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While a leading edge vortex on an infinite translating wing is shed after a short distance of travel,
its counterpart on a finite span revolving insect wing or maple seed membrane exhibits robust
attachment. The latter explains the aerodynamic lift generated by such biological species. Here we
analyze the mechanisms responsible for leading edge vortex attachment. We compute the Navier-
Stokes solution of the flow past a finite span wing (1) embedded in a uniform oncoming flow, (2)
embedded in a spanwise varying oncoming flow and (3) revolving about its root. We show that
over flapping amplitudes typical of insect flight (φ = 120◦) the spanwise gradient of the local wing
speed may suffice in maintaining leading edge vortex attachment. We correlate this result with the
development of spanwise flow, driven by the spanwise gradient of pressure, and we evaluate the
sensitivity of such a mechanism to the Reynolds number. It is noted, however, that leading edge
vortex attachment through the spanwise gradient of the local wing speed does not promote large
lift, which ultimately arises from centrifugal and Coriolis effects.

INTRODUCTION

In 1996, Ellington et al. [1] reported major advances
in the understanding of insect flight, exploding the myth
that ‘bees cannot fly’ [2]. By visualizing the flow around
a revolving wing, the research team from Cambridge Uni-
versity has brought to the fore the existence of an intense
leading-edge vortex closely attached to the wing’s sur-
face. It is now widely accepted that such a vortex is a
principal contributor to the aerodynamic lift generated
by an insect wing [3, 4]. Prior to this breakthrough, con-
ventional aerodynamic theories failed to predict the lift
generated by a hovering insect.

A comparable approach by Lentink et al. [5] elegantly
revealed the existence of a very similar coherent vortical
structure, this time at the surface of a falling maple seed
membrane. This observation shed light on the dispersal
mechanism of such plant species which may be carried by
the wind over large distances away from the parent plant,
potentially enhancing seedling survival. Evidence was
presented showing that ‘maple seeds and insects exploit
the same trick to fly’.

Although fascinating in themselves, these findings raise
an underlying question: what causes the Leading Edge
Vortex (LEV) to remain attached to the wing/seed mem-
brane’s surface while its counterpart on a pseudo-infinite
translating wing (at a similar Reynolds number and angle
of attack) sheds into the wake, resulting in a drastic drop
in the aerodynamic lift ? The answer to this question is
not trivial and the problem could be restated in a simpler
fashion: what are the differences between a revolving in-
sect wing/seed membrane and a pseudo-infinite translat-

ing wing ? The logical answer comes in three parts: (1)
the relative contribution of the tip vortex to the global
flow dynamics (associated with the wing’s aspect ratio);
(2) the spanwise gradient of the local wing speed (im-
posed by the revolving motion); and (3) centrifugal and
Coriolis effects, referred to as fictitious effects (inherent
to the revolving motion).

Recent numerical and experimental studies have ad-
dressed the first issue [6–8]. Overall, it has been sug-
gested that the tip vortex on a translating wing may play
a role in the attachment of the LEV over a finite portion
of the wing, in the vicinity of the wing tip. This portion
of the wing appears to be independent of the wing as-
pect ratio and is limited to approximately 1.5 times the
wing chord. This observation excludes the idea that the
tip vortex might be responsible for the LEV attachment
on wings with a semi-span exceeding 1.5 times the wing
chord, as used by dragonflies, for example.

More extensive research has simultaneously addressed
the second and third issues (i.e. coupled issues)[9–11].
Following the analogy with the LEV of delta wings, it
has been suggested that a spanwise flow balances vortic-
ity production at the leading edge of a revolving wing,
preventing vorticity accumulation inside the LEV and
hence avoiding vortex shedding. Although it is expected
that such spanwise flow arises from both fictitious effects
(centrifugal) and the spanwise gradient of the local wing
speed, there is no evidence that either one is more cru-
cial in sustaining LEV attachment. This lack of evidence
comes from the difficulty in dissociating these mecha-
nisms experimentally, both being intrinsic to revolving
motion. In contrast, numerical approaches offer an in-



FIG. 1: (Color online) Top view of the three configurations (A,B,C) used for the simulations. (a) The finite wing is embedded
in a uniform oncoming flow. This case models a translating wing for which the local speed along the semi-span L is constant.
(b) The wing is subjected to a spanwise varying oncoming flow. The spanwise variation of the flow velocity is linear and models
the variation of local wing speed imposed by a revolving motion. The spanwise variation is fixed so as to ensure identical local
wing speed (hence identical local Reynolds number) for cases A, B and C at the wing midplane. (c) The wing revolves about its
root. The local wing speed is similar to that in case B, i.e. Ω × r = V∞ where Ω is the revolving speed and r is the local wing
radius. However the case differs due to the influence of fictitious effects. Symbols v, p, s and ns stand for velocity, pressure, slip
and no-slip boundary conditions. The computational domain is shown for illustration purposes; upstream and side boundaries
are actually located 10c away from the wing while downstream boundaries are located 30c away from it.

teresting opportunity to tackle the problem and build a
comprehensive picture of leading edge vortex attachment
on revolving wings.

Thus, the goal of this work is to isolate the mecha-
nisms associated with the spanwise gradient of the local
wing speed from the mechanisms associated with ficti-
tious forces, and to evaluate their interplay with LEV
development. Toward that end, we compute the Navier-
Stokes solution of the flow around a finite wing (1) sub-
jected to a uniform oncoming flow, (2) subjected to a
spanwise varying oncoming flow and (3) revolving about
its root. These configurations will henceforth be referred
to as cases A, B and C, respectively (Fig. 1).

NUMERICAL SETUP

The wing profile is a 2.5% thickness flat plate with el-
liptic leading and trailing edges. The wing aspect ratio
is set to A = L/c = 4, where L and c are the semi-span
and chord length respectively. The wing angle of attack is
fixed to α = 45◦, far beyond the stall limit of the profile.
In all cases, the ~z axis is directed along the span towards
the wing tip, the ~y axis is in the vertical direction and
the ~x axis is in the horizontal direction, i.e. colinear to
the wing speed. The Navier-Stokes equations are directly
solved using a finite volume method. The grid consists of
5 million polyhedral cells, with a typical grid spacing in
all three dimensions of 0.02c in the vicinity of the wing.
The time step is fixed to meet the Courant-Friedrichs-
Lewy condition. Second order schemes are used for both
spatial and temporal discretizations. The results pre-
sented are converged with respect to computation param-
eters (grid size, time step, location of external boundary
conditions) and non-dimensionalized with respect to the
wing chord c and the mean wing speed along the span
Ṽ∞. Furthermore, the approach has proven its ability to

accurately predict the flow past moving bodies [8] and,
more generally, the occurence of flow instabilities at low
Reynolds numbers [12, 13].

The total non-dimensional distance traveled by the
wing is set to δ = 4.3. In the case of a revolving
wing (case C), this corresponds to a revolution ampli-
tude φ = 123◦, typical of insect wings kinematics.

FLOW STRUCTURE

Figure 2 shows λ2-criterion isosurfaces produced under
the three different flow conditions at three distances of
travel at a Reynolds number Re = cṼ∞/ν = 500 (where
ν is the kinematic viscosity of the surrounding fluid). λ2

is the second eigenvalue of the symmetrical part of the
incompressible Navier-Stokes equation gradient, neglect-
ing unsteady and viscous terms, and is used to identify
vortex cores [14]. In all cases, the flow is characterized by
the development of a Starting Vortex (SV), a Tip Vortex
(TV) and a Leading Edge Vortex (LEV). However, fun-
damental differences in the evolution of these structures
are observed between case A and cases B and C. In case
A, the LEV rapidly sheds into the wake, except in the
vicinity of the wing tip where it experiences the influence
of the TV. Conversely, in cases B and C, the LEV remains
attached along most of the span, except in the vicinity
of the wing tip where it sheds and merges with the TV.
At δ = 4 the latter bursts into a non-coherent structure.
The extent of this non-coherent region is larger in case B
than in case C, suggesting that fictitious effects mitigate
laminar-to-turbulent transition.

Although it can be observed that cases B and C ex-
hibit roughly similar flow structure and significantly dif-
fer from case A in that LEV attachment seems consider-
ably promoted, a thorough comparison between the three
cases remains ambiguous at this point. Indeed, δ being



FIG. 2: Comparison of λ2 < 0 criterion isosurfaces obtained
for cases A (a), B (b) and C (c) at three distances of travel
δ = 0.8, δ = 2.4 and δ = 4 for Re = 500.

non-dimensionalized with respect to Ṽ∞, which is equal
to the local value of V∞ at the midplane, it is expected
that the LEV in cases B and C sheds at larger δ in the
inner portion of the wing and at smaller δ in the outer
portion of the wing when compared to case A. There-
fore, in order to clarify this ambiguity, a local analysis is
conducted in the next section.

LEADING-EDGE VORTEX

We focus on the dynamics of the leading edge vortex in
the midplane of the wing. The non-dimensional distance
traveled by the wing in the midplane is equivalent for all
three cases. The local Reynolds number Re = cV∞/ν at
the midplane is also identical for all three cases and is
equivalent to the global Reynolds number, since V∞ at
the midplane is equal to Ṽ∞.

We first consider a Reynolds number Re = 500. Figure
3 shows the spanwise vorticity ωz iso-contours produced
in the midplane under the three different flow conditions
at three distances of travel. λ2 criterion isolines are also
depicted as it allowed us to evaluate the circulation of
the leading edge vortex Γ =

∫
Σ
ωzdS, where the vortex

core Σ is defined as a region of negative λ2, i.e. enclosed
within a λ2 = 0 isoline. The evolution of |Γ| against δ is
plotted in figure 4.

In case A, the LEV rapidly develops after the impul-
sive start of the wing. Its formation rate ∂Γ/∂δ is rather

FIG. 3: Comparison of spanwise vorticity contours ωz and
λ2 < 0 criterion isolines obtained for cases A (a), B (b) and
C (c) at three distances of travel δ = 0.8, δ = 2.4 and δ = 4
for Re = 500. LEV shedding is only observed in case A. +
and − symbols indicate the sign of vorticity.

FIG. 4: (Color online) Circulation Γ of the LEV against dis-
tance δ traveled by the wing. Γ is obtained for cases A (◦), B
(×) and C (+) by integrating the spanwise vorticity ωz over
the region Σ enclosed within a λ2 < 0 isoline.



FIG. 5: Comparison of spanwise velocity contours Vz and
λ2 < 0 criterion isolines obtained for cases A (a), B (b) and
C (c) at three distances of travel δ = 0.8, δ = 2.4 and δ = 4
for Re = 500. Note that the colormap is cut at 0 such that
negative velocities are displayed as white contours.

FIG. 6: (Color online) Mean spanwise velocity V Σ
z of the

LEV against distance δ traveled by the wing. V Σ
z is obtained

for cases A (◦), B (×) and C (+) by averaging the spanwise
velocity Vz over the region Σ enclosed within a λ2 < 0 isoline.

intense during the early stages of the wing motion. From
δ = 0 to δ = 2.4, it can be observed that the LEV grows
in size while the center of its core moves away from the
wing. Eventually, the LEV sheds into the wake near
δ = 2.5 due to the combination of the vorticity accumu-
lation and cross-wake interactions with the trailing edge
vortex [15]. This is accompanied by a severe drop in its
circulation as the vorticity contained in the leading edge
shear layer no longer contributes to it.

In case B, the evolution of Γ follows a comparable trend
to that observed in case A during the very early stages
of the wing motion. It then diverges from the latter,
around δ = 1, to adopt a lower growth rate that tends
to a constant value. Figure 3 indicates that this new
trend is associated with the continuous attachment of
the LEV. Here, the spanwise gradient of the local wing
speed induces a spanwise gradient of pressure along the
wing span, and a spanwise variation of the LEV strength.
Hence a spanwise flow Vz develops, directed towards the
wing tip, i.e. towards high velocity and low pressure re-
gions, and mostly concentrated in the core of the vortex
(Fig. 5). Though not shown here for the sake of concise-
ness, a spanwise gradient of pressure is clearly visible in
our simulations, as was first speculated by Ellington et
al. for revolving wings [1]. These mechanisms contribute
to the spanwise advection of vorticity that balances the
production of vorticity at the leading edge. The mean
spanwise velocity in the core of the leading edge vortex
V Σ
z is plotted against δ in figure 6. It demonstrates that
V Σ
z reaches a maximum value of the order of 0.8 near
δ = 2 in case B while it is mostly negative (directed to-
wards the root) in case A. As such, we provide a first
piece of evidence that the spanwise gradient of the local
wing speed alone, via vorticity advection, may suffice in
maintaining LEV attachment on typical insect wings, i.e.
with an amplitude of revolution around φ = 120◦.

In case C, the circulation growth rate is further miti-
gated (Fig. 4). In contrast with case B, the mean span-
wise velocity of the LEV does not decrease after δ = 2
but rather saturates at a value of the order of 1 (Fig. 6),
hence maintaining the level of spanwise vorticity drainage
out of the LEV core. The enhancement of V Σ

z , with re-
spect to the value obtained for case B, highlights the
influence of fictitious forces. As a consequence, the vor-
tex exhibits a compact shape (smaller core and higher
vorticity levels) robustly attached to the wing’s surface
(Fig. 3).

We then investigate similar cases at Reynolds numbers
Re = 250 and Re = 125. The evolution of |Γ| against δ
obtained for both Re is plotted in figure 4 to facilitate
comparison with that obtained at Re = 500.

In case A, it is shown that the maximum circulation at-
tained by the LEV is very similar for all three Reynolds
numbers, of the order of |Γmax| = 3.1. On the other
hand, this maximum value, which thus appears as a vor-
ticity accumulation threshold beyond which vortex at-



FIG. 7: (Color online) Lift coefficient CL against distance δ
traveled by the wing. CL is obtained for cases A (plain), B
(dashed) and C (dash-dotted) by non-dimensionalizing the lift
force of the wing using the mean wing speed along the span

Ṽ∞.

tachment can no longer be maintained, is reached at
larger δ values. This indicates that viscous effects me-
diate the LEV development and may suffice in maintain-
ing LEV attachment over typical flapping amplitudes at
even lower Reynolds numbers (or alternatively at mod-
erate Reynolds numbers and lower flapping amplitudes).

The mitigation of LEV development with respect to
viscous effects is also highlighted for cases B and C. Over-
all, it can be seen from figure 4 that |Γ| decreases with
Re at a given δ.

However, the relative trends of cases B and C circula-
tion curves (as well as V Σ

z curves in figure 6) are roughly
similar for all Reynolds numbers. As such, the concomit-
tance of viscous effects, the spanwise gradient of the local
wing speed and fictitious effects in the specific case C at
Re = 125 are found to almost completely damp the cir-
culation growth rate. Here, the evolution of Γ against δ
roughly reaches a steady-state that is likely to highlight
LEV attachment over a very large distance of travel.

AERODYNAMIC LOADS

Finally, we ask if leading edge vortex attachment
through spanwise gradient in flow speed has a beneficial
effect on lift production. Figure 7 shows the lift coeffi-
cient CL as a function of the non-dimensional distance
traveled by the wing δ for cases A, B and C at Reynolds
number Re = 500. Although the focus is on flapping am-
plitudes of the order of 120◦ (i.e. δ = 4.3), results are
shown for distances of travel up to δ = 10. This consti-
tutes a first step towards the extension of previous results
to the analysis of spinning seeds with very large δ.

As expected, the lift produced by the translating wing
(case A) rapidly drops as the LEV sheds into the wake.
Furthermore, subsequent bump in CL history near δ =
6.6 indicates the onset of periodic build-up and shedding
of leading and trailing edge vortices, along with the de-
velopment of a von Karman vortex street.

A striking feature is the decrease of CL in case B,
where the LEV is found to remain attached to the wing

throughout the whole stroke (i.e. up to δ = 4.3). Fig-
ure 3 suggests that this trend in CL is associated with
the progressive increase of wing surface / LEV core dis-
tance. In addition, although this distance increases, CL

history makes no evidence of von Karman vortex street
development after δ = 4.3 (no subsequent peak), and up
to δ = 10. Rather, the flow structure remains roughly
similar to that observed in figure 2 (case B, δ = 4), the
LEV being attached to the wing, yet with the extent of
the bursted tip region towards the wing midplane.

Conversely, the robust attachment of the LEV close to
the wing surface in case C maintains a large CL through-
out the whole stroke. What is more, the amount of lift
produced by the rotating wing remains constant up to
δ = 10. Hence, it is shown that although spanwise gradi-
ent in flow speed helps stabilize the LEV, fictitious effects
are the ultimate key factor in lift generation on revolving
flapping wings.

CONCLUSION

The results outlined in this paper suggest that ficti-
tious effects are not a requirement for leading edge vor-
tex attachment on revolving insect wings, although they
do contribute to it. In particular, it is shown that a
spanwise gradient in flow speed may suffice in maintain-
ing LEV attachment over typical flapping amplitudes, on
the order of φ = 120◦. Viscous effects may also suffice,
typically for Reynolds numbers below 100. Overall, the
analysis indicates that viscosity, the spanwise gradient of
the local wing speed and fictitious effects all contribute
to LEV attachment such that, for Reynolds numbers of
the order of 100, their concomitancy may ensure LEV
attachment over very large distances of travel. However,
leading edge vortex attachment through spanwise gradi-
ent in flow speed or viscous effects is not, on its own,
responsible for large sustained lift on revolving wings.
Rather, by anchoring the LEV even closer to the wing
surface, fictitious effects appear to be the ultimate key
factor in lift generation. Hence, LEV attachment is a
necessary but not sufficient condition for high lift gener-
ation, which is ultimately ensured by a short wing surface
/ LEV core distance.

These findings contribute to the fundamental under-
standing of revolving wing aerodynamics and offer new
perspectives in the development of micro-air vehicles.
New perspectives notably include more accurate mod-
eling of LEV development, and subsequent wake capture
mechanisms that occur on flapping wings, which con-
tributes to the definition of optimum flapping wing kine-
matics. Similar reasoning may also be applied in order to
shed light on the vortex dynamics and forces experienced
by bodies in shear flows, covering a wide range of appli-
cations, from hair flow sensors to atmospheric or seabed
boundary layers installations [16, 17].
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