of time steps performed by SSO-CKA and the number of time steps
performed by the fully implicit Newton method depends on the splitting error. Let:

y =
number of time iterations with SSO-CKA - number of time iterations with FIM-Newton

number of time iterations with FIM-Newton
(28)

When y is high, it means that SSO-CKA uses smaller time steps than the fully implicit Newton method for
similar time discretization error. This is a consequence of a large splitting error. When y is small, it means
that the time discretization error for SSO-CKA and fully implicit Newton method are similar when used with
similar time steps and so the splitting error is small. We conclude that y is a measure of the splitting error of
SSO-CKA.

We decided to use Experimental Design to investigate y as a function of system inputs. We performed a
sensitivity analysis with the fourteen dimensionless groups as our system parameters. The procedure for a
sensitivity analysis is:

1. Choose the type of Experimental Design

2. Determine a range for each parameter

3. Perform the experimental trials

4. Calculate the main and interaction effects

5. Determine which parameters are important in characterising system performance

In this study, we applied a first-order response surface model with interactions [23]:

y = β0 +
∑

βixi +
∑
i�=j

βijxixj (29)

where y is the response analysed and xi the factors of interest. The βi terms are called main factor effects and
the βij terms the two-factor interaction effects. In this study, we used a two-level fractional factorial design of
resolution V. Algorithms to generate a design of resolution V were described in Myers et al. [23]. The results
of the sensitivity analysis depend only on the resolution of the design and not on the choice of the generators.

We selected a design of resolution V comprising n = 28 trials. The next task was to evaluate a range for each
scaling group. Table 3 defines a minimum and maximum value for each dimensional parameter taken from the
literature [7, 11]. We then obtained a range for our fourteen dimensionless groups (table 4).

We then performed the experimental trials and computed the main effects βi and the interaction effects βij

using the least squares method [23]. In order to obtain a normalized measure of the impact, we computed
the t-value of each effect, which is simply the numerical effect divided by its associated standard error [13].
Figure 4a shows the t-value of the main effects and Figure 4b shows the t-value of the twelve most important
interaction effects.



Table 3 Range of values for the various dimensional parameters of the thermal decomposition of polymer
composite model

Property min max Property min max
L (cm) 1 10 φ 0.1 0.3
φ/φ0 2 4 K/φ (m2) 10−15 10−13

K/K0 40 800 ρI (kg/m3) 1500 2000
γI (kJ/kg) 1 3 κs (W/m/K) 1 2
ρs (kg/m3) 2000 3000 γs (kJ/kg) 1 3

A (φρs)
n−1 (1/s) 1016 1022 Ea(kJ/kmol) 2× 105 3× 105

Δhr (kJ/kg) 100 1000 n 1 50
γg (kJ/kg) 2 4 Mg (kg/kmol) 16 30
μg0 (Pa.s) 10−5 2× 10−5 ∂μg

∂T
(Pa.s/K) 10−8 3× 10−8

κg (W/m/K) 0.05 0.2 ε 0.6 0.9
P0 (Pa) 105 106 T0 (0C) 10 50
Ti (0C) 1000 1600

Table 4 Range of values obtained for the various scaling groups for thermal decomposition of polymer com-
posite. We observe that several numbers, such as Le, vary over a large range, whereas other numbers, such as
T ∗
0 vary over a much smaller range.

Groups min max Groups min max
DK 7.75× 1017 6.90× 1026 Na 15.1 38.0
T ∗

0 0.18 0.340 δ 2.00 4.00
ξ 40.0 800 ρ∗g 4.03× 10−6 5.70× 10−4

Le 4.83× 10−6 0.26 Δμ∗

g 0.47 4.77
Δγ∗

s 0.04 0.72 γ∗

g 0.67 4.0
Δh∗

r 0.02 1.1 Δκg 0.08 0.29
ε∗ 0.15 20.5 n 1 50

In order to classify the importance of the effects, we defined two measures of significance. The first measure
compared the t-value of the effect with the critical value tα,d of a student t-distribution with d degrees of
freedom and a confidence limit 1−α with Bonferroni correction [1, 22]. We obtained the Bonferroni corrected
t-value referred as the t-limit:

t = t0.05/255,150 = 3.8 (30)

The second measure referred as the l-limit was defined by the t-value of Lenth’s margin of error LME [20]
based on a simple formula for the standard error of the effect:

l = LME × t0.05,255 = 1.32 × 1.97 = 2.6 (31)

Effects that were smaller than the l-limit were considered to be insignificant (in white in figure 4). Effects that
were bigger than the t-limit were considered to be primary (in black in figure 4).

The factors were naturally regrouped into three classes:

• The primary factors: ε∗, ρ∗g, Δh∗r , Δγ∗
s, and n. These are the factors which have their main effect or at

least one of their interaction effects bigger than the t-limit. The splitting error of SSO-CKA applied to the
thermal decomposition of polymer composite depends mainly on these five factors and their interactions.

• The secondary factors: DK , Δμ∗
g, Δκ∗g and Le. These are the factors which have no main effect or any

interaction effect bigger than the t-limit but their main effect or at least one of their interaction effects is
bigger than the l-limit. The effect of the secondary factors is not negligible, but it is reduced compared
to the effect of the primary factors.
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(a) (b)

Fig. 4 Variability of time stepping (function y). The various effects were compared with Bonferroni t-limit (in
plain line) and Lenth’s margin of error l (in dashed line). Primary effects were represented in black, secondary
in grey and insignificant in white.

• The insignificant factors: Na, ξ, γ∗
g, δ and T ∗

0 . These are the factors which have no main effect or
interaction effect bigger than the l-limit.

We concluded that the splitting error arising from SSO-CKA mainly depends on the five primary factors.
Hence, the analysis of the performance of SSO-CKA for given system inputes could be restricted to varying
those parameters to help identify where SSO-CKA will not be badly affected by splitting error. We observed
that SSO-CKA was the most useful for small radiative heat loss number, reduced reaction enthalpy and solid
specific heat decomposition fraction, and big reduced gas density and reaction order. With further analysis, one
can hope to identify critical values for those parameters for which SSO-CKA or fully implicit Newton method
should be used.

5. CONCLUSION

This work focused on the application of several operator splitting methods to solve a thermal reactive transport
problem, where solid charring material decomposed into non-reactive gas. We showed that SSO-AK, SSO-KA
and SMSO applied to a simple problem from the literature [11] led to important time discretization errors.
We proposed to solve this issue with a splitting scheme where the thermal conduction was performed first,
followed by a chemical reaction step and finally the advection part with no thermal conduction (SSO-CKA).

SSO-CKA led to small time discretization errors while showing the potential to improve the computation time.
However, the method can not be applied to every test cases without controlling the time step. In order to
study the effect of the splitting error on the time step, we performed a sensitivity analysis using dimensionless
numbers obtained from Inspectional Analysis as our system parameters.

The sensitivity analysis enabled us to divide the dimensionless numbers into three groups (primary, secondary
and insignificant) based on the values of the t and l-limits. We concluded that the splitting error for SSO-
CKA depended essentially on five primary factors: the radiative heat loss number, the reduced gas density, the
reduced reaction enthalpy, the solid specific heat decomposition fraction and the reaction order.

We then could limit the study of the performance of SSO-CKA to those five parameters. Future work could
enable us to define more precisely for which part of the parameter space for the modelling of polymer charring
the use of SSO-CKA would be recommended. The method could also be applied to the In-Situ Upgrading of
oil shale and heavy oil.



Nomenclature

Roman Symbols

A pre-exponentiel factor (kmol1−n/s)

Ea activation energy (J/mol)

h specific enthalpy (J/kg)

K rock permeability (m2)

k mobility multiplier (no unit)

L domain length (m)

M molecular weight (kg/kmol)

P pressure (Pa)

q energy flow by conduction (W/m2)

R universal gas constant (8.314 J/mol/K)

T temperature (K)

t time (s)

v velocity (m/s)

x one dimensional coordinate (m)

Greek Symbols

Δhr reaction enthalpy (J/kg)

ΔT temperature scale ΔT = Ti − T0 (K)

ε emissivity

γ specific heat capacity (J/kg/K)

κ thermal conductivity (W/m/K)

μ viscosity (Pa.s)

φ rock porosity (no unit)

ρ mass density (kg/m3)

σ Stefan-Boltzmann constant (5.67 × 10−8

W/m2/K4)

τ time scale of heat conduction in porous media (s)

Subscripts

0 initial value

g gas

I inert solid

i incident heat value

s solid phase
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