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Let
X be a Hilbert space,
A : D(A) ⊂ X → X be a skew-adjoint operator,

Considered systems{
ż(t) = Az(t), ∀ t ∈ [0,∞),
z(0) = z0 ∈ D(A).

For instance:

A =

[
0 I
∆ 0

]
(+ Dirichlet boundary conditions) on Ω ⊂ Rn and

X = H1
0 (Ω)× L2(Ω).
⇓

the classical wave equation.
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Let
Y be another Hilbert space
C ∈ L(X,Y )

τ > 0

We observe z via y(t) = Cz(t) for all t ∈ [0, τ ].

The classical wave equation, with
C =

[
0 χO

]
:

y(t) =
[
0 χO

] [w(t)
ẇ(t)

]
, ∀t ∈ [0, τ ],

= χOẇ(t), ∀t ∈ [0, τ ].

Our problem
Reconstruct the unknown z0 from the measurement y(t).
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K. Ramdani, M. Tucsnak, and G. Weiss
Recovering the initial state of an infinite-dimensional system using
observers (Automatica, 2010)

Intuitive representation

2 iterations, observation on [0, τ ].
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We construct the forward observer{
ż+(t) = Az+(t)− C∗Cz+(t) + C∗y(t), ∀ t ∈ [0, τ ],
z+(0) = z+

0 ∈ D(A).

We subtract the observed system{
ż(t) = Az(t), ∀ t ∈ [0, τ ],
z(0) = z0,

to obtain (remember that y(t) = Cz(t)), denoting

e = z+ − z,

the estimation error,{
ė(t) = (A− C∗C) e(t), ∀ t ∈ [0, τ ],
e(0) = z+

0 − z0,

which is known to be exponentially stable if and only if (A,C) is exactly
observable, i.e.

∃τ > 0,∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A).
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Exponential stability ⇒ ∃M > 0, β > 0 such that

‖z+(τ)− z(τ)‖ ≤Me−βτ‖z+
0 − z0‖.

We construct a similar system: the backward observer,{
ż−(t) = Az−(t) + C∗Cz−(t)− C∗y(t), ∀ t ∈ [0, τ ],
z−(τ) = z+(τ).

After a time reversal Z−(t) = Rτz−(t) := z−(τ − t), we get{
Ż−(t) = −AZ−(t)− C∗CZ−(t) + C∗y(τ − t), ∀ t ∈ [0, τ ],
Z−(0) = z+(τ).

And from similar computations for A− := −A− C∗C as those for
A+ := A− C∗C:

t‖z−(0)− z0‖ ≤Me−βτ‖z+(τ)− z(τ)‖ ≤M2e−2βτ‖z+
0 − z0‖.
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ż−(t) = Az−(t) + C∗Cz−(t)− C∗y(t), ∀ t ∈ [0, τ ],
z−(τ) = z+(τ).

After a time reversal Z−(t) = Rτz−(t) := z−(τ − t), we get{
Ż−(t) = −AZ−(t)− C∗CZ−(t) + C∗y(τ − t), ∀ t ∈ [0, τ ],
Z−(0) = z+(τ).

And from similar computations for A− := −A− C∗C as those for
A+ := A− C∗C:

t‖z−(0)− z0‖ ≤Me−βτ‖z+(τ)− z(τ)‖ ≤M2e−2βτ‖z+
0 − z0‖.

G. Haine Recovering the initial state of a WPLS 10/ 31



If the system is exactly observable in time τ > 0, that is if:

∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A),

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)
proved that

α := M2e−2βτ < 1.

Iterating n-times the forward–backward observers with z+
n (0) = z−n−1(0)

leads to
‖z−n (0)− z0‖ ≤ αn‖z+

0 − z0‖.

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to
reconstruct z0 from y(t).
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In this work, the exact observability assumption in time τ

∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A),

is not supposed to be satisfied !

However, the observers don’t need this assumption to make sense.

Questions

Given arbitrary C and τ > 0, does the algorithm converge ?
If it does, what is the limit of z−n (0) and how is it related to z0 ?
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Decomposition of X:

Let us denote Ψτ the following continuous linear operator

Ψτ : X −→ L2 ([0, τ ], Y ) ,
z0 7→ y(t).

Intuitively, if z0 is in Ker Ψτ , then y(t) ≡ 0, and we have no
information on z0 !

We decompose X = Ker Ψτ ⊕ (Ker Ψτ )
⊥ and define

VUnobs = Ker Ψτ , VObs = (Ker Ψτ )
⊥

= Ran Ψ∗τ .

Note that the exact observability assumption is equivalent to
Ψτ is bounded from below and then ⇒ X = Ran Ψ∗τ .
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Stability of the decomposition under the algorithm:
Let us denote T+ (resp. T−) the semigroup generated by
A+ := A− C∗C (resp. A− := −A− C∗C) on X.

Forward–backward observers cycle ⇒ operator T−τ T+
τ , i.e.

z−(0)− z0 = T−τ T+
τ

(
z+

0 − z0

)
.

Denote S the group generated by A, then (since A = A+ + C∗C)

Sτz0 = T+
τ z0 +

∫ τ

0

T+
τ−tC

∗ CStz0︸ ︷︷ ︸
Ψτz0

dt, ∀ z0 ∈ X.

Using this (type of) Duhamel formula(s), we obtain

T−τ T+
τ VUnobs ⊂ VUnobs, T−τ T+

τ VObs ⊂ VObs.

The algorithm preserves the decomposition of X !
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Convergence of the algorithm:
It is obvious that the algorithm has no influence on VUnobs.

Let us denote L = T−τ T+
τ |VObs

, we have:
1

‖Lnz‖ = o

(
1

n

)
, ∀ z ∈ X

2

‖L‖L(VObs) < 1⇐⇒ Ran Ψ∗τ is closed in X

Sketch of proof
1 L is positive self-adjoint.

Ln+1 < Ln from which we get limn→∞ Ln = L∞ ∈ L(VObs).
∀z ∈ X,

∑
n∈N L

nz converges absolutely in X.
2 Duhamel formulas =⇒ ‖L‖L(VObs) in term of

inf
‖z‖=1,z∈VObs

‖Ψτz‖.

Ran Ψ∗τ closed in X ⇐⇒ Ψτ bounded from below on VObs.

Furthermore, it is easy to prove that:

z+
0 ∈ VObs =⇒ z−n (0) ∈ VObs, ∀n ≥ 1.
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Theorem
Denote by Π the orthogonal projection from X onto VObs. Then the
following statements hold true for all z0 ∈ X and z+

0 ∈ VObs:
1 For all n ≥ 1,∥∥(I −Π)

(
z−n (0)− z0

)∥∥ = ‖(I −Π) z0‖ .

2 The sequence (‖Π (z−n (0)− z0)‖)n≥1 is strictly decreasing and∥∥Π
(
z−n (0)− z0

)∥∥ =
∥∥z−n (0)−Πz0

∥∥ −→
n→∞

0.

3 There exists a constant α ∈ (0, 1), independent of z0 and z+
0 ,

such that for all n ≥ 1,∥∥Π
(
z−n (0)− z0

)∥∥ ≤ αn ∥∥z+
0 −Πz0

∥∥ ,
if and only if Ran Ψ∗τ is closed in X.
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What happens if C is unbounded ?

Main issue =⇒ A− C∗C has no more meaning (as a generator).
How to close the system ?

Main tool =⇒ Stabilization by colocated feedback law for well-posed
linear system (Curtain and Weiss 2006) allowing admissible C.

Well-posed linear system[
z(t)
y|[0,t]

]
= Σt

[
z0

u|[0,t]

]
, ∀ t ≥ 0,

where u ∈ U := L2([0,∞), U) and y ∈ Y := L2([0,∞), Y ) are the
control and the observation (with U and Y two Hilbert spaces).

Well-posedness means that for all t ≥ 0:

Σt =

[
Tt Φt
Ψt Ft

]
∈ L (X × U , X × Y) .
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M. Tucsnak and G. Weiss
Well-posed systems – The LTI case and beyond (Automatica, 2014)

Let A ∈ L(D(A), X) be the infinitesimal generator of T.
We denote X1 the Hilbert space D(A) (with the graph norm) and X−1 its
dual with respect to the pivot space X.

Associated triple (A,B,C): There exist a control operator
B ∈ L(U,X−1) and a observation operator C ∈ L(X1, Y ) such that

Φtu =

∫ t

0

Tt−sBu(s)ds, ∀ u ∈ U ,

and

Ψtz0(s) =

{
CTsz0, ∀ s ∈ [0, t]
0, ∀ s > t

∀ z0 ∈ X1.
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Let Σ be associated with (A,C∗, C), with A skew-adjoint.

Theorem (Curtain and Weiss 2006)
There exists κ ∈ (0,∞] such that for all γ ∈ (0, κ), the feedback law
u = −γy + v (v is the new control) leads to a closed-loop system Σγ

which is well-posed. Furthermore:

Σγ − Σ = Σ

[
0 0
0 γI

]
Σγ = Σγ

[
0 0
0 γI

]
Σ.

Applying this theorem to Σ associated with (A,C∗, C), we obtain a
closed-loop system Σ+.

Let z+ be the trajectory of Σ+ with control v = γy (for simplicity we
suppose u ≡ 0), then we have

z+(t)− z(t) = T+
t

(
z+

0 − z0

)
, ∀ t ≥ 0, z+

0 ∈ X,
where T+ is the semigroup of Σ+.

Under some additional assumptions (namely optimizability and
estimatability), the closed-loop system is exponentially stable. In other
words, the associated semigroup is: z+ is a forward observer of z.
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The idea is now to construct the backward observer. There is mainly two
ways to do that using the dual of a well-posed linear system.

Dual system
Define Σd by

Σdt =

[
Tdt Φdt
Ψd
t Fdt

]
=

[
I 0
0 Rt

] [
T∗t Ψ∗t
Φ∗t F∗t

] [
I 0
0 Rt

]
.

Then Σd is a well-posed linear system with input space Y , state space
X and output space U , associated with (A∗, C∗, B∗).

Where Rtu(s) := u(t− s) is the time reversal operator.

1 We can construct the closed-loop system Σ− of Σd.

2 Or, equivalently, define Σ− as the dual of Σ+.

We then obtain the same theorem as for bounded C, using z+ and
z−, the respective trajectories of Σ+ and Σ−, as forward and backward
observers.
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Example
Let

Ω ⊂ RN , N ≥ 2, with smooth boundary ∂Ω

∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅
Consider the following wave system

ẅ(x, t)−∆w(x, t) = 0, ∀x ∈ Ω, t > 0,
w(x, t) = 0, ∀x ∈ Γ0, t > 0,
w(x, t) = u(x, t), ∀x ∈ Γ1, t > 0,
w(x, 0) = w0(x), ẇ(x, 0) = w1(x), ∀x ∈ Ω,

with u the control, and (w0, w1) the initial state.
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Observation
Let ν be the unit normal vector of Γ1 pointing towards the exterior of
Ω, we observe the system via

y(x, t) = −∂(−∆)−1ẇ(x, t)

∂ν
, ∀x ∈ Γ1, t > 0.

Guo and Zhang (SIAM J. Control Optim., 2005) ⇒ well-posed linear
system.
Curtain and Weiss (SIAM J. Control Optim., 2006) ⇒ construction
of forward and backward observers (formally A± = ±A− C∗C).
So we can use the algorithm.
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∂ν
, ∀x ∈ Γ1, t > 0.

Guo and Zhang (SIAM J. Control Optim., 2005) ⇒ well-posed linear
system.
Curtain and Weiss (SIAM J. Control Optim., 2006) ⇒ construction
of forward and backward observers (formally A± = ±A− C∗C).

So we can use the algorithm.

G. Haine Recovering the initial state of a WPLS 26/ 31



Observation
Let ν be the unit normal vector of Γ1 pointing towards the exterior of
Ω, we observe the system via

y(x, t) = −∂(−∆)−1ẇ(x, t)
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Choosing a suitable initial data
Supp(w0) has three components W1,W2 and W3, such that

W1 ⊂ VObs

W2 ⊂ VUnobs

W3 ∩VObs 6= ∅ and W3 ∩VUnobs 6= ∅
w1 ≡ 0

To perform the test, we use
Gmsh: a 3D finite element grid generator
GetDP: a general finite element solver

G. Haine and K. Ramdani
Reconstructing initial data using observers: error analysis of the
semi-discrete and fully discrete approximations
(Numerische Mathematik (Numer. Math.), 2012)
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The initial position (Left) and its reconstruction (Right) after 3 iterations

⇒ 6% of relative error in L2(Ω) on the “observable part”.
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Conclusion

More ?

G. Haine
Recovering the observable part of the initial data of an infinite-dimensional
linear system with skew-adjoint operator
(Mathematics of Control, Signals, and Systems (MCSS), January 2014)

Application to thermo-acoustic tomography:

G. Haine
An observer-based approach for thermoacoustic tomography
(Mathematical Theory of Networks and Systems (MTNS – Gröningen),
July 2014)

Still to be done:

Stability of VObs and VUnobs with noisy observation y
Generalization (A∗ 6= −A)
Optimization of γ
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