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ABSTRACT

We use ns-2 simulations to compare RED’s gentle_ mode
to CoDel in terms of their ability to reduce the latency for
various TCP variants. We use a common dumbbell topol-
ogy with Pareto background traffic, and measure the packet
delays and transmission time of a 10MB FTP transfer.

In our scenarios, we find that CoDel reduces the latency by
87%, but RED still manages to reduce it by 75%. However,
the use of CoDel results in a transmission time 42% longer
than when using RED. In light of its maturity, we therefore
argue that RED could be considered as a good candidate to
tackle Bufferbloat.

Categories and Subject Descriptors

C.2.6 [COMPUTER-COMMUNICATION NET-
WORKS]: Internetworking—Routers

General Terms

Performance
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1. INTRODUCTION
Bufferbloat occurs due to oversized buffers at routers

where packets arrive at a faster rate than they can be for-
warded [11, 5]. As a result, packets are queued until they are
either transmitted, or dropped when the buffers are full. As
the queues fill, it takes longer for each packet to be trans-
mitted to its destination. Moreover, most congestion control
mechanisms do not recognise an increase of the delay as a
congestion event and thus, keep increasing their rate on an
already-saturated path.

.

While some contention exists as to whether or not Buf-
ferbloat really is a widespread problem [1], it has been ob-
served in mobile networks [16]. The use of Active Queue
Management (AQM) has been proposed as a way to alle-
viate Bufferbloat [e.g., 13, 11]: there has been a renewed
interest at IETF is evaluating AQM; a working group has
been created in 2013 and produced recommandations for
AQM [4]. Most notably, CoDel [23] has been proposed specif-
ically to counter Bufferbloat by ensuring that packets do not
remain “too long” in the managed queues. CoDel is said to
be parameter-less, yet it is arbitrarily configured with two
hard coded parameters (target delay and interval).

While CoDel has been specifically designed to tackle Buf-
ferbloat, other AQMs such as RED [10] could also be used to
the same effect. RED has the advantage of having been well
both studied and tested. Although past studies used to show
that RED remains hard to tune [25, 21], RED parameters
found to be fairly well understood [8] and can be now set
or managed automatically [15, 20]. Moreover, the authors
of [17] mention that there are lessons to be learned from
the old AQMs as their performance can compete with new
AQMs proposals. In this article, we perform ns-2 simula-
tions to compare the trade-off between latency and through-
put proposed by CoDel and RED, by introducing specific
traffic patterns, metrics and transport protocols.

As AQM reduces queues by dropping packets, an evalua-
tion of the effectiveness of AQMs against Bufferbloat should
study the trade-off between a reduced packet delay, and an
increased data transmission time (due to losses and retrans-
missions). Moreover, not all congestion control (CC) mech-
anisms react the same to changed loss rates or delays. These
AQMs should therefore be studied in light of their impact on
the various transport protocols they are expected to man-
age.

This paper systematically studies this trade-off. We use
ns-2 to simulate a loaded network where Bufferbloat occurs.
We then introduce various AQMs, and observe their impact
on flows transported using various TCP’s CC mechanisms.
We find that both AQMs give the same advantages for all
CC algorithms: be they loss-based or delay-based, they all
experience relatively similar conditions. Moreover, we show
that RED performs quite well, reducing the packet delay by
a sizeable amount—yet not as much as CoDel. More inter-
estingly, we also find that RED allows for shorter transmis-
sion times than CoDel does, which suggests that RED might



be closer to achieving the trade-off of efficiency versus Buf-
ferbloat.

The rest of this paper is organised as follows. In the next
section we present and discuss the various elements of our
simulations: AQMs, CCs, topology, and parameters caus-
ing Bufferbloat. Section 3 presents the impact of AQM on
various congestion control mechanisms while Section 4 sum-
marises our results on transmission and packet delays. We
discuss these results in Section 5, before offering a short con-
cluding summary in Section 6.

2. SIMULATING BUFFERBLOAT IN NS-2
This section presents the AQM schemes, congestion con-

trol, topology, traffic patterns and parameters that trigger
Bufferbloat.

2.1 Active Queue Management Mechanisms
This article compares the impacts of various AQM and

transport layer protocols. We consider the following AQM.

2.1.1 DropTail

DropTail is a default queuing mechanism that drops in-
coming packets when the queue is full. This default
queue management is the baseline for our evaluations.

2.1.2 RED

RED [10] drops packets depending on the number of
packets in the queue. In order to reduce the occupancy in
the gateway and manage the size of the queue when the av-
erage queue size exceeds a threshold, packets are randomly
dropped to reduce the throughput of different non cooper-
ating sources.

We consider the default implementation of RED in ns-2
with gentle_ mode activated. This mode consists of a basic
improvement that must be considered,1 as it makes RED
more suitable for large scale deployment.

Exhaustive performance comparisons between RED ver-
sions is beyond the scope of this paper. As a result, we do
not evaluate Adaptive RED (ARED) [9]. Gentle RED is al-
ready adaptive, but differs in that max_p is not adjusted to
better control the average queue size, as it is in ARED.

We use the default values for the parameters of RED, such
as the targetdelay (not to be confused with CoDel’s target
value for the queue delay), set to 5ms.

2.1.3 CoDel

CoDel [23] drops packets depending on the sojourn
time of each packet in the queue. CoDel switches between
its “dropping mode”and“non dropping mode”depending on
the measured and maximum authorised sojourn times (set
by default to 5ms). The CeroWRT project [7] implements
CoDel as a way to solve the different problems encountered
at a home router, particularly Bufferbloat.
A variant of CoDel, Flow-Queuing CoDel (FQ-

CoDel) [14], which combines Stochastic Fairness Queueing
(SFQ) [22] and CoDel, could not be evaluated in this article,
as the description of this scheduling has just been released
as an Informational IETF draft. Moreover, it is not fair to
consider FQ-CoDel, while other tested AQMs do not inte-
grate any kind of scheduling. Future work will evaluate the
interactions between scheduling and AQM algorithms.

1http://www.icir.org/floyd/red.html#parameters

2.1.4 PIE

determines a dropping probability that is based on the
average queueing latency and limit the queuing latency
to a target value.

While it is very relevant to this study, at the time we ran
the simulations, no implementation of PIE was available.
We therefore focused on the comparison between RED and
CoDel to evaluate if a new generation of AQM is needed.
Future work will consider PIE.

2.2 Congestion Control Algorithms
Congestion control (CC) mechanisms may be based on

loss events or measurements of latency. To better under-
stand the impact of these AQM mechanisms on CC algo-
rithms, we need to consider the following transport layer
protocols:

TCP NewReno loss-based CC and baseline for our eval-
uations;

TCP Vegas delay-based CC. In the context of reducing In-
ternet latency, there is a renew interest for delay-based
CC, which are less aggressive but which introduce less
delay in the network. Hybrid CC (both delay and loss
based) are also of interest;

TCP Compound hybrid (loss/delay) CC which is imple-
mented in Windows systems;

TCP CUBIC loss-based CC which is deployed on a large
scale in Android/Linux systems.

We use the native Linux implementations for these protocols
in ns-2.

2.3 Topology and traffic

delay Dw, capacitiy Cw
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Pappl pareto applications

Transmission of B bytes with FTP 

delay Dc, capacity Cc

Figure 1: Dumbbell topology used for the simulations.
Background Pareto traffic goes from node 0 to 4, while the
flow under study is sent from 1 to 5.

Figure 1 presents the dumbbell topology and correspond-
ing notations. This network topology is common to evaluate
the performance of TCP [2]. Nodes 0 and 1 (resp. 4 and 5)
are connected to node 2 (resp. 3) by a link of Dw (ms) one
way delay and Cw (Mbps) capacity. Nodes 2 and 3 are con-
nected by a link of Dc (ms) one way delay and Cc (Mbps)
capacity. We integrate the AQM mechanism under evalua-
tion in node 2.

Two classes of traffic are injected inside this network:



• From node 0 to node 4, we introduce Pappl applica-
tions; each of them transmit a file whose size is gener-
ated according to a Pareto law: 80% of short flows
and 20% of long flows corresponding to the distribu-
tion of flow size measured in the Internet [6, 19]. We
use the Pareto traffic generator in ns-2. This traffic is
injected to dynamically load the network.

• From node 1 to node 5, we introduce an FTP trans-
mission of B bytes. This traffic is studied to under-
stand the protocols and cross-algorithm impacts.

2.4 Parametrization and Bufferbloat
In this section, we present the combination of traffic loads,

delays and capacities where the Bufferbloat occurs that will
be considered in the rest of this article.

2.4.1 Load and Bottleneck Capacity

For the rest of this article, we consider: Pappl = 80, Dw =
Dc = 25ms, Cw = 10Mb, Cc = 1Mb, B = 10MB, which
we found to lead to a stable, non null, queueing delay, i.e.,
Bufferbloat occurs. A larger set of parameters may need to
be considered to extend the validity of the results presented
in this article, this will be improved in a future work.

2.4.2 Buffer Sizes

In [3], the authors justify why setting the size of buffers to
the product RTT×C is outdated. Due to a potentially large
number of TCP connections that transmit data through the
router, the queuing delay introduced cannot be neglected.
Due to the asymmetric architecture of our topology (Cw =
10×Cc), we could not respect those specifications, otherwise
there would have been too much buffer overflow.

We size the buffer of the central node (node 2) based on
the characteristics of the wing links (from node 0 to node 2),
RTT × Cw = 41 packets. We also present the results with
a buffer: (1) smaller than the RTT ×Cw product (buffer of
10 packets), (2) sized by the RTT × Cw product (buffer of
45 packets), (3) larger than the RTT × Cw product (buffer
of 125 packets and without limitation).

3. IMPACT OF AQM WITH CUBIC AND

VEGAS
In this section, we focus on the file transmission of B =

10MB. We evaluate the throughput (measured at node 5),
queuing delay (measured at node 2) and drop ratio for this
particular flow. These metrics have been chosen following
the guidelines presented in [2]. These metrics are presented
depending on the choice of AQM (DropTail, RED, CoDel),
CC mechanism and the size of the queues (as explained
above). Due to the lack of space, we only present the results
with TCP CUBIC (loss-based CC) and TCP Vegas (delay-
based CC). The performance of other loss-based congestion
controls shows the same behaviour as TCP CUBIC.

In Figure 2, we plot the drop ratio depending on the queu-
ing delay for TCP CUBIC (results for TCP Vegas are qual-
itatively similar). In Figure 3 (resp. Figure 4), we plot the
throughput depending on the queuing delay with TCP Ve-
gas (resp. TCP CUBIC). Each point represents the average
metric measured during one second of the simulation. The
throughput may drop to 0. Depending on drop events, no
packet may be received in one second.

In Figure 2, we can see that the introduction of RED
and CoDel results in the occurrence of drop events. With
DropTail, the queuing delay is maximised by the size of the
queue, whereas with RED and CoDel the maximum queuing
delay is reduced to 300ms and to 50ms. The queuing delay
ranges between 0.01 s and 0.1 s with CoDel, whereas between
0.1 s and 0.5 s with RED. With CoDel, the size of the queue
has no impact. CoDel is based on the sojourn time of each
packet. On the contrary, with RED, there is a tiny impact of
the buffer size on the queuing delay as the dropping policy
of RED is based on the number of packets in the queue.

Firstly, we compare the performance of TCP Vegas and
TCP CUBIC with the queuing mechanism DropTail. In Fig-
ure 3, we can see that with DropTail and TCP Vegas, the
throughput decreases as the queue size increases. Indeed,
when the queue is unlimited, TCP Vegas CC reacts as ex-
pected to queuing delay increases. The larger the queue is,
the larger the queuing delay is and the more TCP Vegas de-
creases the congestion window. On the contrary, in Figure 4,
with DropTail and TCP CUBIC, the throughput increases
with larger queues. The larger the queue, the bigger the
queueing delay, but fewer congestion losses events occur.

Secondly, we compare the performance of RED and CoDel
with TCP Vegas as a CC protocol. Apart from the queuing
delay (the queuing delay is between 0.01 s and 0.1 s with
CoDel, whereas it is between 0.1 s and 0.5 s with RED), the
throughput is the same whatever the choice of AQM.

Finally, we compare the performance of RED and CoDel
with TCP CUBIC. Apart from the queuing delay (the queu-
ing delay is between 0.01 s and 0.1 s with CoDel, whereas it
is between 0.1ms and 0.5ms with RED), the throughput is
larger with RED (up to 0.75Mbps) than with CoDel (up to
0.45Mbps).

The early conclusions that we can derive from this sec-
tion is that CoDel is a good candidate to reduce latency.
However, we also showed that RED reduces the latency as
well and still transmits more traffic and better exploits the
capacity of the bottleneck. This observation suggests that a
better trade-off might exist between latency reduction and
more efficient capacity use.

4. TRANSMISSION AND PACKET DELAY
In this section, we focus on the end-to-end performance

and cross-impact of the choice of AQM and transport layer
protocols in presence of Bufferbloat. We evaluate the packet
transmission time (for the packets that are successfully
transmitted) and the time needed to transmit 10MB, while
the network is loaded with the P appl applications. The
packet transmission time gives an overview of the latency in-
side the network whereas the time needed to transmit 10MB
provides an end-to-end viewpoint on the throughput.

In Figure 5, we present the average packet transmission
times and in Figure 6 the time needed to transmit 10MB
both averaged over a large number of iterations. For each
metric, we present the minimum and maximum values (bot-
tom and top of the candle), the 95 percentile (full box), the
median value, and an estimate of its 95% confidence interval
(dashed box). We measured these metrics with queues of 125
packets, corresponding to the bandwidth×delay product.

Figure 5 illustrates that RED and CoDel enable a bet-
ter latency reduction than DropTail. With TCP CUBIC
the packet transmission time is reduced by 87% with CoDel
and by 75% with RED. The average packet transmission
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Figure 2: TCP CUBIC: Drop ratio versus queuing delay (TCP Vegas shows the same qualitative behaviour)
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Figure 3: TCP Vegas: Throughput versus queuing delay
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Figure 6: Time needed to transmit 10MB

time with TCP CUBIC and CoDel is 115ms compared to
226ms with RED. We confirm that, with DropTail as an
AQM mechanism, TCP Vegas introduces less latency than

any other congestion control protocols which legitimizes the
trend of considering delay-based CC to reduce Internet la-



tency: the latency is reduced by 44% when the CC is TCP
Vegas rather than TCP CUBIC.

Figure 6 shows the time needed to transmit 10MB de-
pending on the choice of AQM and CC protocol. One result
that can be seen in this figure is that the dropping events
generated by RED do not impact this transmission time
much, whatever the choice of the CC. With TCP CUBIC,
introducing RED increases the average transmission time for
10MB by 5% compared to DropTail. However, introducing
CoDel results in an increase of 42% of this transmission
time.

5. DISCUSSION
The results presented in this article support the inter-

est for re-considering AQM. Section 2.1 illustrated that the
DropTail performance is directly related to queue size. How-
ever, sizing a sending buffer depends on the available ca-
pacity at the physical layer and is not a convenient way
to tackle Bufferbloat, such as in the context of Wi-Fi where
bandwidth fluctuates. Moreover large buffers may be needed
when an application transmits large bursts of packets. An
AQM scheme should accept incoming bursts and fight Buf-
ferbloat by limiting the persistent occupation of the buffer.
Conversely, both Sections 2.1 and 4 highlighted that with ei-
ther RED or CoDel as AQM, sizing of the queues can be ne-
glected without any substantially negative impact. Having
large buffers is important to absorb large bursts of packets
but AQM is needed so that Bufferbloat does not occur.

We observed that both RED and CoDel reduce the la-
tency. In our specific simulations, CoDel reduced latency by
87% and RED by 75%. However, a trade-off must be found
between reducing latency and degrading end-to-end good-
put. CoDel increased the time needed to transmit 10MB by
42%, while RED only introduced a 5% increase. This signif-
icant difference suggests that RED is a legitimate candidate
to tackle Bufferbloat.

Moreover, we believe RED is a worthy solution because its
deployment issues are known. RED has been improved over
the years and Adaptive RED has better performance than
Gentle RED (used in this article) in terms of adaptability
and deployment. The idea behind CoDel is to consider delay
as a key element to manage dropping events whereas RED
deals with the current size of the queue.

CoDel is said to be parameter-less, but we believe that,
before large scale deployment, this point should be evalu-
ated in light of the metrics proposed by [18]. As an exam-
ple, in a document published by CableLabs [13], the authors
explain that they had to adjust CoDel’s target value to ac-
count for MAC/PHY delays even for packets reaching an
empty queue. This justifies the need for studies evaluating
the impact of the internal parameters of CoDel in contexts
where delays matter, such as satellite communications or
data-centers.

Finally, large scale deployment of AQMs should be mind-
ful of the intended traffic to be carried, as it may impact
the end-to-end properties of certain applications. As an ex-
ample, LEDBAT [24] is a transport layer congestion con-
trol mechanism designed for background data. This kind of
traffic has been pointed out as a root cause of Bufferbloat.
However, the introduction of AQM degrades the Less-than-
Best-Effort aspect of this protocol [12], by restoring fairness,
as also suggested by our results with TCP Vegas.

Therefore, we believe that RED is a good candidate to
reduce Internet latency, and has the additional advantage of
being well studied. Where the performance of RED might
be in small proportion linked to buffer size, CoDel consid-
ers fixed parameters making assumptions on the PHY/MAC
layer latency. CoDel does not outperform RED. Resolving
Bufferbloat with AQM strategies is (1) finding a trade-off be-
tween reducing latency and using the fully available capacity,
and (2) considering deployment issues, which are known for
RED.

6. CONCLUSION
We evaluated the performance of various AQMs (RED and

CoDel), and their ability to limit Bufferbloat. Our simula-
tions have shown that, while CoDel performs as expected,
RED works similarly well. Moreover, we have found that
while both reduce the per-packet queueing delay, RED did
so with less degradation of the end-to-end transmission time.
We also showed that the use of either AQM made the net-
work fairer to delay-based congestion control mechanisms.

While this paper does not question CoDel’s effectiveness
against Bufferbloat, our results suggest that CoDel is not
the only AQM which could be used to solve that issue. In
that respect, RED appears to be a worthy contender. More-
over, RED’s parametrisation has been widely studied and is
fairly well understood. In contrast, CoDel’s supposed para-
meter-lessness relies on a hard-coded static value for which
an optimal value appears hard to find.

AQMs should be more widely studied before large scale
deployment and the focus on CoDel, at the exclusion of any
other, might be too intense. Our future work will focus on
other AQM variations, and their parametrisation, as well
as their interaction with different congestion control algo-
rithms, such as less-than-best effort.
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