
To cite this article Horgue, Pierre and Prat, Marc and Quintard, 

Michel A penalization technique applied to the “Volume-Of-Fluid” 

method: wettability condition on immersed boundaries. (2014) 

Computers and Fluids, vol. 100 . pp. 255-266. ISSN 0045-7930 

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 11792

To link to this article : DOI: 10.1016/j.compfluid.2014.05.027 

http://dx.doi.org/10.1016/j.compfluid.2014.05.027 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/33663615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A penalization technique applied to the ‘‘Volume-Of-Fluid’’ method:
Wettability condition on immersed boundaries

Pierre Horgue a,⇑, Marc Prat a,b, Michel Quintard a,b

aUniversité de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, 31400 Toulouse, France
bCNRS, IMFT, 31400 Toulouse, France

Keywords:

Penalization

Volume-Of-Fluid

Two-phase flow

Immersed boundary

a b s t r a c t

A penalization approach is presented to simulate two-phase flow in the presence of immersed solid

boundaries so as to consider highly complex objects such as porous media microstructures. Based on

the standard Volume-Of-Fluid formulation, the method takes into account the wettability effects which

may occur on the surface of immersed solid boundaries. A spatial shift between the no-slip and the

wettability conditions is introduced to make the method stable, regardless of the simulation parameters.

The penalized VOF model and the numerical choices are then validated by a series of tests on capillary-

dominated flows, which represent the most challenging cases for VOF simulations.

1. Introduction

Themodeling of two-phase flows in complex geometries is still a

major challenge for two main reasons. On the one hand, existing

multiphase flow methods developed to simulate the interfacial

dynamics usually require significant computation time, especially

methods with one-fluid formulation, such as the ‘‘Level-Set’’ [1],

the ‘‘Cahn–Hilliard’’ [2] or the ‘‘Volume-Of-Fluid’’ (VOF) method

[3]. The advantage of these methods lies in their ability to simulate

accurately the various phenomena involved in multiphase flows, in

contrast to explicit interface trackingmethods forwhich someprob-

lems present a particular challenge, like, for example, bubble coales-

cence or snap-off. However, the large computation time required by

these methods limits their use in terms of simulation domain size

and partly explains their relatively recent development.

On the other hand, simulating flow in complex geometries

constitutes generally an additional difficulty. In computational

fluid dynamics, this can be handled by two main approaches: the

use of unstructured meshes or immersed boundary methods. The

immersed boundary methods offer an interesting alternative

to usual methods, i.e., methods which operate on a geometry-

conformal grid. Indeed, the representation of solid boundaries on

Cartesian grids produces generally lower computational and mem-

ory costs as well as easier mesh generation. Constitutive equations

must be modified by adding terms which take into account the

fluid–structure interactions with the immersed boundaries [4,5].

Various immersed boundary methods have been developed to take

into account the presence of obstacles such as level-set method [6],

the ghost-fluid method [7] or the penalization method [4,5].

Readers interested in comprehensive reviews on the immersed

boundary methods are referred to the papers by Peskin [8] or

Mittal and Laccarino [9].

In this study, we develop a volume penalization approach

applied to a tracking interface method, the VOF method, in order

to simulate two-phase flow in the presence of wettability condi-

tions on immersed solid boundaries. The penalization technique

involves the introduction of a velocity penalization term in the

momentum equation, normally applied at the surface of the

immersed objects. Saiki and Birigen [10] showed the necessity to

apply the penalization term on the volume of the immersed objects

and not only on the immersed solid surface, in order to simulate

accurately the flow at high Reynolds numbers. This volume penali-

zation approach,which is used in thiswork, is based on the idea that

the immersed solid object is a porous medium whose permeability

tends to zero. The method has been used successfully to simulate

incompressible viscous flows [11], turbulent flows [12], compress-

ible flows [13], and,more recently, incompressible flowswith scalar

advection–diffusion [14]. Penalization techniques have also been

used for modeling multiphase flows in complex geometries

[15–17]. Prodanovic and Bryant [15] enforced ‘‘a no-penetration’’

constraint with a Level-Set method to prevent the invasion of the

fluid into the solid domain. This constraint induces a fluid–fluid

interface perfectly aligned with the solid surface, which in fact
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means a perfectly wetting condition on the immersed boundary

(contact angle h ¼ 0°). The penalty method with a ‘‘no-penetration’’

condition has been used in conjunction with the VOF method to

simulate two-phase flows interacting with moving solids [16].

Recently, the penalized Level-Setmethod has been extended to sim-

ulate capillary-controlled displacements with non-zero contact

angles [17]. Themajor goal of the work was to find equilibrium con-

figurations, i.e., interfaces with constant curvature (if no gravity

effects). To achieve such a goal, the method involves the introduc-

tion of an artificial fluid velocity in the (penalized) solid domain,

in order to enforce the correct contact angle. The authors tested suc-

cessfully their scheme on static situations (i.e., steady solutions or

quasi-static displacements). The proposed scheme works in princi-

ple well with capillary dominant flows, but it may create inaccurate

transient simulations when viscous forces are also at play. Another

technique is based on the introduction of awettability coefficient to

simulate the contact line of a three phase system [18]. The penaliza-

tion wettability coefficient modifies, close to the contact line, the

‘‘color’’ function which defines the interface position in order to

impose contact angles between the three phases. In this method,

a correlation between the coefficient (2 0;1½ �) and the contact angle

(2 0 : 180�½ �) needs to be defined numerically.

In this paper, we develop a penalized VOF method, without

additional coefficient, to simulate multiphase flows in the presence

of complex objects, focusing the study on the wettability condition

applied on the immersed boundaries, and taking into account the

potential impact of viscous forces on the interface dynamics. We

first present the mathematical description of the model in Sec-

tion 2, in particular the development of a penalized version of

the constitutive equations of the VOF method. Then, the numerical

implementation of the model using the OpenFOAMÒ platform is

presented in Section 3, giving in details the discretization of the

model equations. The developed code is based on the standard

OpenFOAMÒ VOF model, but with the addition of some features

recently proposed by Raeini et al. [19], such as smoothing

operations improving the interface curvature computation (see

Section 3.3), which may have significant effects for capillary-

dominated flows. Section 4 describes the validation of the method,

which is performed on several two-dimensional capillary-

dominated flows by comparing numerical results with the results

obtained with the usual VOF model. The three-dimensional simu-

lation of a drop impact on a solid flat surface is also performed

and qualitatively compared with experimental results.

2. Mathematical description

After a brief introduction to the VOF method, we introduce the

proposed VOF penalization method and then focus on the problem

of wall adhesion and contact angle.

2.1. The Volume-Of-Fluid method

In the introduction to this method, we define a modified pres-

sure, prgh, as follows:

prgh ¼ pÿ qg � x ð1Þ

where x is the spatial position vector with respect to the reference

pressure point, p the pressure, q the density and g the gravity accel-

eration vector. This change of variable, initially included in the

interFoam solver [20], allows to simplify the pressure boundary

conditions in the simulations.

In the Volume-Of-Fluid model [3], the two-phase flow problem

is solved using a unique set of incompressible Navier–Stokes equa-

tions [21,22], written below using the previously defined working

pressure prgh, i.e.,

q
@u

@t
þr � quuð Þ ¼ ÿrprgh ÿ g � xrqþr � l ruþruT

ÿ �ÿ �

þ Fc

ð2Þ

r � u ¼ 0 ð3Þ

where u is the fluid velocity and where the fluid properties density,

q, and dynamic viscosity, l, depend on the indicator function, a,
which represents the volume fraction of fluid 1 in each grid cell,

through simple mixture relationships:

q ¼ aq1 þ 1ÿ að Þq2 ð4Þ

l ¼ al1 þ 1ÿ að Þl2 ð5Þ

We should note that Eqs. (4) and (5) do not necessarily represent an

actual physical fluid behavior. This interphase approach could lead

to physical inconsistencies if the diffused interphase plays an

important role in the flow physics (for instance very thin film drain-

age, etc.). However, it is commonly used in the case of the VOF

model for immiscible fluids because the indicator function is used

only, in this case, as a numerical means to deal with the interphase

discontinuity. The interface is then transported using the following

advection equation called the ‘‘VOF equation’’:

@a
@t

þ u �ra ¼ 0 ð6Þ

The capillary force, Fc , in Eq. (2), is defined as a volume force [23]

and depends on ra such as

Fc ¼ r r � nað Þra ð7Þ

where r is the interfacial tension between the two fluids and na the

normal to the interface defined as follows

na ¼
ra
jraj

ð8Þ

2.2. The penalized Volume-Of-Fluid method

The computational domain X is divided in two parts, the fluid

domain Xfluid and the solid domain Xsolid with Rfluid=solid the surface

between the two domains as illustrated in Fig. 1.

The mask function v, necessary to the penalization method, is

defined for each cell i as follows

vi ¼ 0 in Xfluid ð9Þ

vi ¼ 1 in Xsolid ð10Þ

For the proposed method, it is also necessary to define the mask

function on each face f of the computational grid cells as

vf ¼ 1 on Rsolid=fluid ð11Þ

vf ¼ 0 on all others faces ð12Þ

Fig. 1. Schematic representation of the computational domain.



Using the mask function, the momentum Eq. (2) is then modified by

adding penalization terms. We write

q
@u

@t
þr � quuð Þþv

l
jv

u¼ÿrprghÿð1ÿvÞg �xrqþr �l ruþruT
ÿ �

þFc

ð13Þ

The first penalization term, v l
jv
u, is inherited from the classical

penalization approach applied to the incompressible Navier–Stokes

equations [5,11,14]. As demonstrated previously [11], the velocity

inside the solid domain is of the order of O
jv
l

� �1
2

� �

. To enforce

the no-slip boundary condition at the immersed solid boundaries,

the permeability jv must be chosen sufficiently small to reduce

the velocity in the solid domain below the numerical error, depend-

ing on the algorithm tolerance and the solved problem. The right-

hand-side penalization term, ÿð1ÿ vÞg � xrq, is necessary to avoid

pressure jumps across the immersed boundaries as detailed below

in the numerical part.

The transport of the volume fraction is penalized in the solid

domain by the no-slip condition already imposed on the velocity

field. As it exists a small but non-zero mass flux across immersed

boundaries, the convective term in the VOF Eq. (6) should not be

penalized to be consistent with the momentum equation. The

explicit penalization of the convective term in the VOF equation,

for example by imposing a zero flux across immersed boundaries,

leads to high instabilities in the numerical simulations. It follows

that the volume fraction a in the solid domain has a user-defined

fixed value whose influence will be evaluated during the method

validation as described in Section 4.

2.3. Wall adhesion and contact angle

The effects of wall adhesion at fluid interfaces in contact with a

solid boundary are taken into account by modifying locally the

normal to the interface na used in the capillary force formulation

[23] (Eq. (7)) as follows

na ¼ nwall cos hþ nt sin h ð14Þ

where h is the contact angle, nwall the normal vector to the wall and

nt the tangent vector to the wall, in the- direction normal to the

contact line. This is numerically done using the following

relationship

na;corrected¼
coshÿcoshI coshdiff

1ÿcos2hI
nwallþ

coshdiff ÿcoshI cosh

1ÿcos2hI
na ð15Þ

where hI is the initial angle between na and nwall and hdiff ¼ hI ÿ h.

We follow the same technique in our penalization method by

expressing the normal to the immersed wall niÿwall on each face f

using the mask function, i.e.,

niÿwall;f ¼
vf rv½ �c!f

j rv½ �c!f j
ð16Þ

The operator ½�c!f means that the field values are interpolated from

the cell centers to the face centers while the vf term is necessary to

define the normal niÿwall;f only on the immersed boundaries. The

correction of the interface normal na (Eq. (15)) is then applied to

the entire field a and not only to the wall boundaries. We must note

that we have a similar treatment for ‘‘real’’ and immersed solid

boundaries for the calculation of the wall normals, which allows

their coexistence in the same simulation.

3. Numerical method

The numerical implementation of the penalized VOF model is

performed using OpenFOAMÒ, an open source CFD platform

suitable for deep modifications of the solved equations. Our

approach is based on the OpenFOAMÒ usual VOF-based solver,

called interFoam, developed by Rusche [20] and detailed below.

3.1. Advection of the indicator function a

The interface between the two immiscible fluids is represented

by a step in the indicator function a, transported with the VOF Eq.

(6). Solving numerically a pure advection equation, such as the VOF

equation, induces numerical diffusion which tends to smear the

interface sharpness. Several strategies have been developed to

overcome these numerical issues such as suitable discretization

schemes [24,25], interface reconstruction algorithms [26], or the

introduction of an artificial compression term as used in the

interFoam solver [20]. This last approach leads to the following

VOF equation, written in the conservative form:

@a
@t

þr � auð Þ þr � a 1ÿ að Þurð Þ ¼ 0 ð17Þ

where ur is a compression velocity which can be defined in several

ways. In the interFoam solver, the formulation is based on the max-

imum velocity magnitude in the transition region, see Rusche[20]

for more details. The numerical scheme used for the convective

term of the VOF equation is a high resolution scheme with the

Van Leer limiter function (second order scheme) and a forward

Euler for time discretization. Advection of the indicator function is

performed explicitly using the last known velocity field. In order

to improve both stability of the simulation and computation time,

two different time steps, specified by two different Courant number

conditions, are used for the explicitly-solved VOF equation and for

the implicitly-solved Navier–Stokes system.

3.2. Pressure–velocity coupling

In the interFoam solver, the Navier–Stokes system is solved

using an alternative pressure–velocity algorithm based on the PISO

algorithm (Pressure Implicit with Splitting Operator) [27].

Predictor–corrector approaches are mainly used to reduce the size

of the solved linear systems, and, therefore, the computation time.

After discretization, the momentum equation can be written as

follows

ADu
n ¼ AHðu

n;unÿ1Þ ÿrprgh þ ð1ÿ vÞg � xrqþ Fc ð18Þ

where AD and AH are matrix operators (notation commonly used in

the OpenFOAMÒ formalism). AD refers to the matrix containing the

diagonal entries of the discretized form of the momentum equation,

including in our case the penalization term v
lv
un. AH includes the

viscous, inertial, and transient term unÿ1

Dt
, excluding body force, cap-

illary force and pressure gradient. Standard second-order centered

schemes are used for the discretization of viscous and inertial terms

and a first-order Euler backward scheme for the time derivative.

The momentum Eq. (18) can be reformulated into a flux predic-

tor–corrector equation

/n
f ¼ /�

f ÿ ðAÿ1
D jSjrprghÞf ð19Þ

where S is the surface area vector and f means that the values are

computed on the mesh faces. The predicted flux field, /�
f , is com-

puted as follows

/�
f ¼ Aÿ1

D AHðu
k;unÿ1Þ

� �

f
� Sþ ð1ÿ vf Þ Aÿ1

D

� �

f
jSj g � xrqð Þf

þ jSj Aÿ1
D Fc

� �

f
ð20Þ

where AHðu
k;unÿ1Þ is computed using the last known velocity field

uk. For the first algorithm iteration, we can use the old-time velocity



field, unÿ1, or perform, first, a prediction step by solving the momen-

tum Eq. (2) using the last known pressure field pnÿ1. We must note

at this point that the predicted flux field /�
f does not satisfy the

zero-divergence condition. Then, applying the divergence operator

to the flux predictor–corrector flux Eq. (19) and taking into account

the zero-divergence condition on the sought flux field /n
f , the equa-

tion can be recast into a Poisson-type equation, called the pressure

equation, which reads

r � /�
f ¼ r � Aÿ1

D

� �

f
jSjrprgh

� �

ð21Þ

The pressure field obtained by solving the pressure equation can

then be introduced into the predictor–corrector flux Eq. (19) to

calculate the new flux /n
f . Issa [27] showed that a minimum of

two correction steps are necessary and sufficient for most cases,

in order to obtain velocity and pressure fields that can be legiti-

mately considered as solutions to the Navier–Stokes equations. In

the case of the interFoam solver, three iterations of the presented

algorithm are usually performed for each time step.

The penalization term ð1ÿ vf Þg � xrq, in the predicted flux field

Eq. (20), allows to impose a zero flux condition across an immersed

solid boundary whatever the value of rq. It is necessary when an

interface is present along an immersed solid boundary, i.e., when

the volume fraction differs between the solid and the fluid domain

(depending on the user-defined initialization of a, see Fig. 2 and

Section 2.2).

3.3. Capillary effects

The interfacial tension effect in Eulerian grids can be computed

using different approaches: the continuum surface force [23], the

sharp surface force [28] or the ghost fluid model [29]. The compu-

tation of the capillary forces is one of the major difficulties encoun-

tered in the VOF method, firstly, because the diffuse nature of the

interface complicates the curvature computation, and, secondly,

because it may cause the presence of spurious currents close to

the interfaces. The spurious currents may have a great influence,

mainly when the flow is occurring at low capillary number, i.e.,

when the fluids dynamics are capillary-dominated, as observed

by Harvie et al. [30]. Previous works have also been conducted

on these spurious currents to evaluate their magnitude [31], or

to study the influence of various simulation parameters [32]. A

recent study [19] developed a stable numerical scheme, based on

sharp representation of the surface tension coupled with filtering

methods, which allows to simulate flow in porous media where

the characteristic size is of the order of millimeters. In this study,

we keep the usual procedure of the continuum representation

described by Brackbill et al. [23].

As explained in Section 2.2, the a-field has a fixed value in the

solid domain (see an example in Fig. 2), which may have an influ-

ence on the capillary effect computation at and near immersed

boundaries. Contrary to a real solid boundary, ra across an

immersed solid boundary is not necessarily equal to zero and

may affect locally the curvature computation in Eq. (7).

The curvature computation in the VOF method is challenging

because we usually try to keep the interface over a few cells, using

some compression algorithms, which may lead to inaccuracy on

the direction of the normal to the interface, na. To improve the

interface curvature computation, the a-field used in the interface

normal computation (Eq. (8)) can be smoothed by successive linear

interpolations (two interpolations in our simulations) between cell

centers and face centers (previous studies have successfully per-

formed similar operations [19,33–35]):

akþ1 ¼ CS ak½ �c!f

h i

f!c
þ 1ÿ CSð Þak ð22Þ

where CS is a smoothing coefficient whose value is discussed in the

numerical validation. The operator ½�c!f means that the field values

are interpolated from the cell centers to the face centers while the

operator ½�f!c means the inverse operation. In our model, the

smoothing operation may have a strong influence on the simulation

results, which is mainly due to the specific shape of the interface

close to the immersed boundaries (see Fig. 2).

Previous studies [19,36] reported that implementing a contact

angle condition on complex solid boundaries without smoothing

operations on the normal to the walls could lead to large spurious

velocities. A smoothing operation is therefore applied to the

rv-field in the computation of the normal to the immersed wall

niÿwall;f (Eq. (16)) using the following equation:

ðrvÞf ;kþ1 ¼ vf ðrvÞk
� �

f!c

h i

c!f
ð23Þ

For each linear interpolation iteration, the rvf -field is multi-

plied by vf to keep the normal niÿwall;f on the immersed solid

boundaries. A schematic representation of the smoothing opera-

tion is depicted in Fig. 3.

A preliminary study on the penalization method showed that

modifying the normal to the interface at the immersed boundaries

(to take into account the wall wettability) makes the method con-

ditionally unstable, highly dependent on the asolid initialization (cf

Fig. 2). The presence of the interface along the immersed solid

boundary affects the interface curvature computation and leads

to overestimation of the capillary force. This error depends on

the contact angle and reaches its maximum value for the largest

local interface curvature, i.e., when the contact angle tends to

90�. Moreover, in case of a curved immersed solid boundary, the

curvature of the interface along the immersed wall is different

Fig. 2. Contact line visualization for different methods: (a) VOF method, (b) penalized VOF with asolid ¼ agas , (c) penalized VOF with asolid ¼ aliquid .



from zero, which may induce a non-physical capillary pressure

between the solid and the fluid domain.

To overcome this numerical issue, the momentum prediction

Eq. (20) is modified by expanding the penalization term to the cap-

illary force term. We write

/�
f ¼ Aÿ1

D AHðu
k;unÿ1Þ

� �

f
�Sþð1ÿvf Þ Aÿ1

D

� �

f
jSjg � ðxrqÞf þjSj Aÿ1

D �Fc

� �

f

� �

ð24Þ

This term cancels out all fluxes depending on ra along the

immersed boundaries, which reduces the possible influence of an

interface along the wall. The wettability is then taken into account

by modifying the interface normal on the adjacent face close to the

immersed boundary, as depicted in Fig. 4. This wettability shift is

simply done by modifying the wall-smoothing operation (23) for

the last iteration klast as follows

ðrvÞklast ¼ ðrvÞklastÿ1

h i

f!c

� �

c!f

ð25Þ

which provides a nwall;immersed;f -field defined on the faces adjacent to

the immersed boundaries. Note that the volume penalization term

remains on the solid cells, which induces a shifting between no-slip

and wettability boundary conditions.

4. Numerical validation

In this section, several test cases are solved using the proposed

method and the approach is validated by comparing the numerical

results with analytical results or with a reference solution, i.e., the

one obtained from the usual VOF-based solverinterFoam. Fluids

used for the following tests are air (q ¼ 1:225 kg mÿ3, l ¼ 1:78

�10ÿ5 Pa s) and water (q ¼ 980 kg mÿ3, l ¼ 1:0� 10ÿ3 Pa s) under

atmospheric conditions. The interfacial tension, r, between the

two fluids is 0:073 N mÿ1. The characteristic length chosen for

the tested geometries is close to the capillary length, i.e., of the

order of a millimeter, because the capillary-dominated flows repre-

sent one of the most sensitive cases for VOF simulations (see Sec-

tion 3.3). Validating the presented method on capillary-dominated

flows ensures that immersed wall effects in the penalized method

are correctly taken into account and, therefore, that the approach is

valid in a more general way. For the following simulations, we set

jv ¼ 10ÿ30 m2 and algorithm tolerance equal to 10ÿ7 for p and u. In

these conditions, the velocity field inside the solid is negligible, i.e.,

its magnitude is lower than numerical accuracy.

The method is first validated in two simple cases: a circular

drop at equilibrium and the displacement of a meniscus in a simple

Hele-Shaw cell. Then, an obstacle is placed in the cell to observe

the behavior of the method in the presence of a solid boundary

with a more complex shape. Finally, the method is used to simulate

the impact of a droplet on a solid support.

4.1. Circular drop at equilibrium

The first case studied is a two-dimensional drop at equilibrium

on a wetting or non-wetting plane surface. The configuration is

exactly similar to the work of Dupont and Legendre [35]. The initial

volume of the drop is pR2
0 with reference radius R0 ¼ 1 mm. The

contact angle varies from h ¼ 10 to 170� and the real radius R of

the drop is therefore given by:

R ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
hÿ sin h cos h

r

ð26Þ

while the pressure jump across the interface is computed by

Laplace’s law:

Dpanalytical ¼
r
R

ð27Þ

For each configuration tested (h ¼ 10°, 30°, 60°, 90°, 120°, 150°,

170°), the initial condition is the exact solution, i.e., a drop whose

width is given by Ldrop ¼ 2R� sin h and height by Hdrop ¼ R�

1ÿ cos hð Þ. The size of the Cartesian grid spacing is defined so that

the drop height contains 40 cells (similar to the work previously

cited [35]). The corresponding mesh has between 6480

(h ¼ 170�) and 146,320 (h ¼ 10�) computation cells. For the penal-

ized approach, five cells are added on the bottom of the simulation

domain to represent the plane surface as a fine penalized layer.

Fig. 5 shows the initial condition for the 3 methods: usual VOF,

asolid ¼ aliquid and asolid ¼ agas.

For all the penalized configurations, simulations are performed

with and without smoothing operation (CS ¼ 0 or 0:5). The numer-

ical validation is evaluated in terms of the averaged pressure inside

the drop, which is numerically calculated as follows:

Dp ¼

R

V
1ÿ vð Þap dV

R

V
1ÿ vð Þa dV

ÿ pout ð28Þ

with the reference pressure pout ¼ 0. Fig. 6 shows the results

obtained with asolid ¼ agas and asolid ¼ aliquid. Note that, in this Figure,

the absence of value for one method means that the drop is unsta-

ble in that case, i.e., that pressure and velocity fields are oscillating.

This is the case for h < 90� (liquid wetting) and asolid ¼ agas (Fig. 6b)

and also for h > 90� (gas wetting), asolid ¼ aliquid, and CS ¼ 0 (Fig. 6b).

One should note that the difference between theoretical results

and the usual VOF is of the order of 10% for the various contact

angles tested and that it is due to the current implementation of

the VOF method in the OpenFOAMÒ software. More accurate

simulations would require specific recent improvements, such as

capillary forces smoothing and filtering [19,35], that are not in

the scope of this paper and not available in the CFD tool used.

For stable configurations, numerical results obtained with the

penalized approach are close to those obtained with the standard

VOF method. Smoothing operation has a small influence except

(a) (b)

Fig. 3. Different representations of the normal to the immersed walls nwall;immersed:

(a) no smoothing, (b) with smoothing.

Fig. 4. Schematic representation of the shift between the no-slip condition and the

wettability condition.



for high curvatures close to the immersed boundaries, i.e., when

h ! 90�. The most accurate results are obtained by initializing

the immersed boundaries with the wetting fluid and using the

smoothing function (CS ¼ 0:5). For the particular intermediate

case, h ¼ 90�, the best agreement is found for asolid ¼ agas.

A mesh sensitivity study is performed for the case h ¼ 60�

(asolid ¼ aliquid) and the relative differences between penalized

method results and the usual VOF results are reported in Fig. 7a

for three mesh characteristic sizes. We can observe that the addi-

tional numerical error induced by the penalized approach is of

the order 1=2. As the usual VOFmethod has an order of convergence

of 1, we can conclude that the global order of convergence of the

penalized method is at most 1=2. The parasitic currents, i.e., the

maximal velocity magnitude, is plotted in Fig. 7b as a function of

temporal iterations for the different methods (with h ¼ 60� and

Dx ¼ Dy ¼
Hdrop

40
). The instability of the ‘‘unwetted’’ simulations is

illustrated by higher values of parasitic currents while the ‘‘wetted’’

approaches show similar magnitudes as the usual VOF method.

4.2. Capillary displacements in a Hele-Shaw cell

We now study a dynamic case, e.g. the capillary displacements

into an Hele-Shaw cell to observe the method behavior when the

contact line is moving. We consider a horizontal Hele-Shaw cell

(width = 1 mm and length = 10 mm) with a computational grid,

for the reference case, composed of 25� 500 cells with a character-

istic size 20 by 20 lm. In the case of the penalized method, the

simulations are performed using an Hele-Shaw cell with a spacing

of 1:2 mm while defining the immersed solid domain as a layer of

thickness of 0:1 mm along the wall, as depicted in Fig. 8. The

computational grid for this method is composed of 30� 500 cells

which induces the same discretization of the fluid domain. Bound-

ary conditions are fixed pressure on both sides. By varying the

contact angle h, it is possible to change the capillary pressure

and, therefore, the meniscus velocity. Simulation conditions are

summarized in Fig. 8.

The simulations are performed for h 2 10�;80�½ �, asolid ¼ aliquid or

agas, and for CS ¼ 0 or 0:5.

4.2.1. Spontaneous capillary invasion

The Hele-Shaw is initially filled with the non-wetting fluid and

the same pressure is imposed on both sides. Under such conditions,

the meniscus behavior is only controlled by capillary pressure.

Numerical results obtained for a solid domain initialized with the

wetting fluid (asolid ¼ aliquid) in that configuration are plotted in

Fig. 9. Note that in the following figures, time is normalized by

Fig. 5. Initial conditions (h ¼ 60�) for the different methods: (a) usual VOF, (b) asolid ¼ aliquid , (c) asolid ¼ agas .
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the final time of the reference simulation, i.e., when the meniscus

leaves the computational domain. The figure shows the velocity

(made dimensionless by the maximal reference velocity) of the

interface, equal to zero at t ¼ 0, as a function of time for three

cases: h ¼ 10�; 40� and 70�. For the whole range of contact angles

tested, numerical results obtained with CS ¼ 0 and CS ¼ 0:5 are

very close, which confirms the observations of Section 4.1, i.e., that

the smoothing coefficient CS has a small influence on the simula-

tions. The comparison between the penalized and the usual

approach shows a maximum relative difference in terms of menis-

cus velocity of 6:9% for h ¼ 10�;3:4% for h ¼ 40� and 3:2% for

h ¼ 70�. This figure shows that the penalized approach tends to

slightly underestimate the contact angle, which is particularly vis-

ible for the lowest contact angles, i.e., h ¼ 10� in Fig. 9.

Simulations are then performed with asolid ¼ agas and the

numerical results are plotted in Fig. 10. First, this figure shows that,

contrary to the case asolid ¼ aliquid, the smoothing coefficient has a

non-negligible influence on the results. In the case with no-

smoothing (CS ¼ 0), the capillary effects are overestimated and

the maximum relative difference oscillates between 6% for

h ¼ 70� and 9:9% for h ¼ 10�. On the opposite, simulations with

CS ¼ 0:5 show an underestimation of the capillary effects with a

maximum difference between 0:6% for h ¼ 10� and 35:3% for

h ¼ 70�. We attribute this strong influence of the smoothing coef-

ficient, CS, to the shape of the interface in the case with

asolid ¼ agas, which presents an important curvature close to the

immersed boundary (see Fig. 2). At this point, and in accordance

to the findings of Section 4.1, the ‘‘wetting solid’’ approach

Fig. 8. Simulation conditions for the usual VOF method (top) and the penalized VOF method (bottom).
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(asolid ¼ aliquid when h < 90�) seems to be the best compromise

between accuracy and stability. A mesh sensitivity is performed

on that case for h ¼ 10� and numerical results are summarized in

Table 1. The difference between the coarsest and the finest grid

results is less than 3% for all the configurations.

4.2.2. Receding meniscus

The Hele-Shaw domain is now initially filled with the wetting

fluid and we impose a pressure gradient Pin;air ¼ 150 Pa
ÿ �

to

observe the inverse displacement of the meniscus in the Hele-

Shaw cell.

In the case asolid ¼ agas, the dimensionless meniscus velocity ver-

sus time is represented Fig. 11 for three different contact angles.

The reference solution is compared with the penalized method

with CS ¼ 0 and CS ¼ 0:5. The figure shows a non-negligible differ-

ence between the penalized approach and the reference solution,

for the entire series of tests. Moreover, in the case h ¼ 10�, the

meniscus establishment lead to front velocity oscillations which

persist when CS ¼ 0. The aÿsmoothing operation tends to reduce

these oscillations, but also increases the velocity difference with

the reference solution (from 11:1% with CS ¼ 0 to 21:9% with

CS ¼ 0:5). Findings are similar for larger contact angles: the

aÿsmoothing provides a better stability but also a greater inaccu-

racy of the numerical simulations. The minimum difference in the

case asolid ¼ agas, is 10:9% and is reached with CS ¼ 0 and h ¼ 70�.

Numerical results with asolid ¼ aliquid are plotted in Fig. 12. The

figure shows a good agreement in terms of meniscus velocity

between the various penalized simulations and the reference solu-

tion. The maximum difference, equal to 9:6%, is reached for

CS ¼ 0:5 and h ¼ 10�. The interface velocity oscillations, previously

observed in the case asolid ¼ agas, are not present when the

immersed solids are flooded with the wetting fluid. However, the

a-smoothing procedure still increases the velocity difference with

the reference case, but to a lesser extent than in the case where

asolid ¼ agas, as depicted in Fig. 12. Numerical results with

asolid ¼ aliquid show the best agreement with the reference solution,

for a wide range of contact angles, with a relative difference less

than 2:9% while the smoothing coefficient has a small influence.

In conclusion to this Hele-Shaw cell study, it appears that filling

the solid domain with the wetting fluid provides more stable and

accurate simulations without adjustable parameters, contrary to

the configuration with asolid ¼ agas which has an efficiency and

accuracy highly dependent from the studied case.

4.3. Hele-Shaw cell with obstacle

The penalized method is then tested in the case of a receding

meniscus within a Hele-Shaw cell with different obstacles. We first

study the meniscus displacement in a Hele-Shaw cell (dimensions:

1� 5 mm, Pin;air ¼ 150 Pa, h ¼ 45°) containing an obstacle with a

rectangular shape (0:4� 3 mm). A comparison of the interface

configurations at a given time between usual and penalized VOF
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Table 1

Effect of grid size on maximal dimensionless velocity in the Hele-Shaw cell.

Mesh size Usual VOF asolid ¼ aliquid asolid ¼ agas

CS ¼ 0 CS ¼ 0;5 CS ¼ 0 CS ¼ 0;5

500� 30 1:028 1:099 1:099 1:129 1:026

700� 42 1:026 1:090 1:096 1:104 1:014

1000� 60 1 1:071 1:088 1:081 1:038



simulations is shown in Fig. 13a. As in the case of the meniscus dis-

placement in a Hele-Shaw cell, we validate the penalization

approach by a comparison with the reference solution in terms

of meniscus velocity (see Fig. 14). The figure confirms the findings

of the Hele-Shaw cell study with a receding meniscus. The case

asolid ¼ agas fails to simulate correctly the meniscus behavior.

Increasing the a-smoothing operation (CS ¼ 0:5) provides a better

stability at the expense of a larger inaccuracy. The best agreement

is found for asolid ¼ aliquid, i.e., the same configuration used for the

simple Hele-Shaw case studied in Section 4.2.1.

The second test consists of an Hele-Shaw cell containing an

obstacle with curved boundaries, i.e., not aligned with the mesh.

A comparison of interface configurations at a given time between

usual and penalized VOF simulations is presented in Fig. 13b. The

figure shows a good agreement between usual and penalized

VOF in terms of meniscus position, as for the cases described

above.

This case allows to emphasize the impact of the smoothing of

the normal to the immersed wall nwall;immersed, detailed in section

3.3, and illustrated in Fig. 15 (right). The comparison with the

reference solution (Fig. 15b) shows a better agreement when the

normal to the immersed wall is smoothed (Fig. 15c).

4.4. 3D Droplet impact

We now study a droplet impact on a flat solid surface, a situa-

tion known to feature different dynamic behaviors [37–39],

depending on the adopted physical conditions such as, for exam-

ple, the wetting conditions. The configuration is similar to the

experimental study of Wang et al. [39], i.e., the normal collision

of a water droplet (diameter d ¼ 2 mm) with an initial velocity

Vdroplet ¼ 0:517 m sÿ1 on hydrophilic (glass) or hydrophobic

(paraffin) surfaces. The size of the computational domain is

6� 6� 2:5 mm, and, to reduce the computational domain, we sim-

ulate a quarter of the droplet by considering two symmetry planes.

The computational grid is regular and composed of 60� 32� 60

cells (Dx ¼ Dy ¼ Dz ¼ d
40
).

We focus the study on the hydrophobic case where the contact

angle has been measured experimentally and varies non-regularly

between 80� and 120�, depending on the moving contact line. In

the numerical calculations, we set a constant contact angle

h ¼ 100� and perform numerical simulations with the penalized

approach and the two choices: asolid ¼ agas and asolid ¼ aliquid. Inter-

face profiles are plotted in Fig. 16 at different time steps:

t ¼ 1;5;10;15;20;29� s with s ¼ 1
2905

s. This corresponds to the

time interval between two images of the study of Wang et al.

[39] and numerical results can therefore be directly compared with

Fig. 5 of the previously cited paper. The two simulations

(asolid ¼ agas and asolid ¼ aliquid) are almost similar and numerical

results are in good agreement with the experimental visualiza-

tions. The penalized VOF method reproduces the different stages

of the droplet impact on an unwetting surface, i.e., the spreading

of the drop (Fig. 16a,b,c), followed by the formation of a liquid ring

(Fig. 16d,e), which then leads to a fast growth of a central cone

(Fig. 16f). We should note that the last stage, the fast growth, is

slower in the numerical simulation which may be due to the static

angle assumption (which is dynamic in the real case) but also to

the coarse mesh used. Indeed, it has been shown in Section 4.1 that

a mesh with a characteristic size of
hdrop
20

may lead to an underesti-

mation of the capillary effects of about 8 %. The capillary effect
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Fig. 11. Meniscus velocity as a function of time with asolid ¼ agas: (a) h ¼ 10� , (b) h ¼ 40� , (c) h ¼ 70� . Velocities are made dimensionless by the maximal reference velocity

(respectively, Vmeniscus;ref ¼ 2:80� 10ÿ1;4:70� 10ÿ1 and 2:64� 10ÿ1 m sÿ1).
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Fig. 13. Two-phase flow in a Hele-Shaw cell with a rectangular-shaped (a) or curved-shaped (b) obstacle (top: usual VOF, bottom: penalized VOF).
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Fig. 14. Meniscus velocity as a function of time for the Hele-Shaw cell with an obstacle: (a) asolid ¼ agas , (b) asolid ¼ aliquid .



difference, and therefore the time shift between simulations and

visualizations, can be probably reduced by refining the mesh. The

case with asolid ¼ agas is slightly closer to the experimental visuali-

zation, which confirms that initializing the solid domain with the

wetting phase provides more accurate results.

5. Conclusions

We developed in this paper a penalization approach applied to

the ‘‘Volume-Of-Fluid’’ method to simulate two-phase flows with

the presence of immersed solid boundaries. A special attention

has been given on the wettability condition on the immersed

boundaries, which, through the presence of an interface along

the immersed boundaries, may trigger instabilities in the numeri-

cal simulations and inaccuracy in the capillary forces computation.

By separating the no-slip condition with the wettability condition,

the method developed is stable for all cases tested and almost

independent from the initial conditions in the solid domain. How-

ever, this study showed that initializing the a-field (the solid phase

indicator) in the solid domain with the wetting fluid reduces the

potential effect of theimmersed curvature (higher when solid

domain is unwetted) and allows to simulate two-phase flows with-

out adjustable parameters, for a wide range of cases with a good

accuracy provided a sufficiently refined mesh is used. To evaluate

numerical errors induced by the method, the validation study

has been performed on various cases of capillary-dominated flows,

driven by the wall effects. Numerical validation has been per-

formed on several 2D cases and the 3D numerical simulations of

a drop impact on a flat surface have been favorably compared with

experimental visualizations. The proposed penalized method can

thus be used with confidence provided that the mesh refinement

is adapted to the importance of wetting effects.

References

[1] Sussman M, Smereka P, Osher S. A level-set approach for computing solutions
to incompressible two-phase flow. J Comput Phys 1994;114:146–59.

[2] Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. Interfacial free
energy. J Chem Phys 1958;28(2):258.

[3] Hirt CW, Nichols BD. Volume-of-Fluid method for the dynamics of free
boundaries. J Comput Phys 1981;39:201–25.

[4] Peskin CS. Numerical analysis of blood flow in the heart. J Comput Phys
1977;25(3):220–52.

[5] Peskin CS. The fluid dynamics of heart valves: experimental, theoretical, and
computational methods. Annu Rev Fluid Mech 1982;14(1):235–59.

[6] Cheny Y, Botella O. The LS-STAG method: a new immersed boundary/level-set
method for the computation of incompressible viscous flows in complex
moving geometries with good conservation properties. J Comput Phys
2010;229(4):1043–76.

[7] Mittal R, Dong H, Bozkurttas M, Najjar FM, Vargas A, Von Loebbecke A. A
versatile sharp interface immersed boundary method for incompressible flows
with complex boundaries. J Comput Phys 2008;227(10):4825–52.

[8] Peskin CS. The immersed boundary method. Acta Numer 2002;11:479–517.
[9] Mittal R, Iaccarino G. Immersed boundary methods. Annu Rev Fluid Mech

2005;37(1):239–61.
[10] Saiki E, Biringen S. Numerical simulation of a cylinder in uniform flow:

application of a virtual boundary method. J Comput Phys 1996;123(2):450–65.
[11] Angot P, Bruneau C, Fabrie P. A penalization method to take into account

obstacles in incompressible viscous flows. Numer Math 1999;81(4):497–520.
[12] Schneider K, Farge M. Decaying two-dimensional turbulence in a circular

container. Phys Rev Lett 2005;95(24):244502.
[13] Liu Q, Vasilyev OV. A Brinkman penalization method for compressible flows in

complex geometries. J Comput Phys 2007;227(2):946–66.

Fig. 15. Simulation of the wettability condition on a curved wall: (a) nwall;immersed non-smoothed, (b) reference solution, (c) nwall;immersed smoothed.

Fig. 16. Visualization of the interface dynamics of a droplet impact at different time steps (t ¼ 1;5;10;15;24;29� swith s ¼ 1
2905

s) for two penalized approaches: asolid ¼ agas

(left) and asolid ¼ aliquid (right). Numerical results are compared with experimental visualizations from Wang et al. [39].



[14] Kadoch B, Kolomenskiy D, Angot P, Schneider K. A volume penalization
method for incompressible flows and scalar advection–diffusion with moving
obstacles. J Comput Phys 2012;231(12):4365–83.
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