
Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 11844

To cite this version:

Diévart, Mickaël and Charbonnaud, Philippe and Desforges, Xavier Applicative

architecture for embedded distributed technical diagnosis. (2009) In: 7th

Worshop on Advanced Control and Diagnosis (ACD'2009), 19 November 2009

- 20 November 2009 (Zielona Gora, Poland).

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/33663651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/

Applicative architecture for embedded distributed technical diagnosis

Mickaël DIEVART, Philippe CHARBONNAUD and Xavier DESFORGES


Université de Toulouse, INPT, Ecole Nationale d’Ingénieurs de Tarbes, Laboratoire Génie de Production,

47 avenue d’Azereix, 65016 TARBES France;

(Tel: +33 5 62 44 29 34, e-mail: {Mickael.Dievart, Philippe.Charbonnaud, Xavier.Desforges}@enit.fr).

Abstract: This article presents an applicative architecture based on a solving method for

embedded technical diagnosis of complex systems. This architecture is defined in order to provide

services enabling the evaluation of the health status of complex systems. Diagnostic services

provide information to the maintenance decision support system that leads to reduce the periods of

unavailability and determine if their future mission can be carried out. The architecture presented

in this paper implements a distributed diagnostic function using multi-agent techniques. A

consistency model-based diagnosis is proposed that leads to the identification of the faulty LRUs

and the failed functions of complex systems.

Keywords: Distributed diagnosis, health status, multi-agent system, complex systems, embedded

systems, solving method, system architecture, system diagnosis.

1. INTRODUCTION

For transportation systems, new regulations in terms of

environment, goods and people protection, and needs of

new services have consequences on the complexity of

embedded systems. To face this increasing complexity,

multiple functionalities of the resources are embedded

and deployed into networks of functions achieved by

Line Replaceable Units (LRU). Faulty LRUs are

replaced when the vehicle is at its base and repaired in

the maintenance workshops, while the repaired system

carries on with its mission. The increasing number of

functionalities of the embedded systems contributes to

raise the possession and acquisition costs leading the

resources customers to optimize their availability rate.

Using the Condition-Based Maintenance (CBM)

recommendations usually improve the equipment

availability (Jardine et al., 2006 ; Scarf, 2007)). Indeed,

the CBM depends on the effectiveness of the system

state provided by monitoring and diagnostic functions.

They are carried out in particular from on line data

generally processed by an embedded centralized

diagnosis function. However, in the case of system of

systems also called complex system, the identification of

the faulty components is difficult using centralized

architectures. After the mission, the maintenance

operators must collect information by interactions with

the embedded diagnostic system, in order to isolate

possible faulty LRUs, and to apply troubleshooting

procedures. The drawbacks of such architectures are

related to the numerous pieces of information to process,

which might be wrong. The automated diagnostic

processes combine these errors and lead to useless

removals of LRUs. Those removals are costly and

increase the risk of damaging the system.

Alternatively, a decentralized/distributed diagnosis can

be proposed to reduce the number of useless removals of

LRUs. For applications to system of systems, monitoring

and diagnostic functions can be implemented closer to

the LRUs thanks to agents that carry out them. In the

case of a distributed approach, a collaborative

mechanism between diagnostic agents have to enable the

convergence of the local diagnoses towards a set of

accused LRUs which should ideally correspond to the

true faulty ones.

This article presents an applicative architecture for

implementing a distributed diagnostic function. In

section 2, the problem statement is established. In

section 3, the difficulties of implementing this diagnostic

function in such systems due to the various kinds of the

subsystems and to the necessary knowledge and models

for its achievement is discussed. In section 4, an

embedded diagnosis function is proposed. In section 5,

an applicative architecture and its cooperation protocol is

presented. Its objective is to carry out the identification

of a set of faulty LRUs from LRUs declared faulty by

the local diagnoses.

2. PROBLEM STATEMENT

The technical diagnosis of transportation systems

provides to the maintenance operators a list of LRUs that

should be replaced. When the diagnosis is done online,

the maintenance operators prepare the intervention

sooner, reducing the duration and the costs of

maintenance actions. The main task of a diagnostic

function is to deliver an advice on a set of faulty

components and to determine the severity of the fault. A

difficulty in diagnosing such a complex system is due to

their numerous kinds of functions integrating different

technologies (electronics, data processing, mechanics,

hydraulics…). Thus, the implemented diagnostic

techniques must be adapted to the knowledge available

about the system. During its use, various faults may

impact the resource. Those faults degrade its operating

modes. Three types of faults are considered:

Cataleptic, the failure of the system is immediate. The

fault implies a cataleptic failure. The system is in total

breakdown. The faults can be simple, multiple or hidden,

Permanent is a state in which one or several system

functions are in degraded mode. The faults did not

involve the failure of the system but degrade its

performances and make it unable to fulfill all its

objectives. The degradation of performance can involve

the system locally (a function for example) or the whole

system,

Fugitive, the system switches between a nominal

operating mode and a degraded one. This mode implies

the same problems as those quoted previously. This type

of failure can be not signaled or not explained.

In figure 1, a typology is displayed showing the multiple

faults and their consequences on the health status of the

equipment.

Fig. 1. Considered fault typology and consequences on

health status.

The diagnosis, according to the various types of faults

(typology) occurring in the system, classify the failure

and determine the operating mode of the system (normal

mode, degradated mode, exception mode…). A FMEA

(Failure Modes, Effects and Analysis) can address this

problem by the construction of causal trees.

Different implementation of the monitoring and

diagnosis functions associated to the LRUs, are

described in figure 2. The LRU1 hosts its monitoring and

diagnostic functions, the diagnostic function can also be

hosted in another platform (Diagnosis2) or, the

monitoring and diagnosis functions can totally be

distributed in different platforms as for Diagnosis3 and

Monitoring3.

Fig. 2. Structure of a networked embedded supervised

system.

In the case of aircrafts, the Centralized Maintenance

System (CMS), provide a list of likely faulty LRUs for

the maintenance operator. This list is established

according to information from the built-in test

equipments that collect information from the LRUs and

generate tests if needed. The CMS correlates data to

provide a “pre-diagnosis” of the LRUs. The flight

warning system provides to the cockpit crew information

on aircraft failed functions (Ramohalli, 1992 ; Byington

et al., 2003).

Complex systems can be considered as sets of systems

that depend more or less on each other. A system

implements one or several functions. For safety

purposes, functions can be redundant as well as the

LRUs that implement them. That is why several models

are necessary to classify the different operating modes of

the LRUs and their health status.

3. SYSTEM OF SYSTEMS MODELING

Generally, the system is analyzed from different models

in order to obtain a satisfying representation for

diagnosis purpose. This analysis enables to collect the

available knowledge on the complex systems. Many of

them are helpful to design their diagnostic functions. In

the literature, these models can be functional (Abu-

Hanna et al., 1991), structural and behavioral (Chittaro

& Ranon, 2003 ; Keuneke, 1991), teleological (Chittaro

et al., 1993). They enable to model the behavior of

components, of functions and of their interactions

according to normal or degraded modes. In other studies,

models are added to evaluate the diagnosis confidence

(Bonarini & Sassaroli, 1997).

A Complex System (CS) can be defined by a finite set of

m system ∑i. CS = {∑1, ∑2,.., ∑m}. A system ∑i can be

defined as a set of n function Fi,j. ∑i = {Fi,1, Fi,2,..,Fi,n}. A

function Fi,j can be defined as a set of k LRUs

implementing this function. Fi,j = {LRUi,j,1, …,LRUi,j,k}.

If a LRU contribute to the implementation of more than

one function, a decision has to be taken when defining

the system. A LRU should be part of one and only one

function. After defining the hierarchical decomposition

of the system, a system modeling has to be formalized to

ensure system diagnostic.

In this paper, the set of necessary System Knowledge to

diagnose the complex system is collected in the set SK

made of four types of knowledge: functional, structural,

behavioral and topological. The Functional Description

(FD) is the set of functions ensured by every system. FD

represents links between LRUs, functions and system.

The Structural Description (SD) is dedicated to the

identification of the set of LRUs and of physical

connections between them. SD introduce predicate

CONNECT(X,Y) that means that X is connected to Y. S :

CONNECT(LRUi,j,q, LRUp,r,s) with q and s respectively

one of the LRUs implementing Fi,j and Fp,r. The

behavioral models are used in order to identify the

relevant indicators that are used to generate symptoms

for the various faults that may affect the LRUs. They

help to classify the faults of the LRUs from their

symptoms. For diagnostic purpose, the knowledge BM

provides the relationships between the symptoms, the

LRUs and their faults. The Topological Dependencies

(TD) determines the proximities of components that may

be the origin of indirect failures or faults of a LRU due

to the proximity of another failed one. TD introduce

predicate TOPO(X,Y) that means that X is close to Y and

that some faults of X may affect the functioning of Y.

TD: TOPO(LRUi,j,q, LRUp,r,s) with q and s respectively

one of the LRUs implementing Fi,j and Fp,r. Finally,

BMTDFDSDSK 

4. EMBEDDED TECHNICAL DIAGNOSIS

In this paper, the diagnostic function consists of several

activities: to condition, to detect and to identify failures

and their causes. Relevant and significant indicators are

generated by the function “to condition” and are based

on measurements of the system. These indicators can be

statistics (mean, standard deviation, …), signals values

(magnitude, power, frequency, …), parameters

(structural or physical parameters), state observers,

residuals, errors, etc. The function “to detect symptoms”

uses these indicators to generate values, called “detected

symptoms”, which are provided when a fault occurs. The

decision can be made thanks to a decision-making

support technique. The outputs can be digital and define

which fault occurred. “To identify failures” is done by

two sub-functions: “To identify failed function(s)” and

“To identify faulty component(s)”. The user (pilot,

driver, …) cares about the failed functions of the system

whereas the maintenance operator cares about the faulty

components that must be replaced. In figure 3, the

activity diagram of the function “To identify failure” is

detailed.

Fig. 3. Activity diagram A3 of the function “To identify

failure”.

Ideally, the diagnosis identifies a set ∆2 of failed function

and locates their causes, i.e. a set ∆1 of faulty LRUs from

a set of symptoms S and a set of tests T. This leads to the

next relationship where Diag is the diagnostic function:

(∆1, ∆2) = Diag(SK, S, T)

The function Diag can be implemented thanks to two

sub-functions as presented in figure 4. The function

Diag1 allows, starting from a set of symptoms and a set

of tests, to identify the set of faulty LRUs of the system

∆1 = Diag1(SK, S, T), where ∆1 =

{AB(LRUi,j,q),…,AB(LRUp,r,s)} and the function Diag2

enables to locate the set of failed function from tests and

the set of failed LRUs: ∆2 = Diag2(SK, ∆1, T) where ∆2 =

{AB(Fi,j),…,AB(Fp,r)}. AB(.) enables to denote either a

faulty LRU or a failed function.

5. APPLICATIVE ARCHITECTURE

Distributed approaches of Information and

Communication Technologies (ICT) often provide good

enough solutions to face complexity. The diagnostic

function was implemented in a distributed structure

according to the multi-agent system concept. The agents

of the structure cooperate and exchange data whatever

the language used to model the information they contain

is. This implementation requires data and models that

have been collected and organized. In the case of the

complex systems some works show the feasibility to

implement an embedded diagnostic function by

distributed architectures with or without cooperation

between its elements (Biteus, 2005 ; Heck et al., 1998 ;

Wörn et al., 1998).

The conceptual framework of the proposed applicative

architecture is depicted in figure 4, the architecture

presented herein is based on a distributed

implementation. The local diagnosis agents cooperate to

provide the diagnosis of the system. This implies the use

of multi-agent system techniques. As shown in figure 4,

a facilitator agent can be introduced, to ensure the

convergence toward a solution within a given time. The

applicative architecture does not imply the

implementation of a distributed diagnostic function. It

depends on the “solving method”. The middleware

solution eases the implementation of the services

provided by the agents that are software entities

exchanging data by abstracting the way they are hosted

on different hardware entities.

The architecture consists of several LRUs that are

gathered into several functions which is the LRU layer.

Each LRU is observed by a monitoring function

designed by the supplier. The monitoring functions are

represented by the monitoring layer in figure 4. Then,

the monitoring agents send their symptoms to a

Diagnostic Agent (DA), which is in charge of

elaborating the set of faulty LRUs. One or more

databases (KB) contain the structural, the topological, the

functional and the behavioral knowledge in order to

provide a support for the different agents. A

Human/Machine Interface (HMI) ensures the

information displayed to users. The HMI displays,

according to the type of operators, the failed functions of

the system (for the production operators) or the LRUs

that need to be replaced or fixed (for the maintenance

operators). If the collaboration is correct the global

diagnosis of the system in terms of faulty LRUs is a

union of each local diagnosis.

The solving method of the distributed architecture is

represented by the activity diagram shown in figure 5.

These activities are carried out by cooperation between

the DAs and the HMI. This cooperation is represented by

sequence diagrams shown in figures 6 and 7. The

reception of a symptom by a DA launches the process.

The corresponding DA begins by defining the symptom

received. If the symptom is generated by the monitoring

layer, it is declared as a “failure symptom” and if it is a

symptom generated from the function “To propagate

symptom”, it is called a “propagation symptom”. If the

symptom is a failure symptom, this one is diagnosed as

described by the sequence diagram in figure 6 where the

DA sends a request to the database to know if the

symptom is known or unknown. A known symptom is a

symptom for which the cause is already identified by

studies made at the system design stage (FMEA). If the

symptom is known, the database returns the result and

the DA declares the cause of failure of the LRU as

known, otherwise, the cause of failure of the LRU is

declared as unknown. Then the fault is propagated as

described by the sequence diagram shown in figure 7.

This activity begins by a request of the DA to the

database to know if it exists structural dependencies with

other LRUs. If it is the case, “propagation symptoms”

are sent to advice the DA in charge of diagnosis of the

involved LRUs that they may not operate correctly.

Therefore, those LRUs are declared as out of order.

Furthermore, the supervision of the diagnostic agents is

ensured during a cooperation task and more precisely

during “the fault propagation” function. If an agent did

not confirm that it receives the message during the

propagation task, the diagnostic process accuses and

declares the agent as failed. So, the diagnosis of the DA

also contains information about the DAs that did not

answer the request. By this way, the diagnostic of the

DAs is carried out.

Every DA of the architecture diagnoses LRUs

implementing a function. Every time a DA receives a

symptom the last diagnosis is copied and updated

according to the new received symptom. This ensures

the elaboration of an historic of the evolution of the

diagnostic process. This enables a non monotone

diagnostic process.

Fig. 4. Conceptual framework of applicative architecture for embedded distributed diagnosis

If the symptom received by the DA is a “propagation

symptom”, this one is used for a “diagnosis refinement” task.

To explain the activity, let us considered the example

composed of 3 LRUs (1,1,1LRU , 2,1,1LRU and 3,1,1LRU)

structurally dependant. SD contains, which the only

considered knowledge about the system:

CONNECT(1,1,1LRU , 2,1,1LRU),

CONNECT(2,1,1LRU , 3,1,1LRU). Each LRU has its own

monitoring period for each of its symptom. For example, if

we consider one symptom per LRU, we suppose that the

symptom emitted from the monitoring of 1,1,1LRU can be

send to the DA every 5 minutes, the one of 2,1,1LRU every

minute and the one of 3,1,1LRU every second. In such a case,

we consider that only 1,1,1LRU failed, 2,1,1LRU and

3,1,1LRU should be defined as out of order. But the

symptoms are not received in the order they occur because of

the different monitoring periods. Considering symptoms
t

tkjiS ,,, of the qjiLRU ,, that occurs at time t and

321 ttt  it can be infer that
3

1,3,1,1

2

1,2,1,1

1

1,1,1,1

ttt SSS  . It

is important to make a difference between the time the

symptom occurs and the time the symptom is send. At the

first step, because of the monitoring periods, the DA

receives
3

1,3,1,1

tS . So, 3,1,1LRU is declared has failed. Then,

the DA receives
2

1,2,1,1

tS . As 32 tt  and because of the

structural dependencies, 2,1,1LRU is declared failed and

3,1,1LRU is updated to a out of order status. Finally, the DA

receives
1

1,1,1,1

tS . Because of the timestamp (321 ttt )

and the structural dependencies, LRU1,1,1 is declared failed

and 2,1,1LRU and 3,1,1LRU are declared as out of order.

Fig. 5. Activity diagram of the considered solving method.

Diagnosis
Agent

Database

1: Query a known fault

2: Answer the request

3: Change LRU status according to answer

Fig. 6. Sequence diagram of the function “To diagnose”.

Diagnosis
Agent

DatabaseOther Diagnosis
Agents

1: Query for a list of Diagnosis agents struturally dependent

2: List of Diagnosis agents

3: Send of propagation symptom to the Diagnosis agent

4: Propagation Symptom received

Fig. 7. Sequence diagram of the function “To propagate

fault”.

In figure 8, the presented case study consists of 3 systems

each implementing one function. Every function is

implemented by 3 LRUs. Function 31 is independent while

Function 11 and Function 21 are functionally dependent.

Structural dependencies between LRUs are described in the

set SD which is the only considered knowledge. The

knowledge is recorded in XML files, which is an input of the

solving method for symptom generation and diagnostic

support.

Fig. 8. Case study of a monitored system of systems.

Four different status describe the state of a LRU:”OK” where

the LRU is not faulty at all, “UF” when the LRU is faulty but

the cause is unknown (Unknown Failure), “KF” when the

cause of the failure is known (Known Failure) or “OO” when

the LRU does not work in nominal mode or is failed because

of the failure of a LRU structurally dependent of it (Out of

Order).

The symptoms received by DAs are recorded in a field linked

to the corresponding LRU. The state of the LRU changes and

the diagnostic timestamp of the LRU is updated with the

current one. At the end of the symptom generation session, a

list of faulty LRUs with its cause and a list of failed functions

are available. The cause of faulty LRU is described in terms

of sentences from FMEA studies or of faulty LRU in the case

of “OO” state. The cause of failed function is described in

terms of faulty LRUs.

For example, if LRU2,1,1 and LRU3,1,1 failed and the cause of

the failure of LRU2,1,1 is known to be a power failure and the

cause of LRU3,1,1 unknown. After symptom generation, the

diagnosis result is given by:

∆1 = LRU2,1,1(status: KF, cause: power failure, timestamp:

2009/07/05 15h26min56s) & LRU3,1,1(status: UF, cause:

unknown, timestamp: 2009/07/05 15h27min05s) &

LRU1,1,2(status: HS, cause LRU2,1,1 failure, timestamp:

2009/07/05 15h26min57s) & LRU3,1,2(status: HS, cause:

LRU3,1,1 failure, timestamp: 2009/07/05 15h27min06s)

∆2 = Function11 (status: HS, cause: function12 failure,

timestamp: 2009/07/05 15h26min58s) & Function21 (status:

KF, cause: LRU2,1,1 failure, timestamp: 2009/07/05

15h26min57s) & Function31 (status: KF, cause: LRU3,1,1

failure, timestamp: 2009/07/05 15h27min06s)

In each set ∆1 and ∆2 is listed the LRUs or functions that do

not work in a nominal mode with their current state, the cause

of their failure and the timestamp their state changed.

All pieces of diagnostic data and their timestamp are recorded

to ensure performance evaluation at the end of the diagnostic

process. Performance indicators are therefore defined. These

indicators use the timestamps of the different data that are

exchanged between the agents on the middleware to be

evaluated like: speed of convergence, data flow, and

computational load.

6. CONCLUSION

The proposed distributed diagnostic architecture provides a

solution to diagnose faulty LRUs and failed functions in the

case of system of systems. This architecture is based on DAs

that receive symptoms from monitoring layer. The proposed

distributed implementation of the technical diagnostic

function is based on a distributed resolution method and

system knowledge. Future work will deal with the

comparison between decentralized and centralized diagnostic

functions.

Acknowledgement: The project was supported by Airbus

France

References

Abu-Hanna, A., Benjamins, R., and Jansweijer, W. (1991). Device

understanding and modeling for diagnosis, IEEE Intelligent

Systems and Their Applications Vol. 6(2), pp. 26-32.

Biteus, J. (2005). Distributed Diagnosis and Simulation Based

Residual Generators, Dept. of Electrical Engineering, LiU-

TEK-LIC-2005:31, Thesis No. 1176.

Bonarini, A. and Sassaroli, P. (1997). Uncertainty and

approximation in multimodel diagnosis Inf. Sci., Elsevier

Science Inc., vol. 103, pp. 187-210.

Byington, C., Kalgren, P., Johns, R. and Beers, R. (2003).

Embedded diagnostic/prognostic reasoning and information

continuity for improved avionics maintenance,

AUTOTESTCON. IEEE Systems Readiness Technology

Conference. Proceedings, pp. 320-329.

Chittaro, L., Guida, G., Tasso, C., and Toppano, E. (1993).

Functional and teleological knowledge in the multimodeling

approach for reasoning about physical systems: a case study in

diagnosis, Systems, Man and Cybernetics, IEEE Transactions

on, Vol. 23(issue 6), pp. 1718-1751.

Chittaro, L. and Ranon, R. (2003). Hierarchical model-based

diagnosis based on structural abstraction, Artif. Intell., Vol.

155(1-2), pp. 147-182.

Heck, Florentin, Thomas, Längle and Heinz, Woern (1998). A

Multi-Agent Based Monitoring and Diagnosis System for

Industrial Components, Proceedings of the DX '98, pp. 63-69.

Jardine, A., Lin, D. and Banjevic, D. (2006) A review on machinery

diagnostics and prognostics implementing condition-based

maintenance, Mechanical Systems and Signal Processing, vol

20, pp. 1483-1510.

Keuneke, A. (1991). Device representation-the significance of

functional knowledge, IEEE Intelligent Systems and Their

Applications Vol. 6(2), pp. 22-25.

Ramohalli, G. (1992). The honeywell on-board diagnostic and

maintenance system for the boeing 777, Digital avionics

systems conference, 11th IEEE/AIAADigital Avionics Systems

Conference, Proceedings., IEEE/AIAA 11th, pp. 485-490.

Scarf, P. (2007). A Framework for Condition Monitoring and

Condition Based Maintenance, Quality Technology &

Quantitative Management, vol 4, pp. 301-312.

Wörn, H., Längle, T., and Albert, M. (1998). Multi-Agent

Architecture for Monitoring and Diagnosing Complex Systems,

The Fourth International Workshop on Computer Science and

Information Technologies, Patras, Greece.

