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a b s t r a c t

Greenhouse gas emissions represent a major environmental problem associated with the

management of manure from the livestock industry. Methane is the primary GHG emitted

during manure outdoor storage. In this paper, the variability of two swine and two dairy

manure storage tanks was surveyed, in terms of physico-chemical and microbiological

parameters. The impact of the inter-tank and spatio-temporal variations of these param-

eters on the methanogenic activity of manure was ascertained. A Partial Least Square

regression was carried out, which demonstrated that physico-chemical as well as micro-

biological parameters had a major influence on the methanogenic activity. Among the 19

parameters included in the regression, the concentrations of VFAs had the strongest

negative influence on the methane emission rate of manure, resulting from their

well-known inhibitory effect. The relative abundance of two amplicons in archaeal

fingerprints was found to positively influence the methanogenic activity, suggesting that

Methanoculleus spp. and possibly Methanosarcina spp. are major contributors to methano-

genesis in storage tanks. This work gave insights into the mechanisms, which drive

methanogenesis in swine and dairy manure storage tanks.

1. Introduction

In 2008, 12% of the greenhouse gas (GHG) emissions from the

agricultural sector originated from manure management in

Canada (Blain et al., 2010). In swine buildings, manure is first

collected into gutters located under partially slotted floors for

temporary indoor storage. Depending on the age of the pigs,

it usually takes 1e3 weeks to fill the manure gutter. When the

gutters are full the manure flows by gravity to a transfer tank.

Thereafter the manure is transferred to an outdoor storage

prior to its spreading on farm land for agronomic valor-

isation. On dairy farm, the manure is removed daily and

transferred directly to the long-term manure storage. The

carbon footprint of livestock products is becoming an

important issue for the consumers. Therefore the GHG

emission is becoming a concern for producers. Manure

* Corresponding author. Tel.: þ1 819 780 7129; fax: þ1 819 564 5507.
E-mail address: Guylaine.Talbot@agr.gc.ca (G. Talbot).

http://dx.doi.org/10.1016/j.watres.2012.10.047



methane and nitrous oxide (N2O) emissions are respectively

emitted by manure storages and land applied manures (Park

et al., 2006).

Methane emissions result from the activity of complex

anaerobic consortia of fermentative bacteria together with

methanogenic archaea, which metabolize the organic

substrates available in manure. Communities of hydrolytic,

acidogenic, and acetogenic bacteria ferment the macromol-

ecules into acetate, H2, formate and CO2. These intermediates

are then converted into methane and CO2 by hydro-

genotrophic and/or acetoclastic archaea. This complex

process depends on three factors: environmental parameters,

substrate characteristics and microbial communities. The

influence of several environmental parameters on the

methane emissions from stored swine and dairy manure was

studied. These include temperature (Sharpe and Harper,

1999) and the presence of a surface crust (Petersen and

Ambus, 2006). The impact of manure composition, for

example the total solids (TS) content, was also assessed

(Martinez et al., 2003; Massé et al., 2003). These studies were

carried out either in lab-scale experiments focused on a few

number of manure samples or in on-site experiments, which

provide partial information on actual methane emissions.

However, some physico-chemical characteristics of manure

such as pH, TS and ammoniacal nitrogen (NH3) contents were

shown to vary as a function of time in storage tanks (Park

et al., 2006) and the stratification of bacterial community

structure as a function of depth was also stated (Whitehead

and Cotta, 2001). Similar observations were made in an

anaerobic swine waste treatment lagoon, while the total

bacteria concentration, as measured by quantitative PCR

targeting 16S rRNA gene, did not vary with depth (Lovanh

et al., 2009; Cook et al., 2010). To understand more thor-

oughly the driving mechanisms and to better assess the

methane emissions from storage tanks, more research is

needed to take into account the spatio-temporal variations of

manure physico-chemical characteristics. In addition, the

influence of microbial communities on methanogenic

activity has been under investigated. Several studies have

examined and identified the bacteria and archaea present in

stored manure using 16S rRNA gene sequences (Whitehead

and Cotta, 2001; Snell-Castro et al., 2005), but literature con-

cerning the relationship between the microbial community

structure and the methanogenic activity is scarce. One study

recently showed that specific archaeal phylotypes related to

Methanoculleus (Barret et al., 2012) were enriched during

in vitro methanogenesis of samples from two swine manure

storage tanks, suggesting that these phylotypes would be

involved in methanogenesis.

The main objective of this study was to improve our

understanding of the mechanisms that drive methane emis-

sions in storage tanks. The specific objective of this study was

to survey the spatial (within tank), temporal and tank-to-tank

variability of swine and dairy manure in terms of physico-

chemical characteristics, structure of methanogenic

archaeal community and methanogenic activity. This work

was based on an extensive sampling campaign (96 samples),

followed by the characterization of these samples and the

assessment of their methanogenic activity in lab-scale

anaerobic incubations.

2. Material and methods

2.1. Manure samples

Two swine (tanks 1 and 2; 35 and 27 m diameter, respectively)

and two dairy (tanks 3 and 4; 28 and 22 m diameter, respec-

tively) farms located near Sherbrooke, Québec, Canada, were

selected for the study. Manure was stored outdoors in

concrete storage tanks having 3.7 m depth for tanks 1e3 and

4.1 m depth for tank 4. The swine manures were sampled in

April 2010 (T1), June 2010 (T2) and April 2011 (T3). The dairy

manure samples were taken in June 2010 (T1), September 2010

(T2) and April 2011 (T3). In these farms, swine manure is

usually added into dairy manure storage tanks for liquefac-

tion, to facilitate mixing and land spreading. Sampling was

carried out the week before mixing for land spreading, except

for tank 3 at collection times T1 and T2. The stored manure

was neither mixed and land applied during the fall and winter

periods (from October to March). The samples were collected

at three points located at the periphery of the tanks (A, B, C)

and at two or three depths depending on collection time and

presence/absence of a surface crust (Table S1, Supplementary

data), resulting in six to nine 1-L samples from each tank and

collection time. The sampling apparatus consisted of a 3.6-m

long aluminium rod connected to a container with a retract-

able lid, whichwas plunged into the storage tanks and opened

at the sampling position and depth. From each primary

manure sample, 4! 0.5 mL aliquots were removed and

immediately frozen in liquid nitrogen for molecular biology

analyses. The remaining sample was maintained at ambient

temperature during the transport from the farm to the labo-

ratory for subsequent anaerobic incubation.

2.2. Anaerobic incubation of manures

Within 4 h following collection, duplicate 230-g sub-samples

from each primary manure samples were transferred into

500-mL bottles. The remainder (w500 mL) was then frozen at

"20 #C prior to physico-chemical characterization. The bottles

containing 230 g were flushed with nitrogen then sealed with

a butyl rubber stopper and an aluminium cramp. They were

incubated at 25 #C in a thermo-regulated chamber, to mimic

the summer temperature in Canadian storage tanks (Massé

et al., 2008).

At least once a week, biogas volume was measured with

a 2089 pressure gauge (Ashcroft Inc., Stratford, USA), then

released. An 8-mL sample was collected from the gaseous

phase of one of the replicate bottles to analyze biogas

composition. Following sampling of the head space gas, the

bottles were shaken manually to homogenize the contents.

The methane emission rate of manures was estimated from

data from the first 20 days of incubation.

2.3. Fingerprinting of archaeal populations

From the frozen sub-samples taken on sampling days, DNA

was extracted using the bead beating method (Griffiths et al.,

2000), with minor modifications (Roy et al., 2009). To finger-

print the archaeal community, the LH-mcrA method detailed



in our precedent study (Gagnon et al., 2011) was used, which is

based on natural length variations of the alpha-subunit of the

methyl-coenzyme-M reductase involved in methane forma-

tion by methanogenic archaea. This high throughput method

uses universal primers (mcrAfornew: 50-GGT GTM GGD TTC

ACH CAR TAY GC-30 and mcrArevnew: 50-6-FAM-TTC ATN

GCR TAGTTHGGRTAGTT-30) to amplify themcrA gene, which

is then analyzed using capillary electrophoresis. PCRmixtures

consisted of 1! Taq buffer (Bioshop Canada Inc., Burlington,

ON, Canada), 1.5 mM MgCl2 (Bioshop Canada Inc.), 0.5 mM of

each primer (Applied Biosystems Canada), 0.1 mM of deoxy-

nucleotide triphosphate (Bioshop Canada Inc.), DNA from

manure (100 ng), and 0.625 U of Taq polymerase (Bioshop

Canada Inc.) in a final volume of 25 mL. DNA denaturation was

performed at 94 #C for 2 min, followed by 28 cycles at 94 #C for

60 s, annealing at 55 #C for 60 s and elongation at 72 #C for 60 s,

and a final extension step at 72 #C for 30 min, in an Eppendorf

gradient thermal cycler (Fisher Scientific Ltd). Amplifications

were performed in duplicate. A 1-mL aliquot of appropriately

diluted LH-mcrA amplification products were mixed with

0.06 mL of GeneScan! 500 LIZ" Size Standard (Applied Bio-

systems Canada) and 12.3 mL of Hi-Di Formamide (Applied

Biosystems Canada). Electrophoresis was performed on

a 3100-Avant Genetic Analyzer (Applied Biosystems Canada)

using a 36-cm long capillary array and for 40 min in the Gen-

eScan mode. Length analysis between 300 and 500 bp and

determination of peak height were done using the Gen-

eMapper" Analysis Software (Applied Biosystems Canada).

Based on the peak heights, the relative abundance of each

amplicon could be assessed.

2.4. Physico-chemical analyses

The frozen primary manure sample (approximately 500 mL)

was thawed then homogenized using a PT10/35 Polytron

(Binkman Instruments, Rexdale, Canada). The sample was

analyzed for TS, total suspended solids (TSS), volatile solids

(VS), volatile suspended solids (VSS), total Kjeldhal nitrogen,

(NH3) and pH, as described in Barret et al. (2012). Organic

nitrogen concentration (Norg) was deduced from total

Kjeldhal and NH3 by subtraction.

2.5. Data analysis

One-factor analysis of variance (ANOVA) was performed using

Excel (Microsoft Corporation, Redmond, USA).

To analyze the variability of multivariate data, Multi-

Response Permutation Procedure (MRPP), Indicator Species

Analysis (ISA), and Non-Metric Multidimensional Scaling

(NMS) were performed using BrayeCurtis (i.e. Sørenson)

distance measures in the PC-ORD software (McCune and

Mefford, 1999). MRPP was used to test for significance of

group differences, taking into account the variability between

the samples of each group. A p value <0.05 was considered

significant. ISA (Dufrene and Legendre, 1997) was used to

identify amplicons responsible for the differences observed

among groups of LH-mcrA fingerprints. For each amplicon,

the proportional abundance in a particular group relative to

the abundance in all groups and the relative frequency within

a group were calculated. Indicator values (range from 0 to 100;

absent to exclusively present, respectively) were obtained by

multiplying the relative abundance by the relative frequency

of each amplicon in a given group, as determined from

fingerprint data. Physico-chemical characteristics were rela-

tivized then reduced to single points which were projected

into a two-dimensional space (biplot) using NMS ordination

method. NMS was performed using 100 iterations with

random starting configurations to ensure that minimum

stress was achieved for the final ordination. The NMS biplots

were rotated by varimax rotation (McCune and Grace, 2002).

Multivariate regression was carried out using the partial

least-squares (PLS) method. The PLS regression is based on

constructing PLS factors by minimizing the covariance

between the dependent variable (Y block) and the explicative

variables (X block). The prediction of Y block is then calculated

with a linear regression on the X block using the software R

version 1.2.2 and by using PLS functions developed elsewhere

(Durand, 2012). These functions have been designed to deal

with roughly correlated explicative variables (Wold et al.,

1983). The number of PLS factors (dimension, dim) was

determined by minimizing the mean squared predictions

error (Predicted REsidual Sum of Squares, PRESS) through

a leave-one-out cross-validation procedure.

3. Results and discussion

3.1. Spatio-temporal variability of manure physico-

chemical characteristics

The NMS projection of physico-chemical characteristics gives

an overview of the manure variability within the set of 92

analyzed samples (Fig. 1). Themanures primarily gathered in 4

regions of the NMS projection, defining clusters I, II, III and IV.

MRPP tests confirmed that these4clusters significantlydiffered

from each other ( p< 0.0001). Significant differences between

the 4 clusters were found for each of the 19 physico-chemical

parameters (ANOVA tests, p< 0.01), suggesting that they were

relevant indicators in this study. A few exceptions were out of

this clustering. First, the samples from the surface crust of tank

4, at T1, were located near the bottom swine manures in the

biplot. The crust samples presented much higher concentra-

tions of chemical oxygen demand and solids than in the liquid

samples from the same tank (Table 1). The second exception

was the shallow depth of both dairy manure tanks at T3,

located in the right of the biplot. At T3, the snow and ice that

had accumulated during winter on the surface were still

melting, resulting in the dilution with water of manure at

shallow depth.Much lower concentrations of total (e.g. CODtot,

TS) as well as soluble (CODsol, K and VFAs for example) char-

acteristics demonstrated this dilution effect (data not shown).

All shallow-depth samples from the two swine manures

clustered together (Fig. 1, Cluster I). Indeed, in each of the two

swinemanure tanks and at each sampling time, samples from

shallow depths were similar, and they were different from the

ones taken at the bottom (Table 2, MRPP tests 1e7). The

bottom samples from tank 1 and 2 also clustered together

(Fig. 1, cluster II). In both tanks, the bottom samples contained

significantly higher concentrations of almost all total and

soluble parameters (Table 1). These differences are likely the



result of sedimentation of manure particles. In addition, the

higher concentrations of soluble intermediates of anaerobic

metabolism (CODsol, VFAs) indicate a different balance

between hydrolysis/acidogenesis and acetogenesis/meth-

anogenesis: either the sedimentation of particle substrates

creates a hot spot for hydrolysis/acidogenesis at the bottom

and/or the rate of acetogenesis/methanogenesis may be low-

ered at the bottom, by inhibition phenomena for instance.

Significant temporal variations were found at shallow depth

as well as at the bottom (Table 2, MRPP tests 8e10). In spite of

this temporal variability, the group formed by samples from

tank 1 was significantly different from the one from tank 2

within clusters I and II (MRPP test, p< 0.01). This difference

was due to significantly (ANOVA tests, p< 0.05) higher CODtot,

TS, VS, TSS, VSS, N-NH3, K, alkalinity, acetate, propionate,

isovalerate and lower butyrate, valerate and caproate at the

shallow depths of tank 1 than at the shallow depths of tank 2

(Table 1). At the bottom, it was due to higher concentrations of

N-NH3, K, acetate and propionate, and lower concentrations of

butyrate, valerate and caproate in tank 1 than in tank 2.

Cluster III encompassed the manures from tank 3, which

had lower concentrations of VFAs than all other manures

(Table 1). Within this cluster, the stored manure from dairy

farm 3 revealed temporal variations (Table 2, MRPP test 8e10).

Since the manure had been mixed prior to spreading before

sampling at T1 and T2, no stratification of physico-chemical

parameters was found (Table 2, MRPP test 1e6). At T3,

a difference was found between shallow-depth and bottom

samples (Table 2, MRPP test 7). In cluster IV, the samples from

shallow depths below the crust taken in the storage tank 4 at

T2 significantly differed from the bottom ones (Table 2, MRPP

test 4e6). The higher (ANOVA tests, p< 0.05) concentrations of

CODtot, TS, VS, TSS, VSS, Norg, P and alkalinity at the bottom

suggested that this variation with depth of stored dairy

manure originated from particle sedimentation, like in stored

swine manures. Within cluster IV, no temporal variations

could be detected (Table 2, MRPP test 8e10). Manure from farm

4 was the only one that did not exhibit variations over time.

3.2. Spatio-temporal variability of methanogen

communities in manure storage tanks

LH-mcrA fingerprints of methanogen communities revealed 7

amplicons at 458, 463, 465, 467, 481, 483 and 485 bp. Their

relative abundance averaged over the whole set of samples

was 0.2% 0.6%, 2% 5%, 5% 6%, 14% 12%, 3% 6%, 5% 6% and

72% 19%, respectively (Figure S1). The most abundant ampli-

con, 485-bp one, could tentatively be related to Meth-

anocorpusculum, Methanogenium and/or Methanospirillum

genera and the 467-bp amplicon to yet to be identified

organisms (Gagnon et al., 2011; Barret et al., 2012). The overall

structure of methanogen communities in the four stored

manures, in terms of dominant genera, was thus similar to

previously studied ones (Snell-Castro et al., 2005; Peu et al.,

2006; Gagnon et al., 2011).

LH-mcrA fingerprints from swine manures were different

from that obtained from dairy manures, as revealed by MRPP

test (p value¼ 0.00007). This difference mainly resulted from

the detectable presence of 458-bp and 463-bp amplicons in

swine manures (Fig. 2, Figure S1). However, both of these

amplicons remained minor in swine manures. None of the

major peaks discriminated swine manures from dairy

manures. This might result from the manure management

practice that consists in adding swine manure in dairy

manure storage tanks for liquefaction before land spreading.

Regardless of sampling time and depth, LH-mcrA finger-

prints from each of the 4 farms gathered in a specific region of

the NMS biplot (Fig. 2). Despite some overlapping of these

regions on NMS biplot, manures were different in one tank

from each other, as confirmed by MRPP analyses (p' 0.0001).

Indicator species analysis revealed that these differences

primarily resulted from a higher abundance of the 467- and

483-bp amplicons in tank 1, of the 463-bp amplicon in tank 2,

of the 465- and 481-bp amplicons in tank 3 and of 485-bp

amplicon in tank 4 (Table 3).

Some significant intra-tank variations were also found.

The groups formed by LH-mcrA fingerprints from sampling

times T1, T2 and T3 were all distinct in the case of tank 1 and

tank 2 (Table 4, MRPP tests 1e3). This is consistent with

previous studies that showed seasonal variations of bacterial

community structure in a swine waste treatment lagoon

(Lovanh et al., 2009; Cook et al., 2010). On the contrary,

archaeal communities in dairy manure storage tanks
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Fig. 1 e NMS representation of the physico-chemical

characteristics of swine and dairy manure samples.

Manure samples from tanks 1, 2, 3 and 4 are respectively

represented in red, green, blue and black. The circles,

triangles and squares respectively represent collection

times 1, 2 and 3 for each tank. Cluster I includes the

samples from the shallow depths of the two swine manure

storage tanks (1 and 2), cluster II the samples from the

bottom of the two swine manure storage tanks, cluster III

the samples from dairy tank 3 and cluster IV the samples

from dairy tank 4. The exceptions of this clustering are

indicated with dashed lines and their identification is

provided on the figure. (For interpretation of the references

to colour in this figure legend, the reader is referred to the

web version of this article.)



exhibited minor temporal changes (Table 4, MRPP tests 1e3).

Themicrobial communities of swine feceswere shown to vary

as the animals grow (Kim et al., 2011). Moreover, the residence

time of animals in growing-finishing piggeries lasts a few

months, whereas lactating cows are housed for several years,

which could explain the different temporal dynamics of swine

and dairy manure in storage tanks.

Tank 3 had been mixed before T1 and T2 sampling times.

As expected, the corresponding archaeal communities were

similar at the different depths (Table 4, MRPP tests 4e10). The

stratification of archaeal communities as a function of depth

was evidenced at p< 0.05 significance only in swine manure

tanks, in early springs 2010 (T1) and 2011 (T3) for tank 1 and in

early spring 2010 for tank 2. As manure is not spread during

winter, the storage tanks had not been mixed for several

months before the spring samplings. This might have fav-

oured gravity settling, and thus the stratification of microbial

communities in conjunction with the stratification of the

Table 2 e Comparison of manures from the different depths at given sampling times (tests 1e7) and from the different
sampling times (tests 8e10) using multi-response permutation procedure (MRPP) on distance matrices from the physico-
chemical characteristics of each tank.

MRPP test # p-Value

Tank 1, T1 Tank 2, T1 Tank 3, T1 Tank 4, T1

1 15 cm vs 60 cm 0.311 0.907 0.538 0.121

2 15 cm vs bottom 0.023 0.022 0.023 <0.001

3 60 cm vs bottom 0.023 0.021 0.235 <0.001

Tank 1, T2 Tank 2, T2 Tank 3, T2 Tank 4, T2

4 15 cm vs 60 cm 0.772 0.658 0.623

5 15 cm vs bottom <0.001 0.022 0.804 0.041

6 60 cm vs bottom <0.001 0.022 0.023

Tank 1, T3 Tank 2, T3 Tank 3, T3 Tank 4, T3

7 15 cm vs bottom 0.023 0.021 0.034 0.022

Tank 1, shallow Tank 1, bottom Tank 2, shallow Tank 2, bottom Tank 3 Tank 4a

8 T1 vs T2 <0.001 <0.001 <0.001 0.023 <0.001 0.158

9 T1 vs T3 0.001 0.025 0.002 0.072 <0.001 0.341

10 T2 vs T3 0.006 <0.001 0.001 0.032 0.003 0.202

a The samples from surface crust were not taken into account in this statistical analysis.

Table 1 e Physico-chemical characteristics of manure samples.

Swine manure Dairy manure

Tank 1, shallow
depths

Tank 1,
bottom

Tank 2, shallow
depths

Tank 2,
bottom

Tank 3 Tank 4, crusta Tank 4, w/o
crust

CODtot (g/L) 30% 3 158% 44 27% 2 194% 90 106% 35 273% 126 71% 61

CODsol (g/L) 22% 3 26% 3 20% 3 26% 4 13% 3 17% 4 17% 4

TS (g/L) 16% 1 121% 21 13% 2 142% 68 81% 20 146% 33 43% 22

VS (g/L) 10% 1 95% 17 8.1% 1.4 104% 51 67% 17 130% 30 32% 22

TSS (g/L) 7% 1 103% 19 5.2% 1.6 136% 71 71% 18 126% 37 30% 20

VSS (g/L) 6% 1 81% 15 4.2% 1.1 81% 21 61% 16 102% 32 26% 19

N-NH3 (g/L) 2.8% 0.1 3.5% 0.3 2.2% 0.1 3.0% 0.2 2.1% 0.4 1.5% 0.8 1.5% 0.2

N-Org (g/L) 0.4% 0.1 1.8% 0.3 0.4% 0.1 1.8% 0.3 1.3% 0.3 2.3% 0.5 0.6% 0.3

P (g/L) 0.2% 0.1 2.6% 1.1 0.2% 0.1 3.5% 2.7 0.6% 0.1 0.9% 0.3 0.3% 0.1

K (g/L) 2.2% 0.2 2.2% 0.2 1.6% 0.1 1.7% 0.1 2.7% 0.6 3.2% 1.3 3.2% 0.4

pH 6.9% 0.6 6.6% 0.5 6.9% 0.4 6.6% 0.2 7.4% 0.2 7.6% 0.4 6.9% 0.2

Alcalinity 10% 3 17% 3 7.6% 0.6 17% 6 13% 3 10% 5 8% 1

Acetate (g/L) 7.7% 0.7 7.9% 1.7 5.7% 0.4 6.1% 0.4 1.1% 0.7 8.5% 0.1 4.8% 1.0

Propionate (g/L) 2.3% 0.4 2.7% 0.8 1.8% 0.1 2.0% 0.1 0.5% 0.5 2.7% 0.1 1.8% 0.3

Isobutyrate (g/L) 0.5% 0.1 0.5% 0.1 0.5% 0.1 0.5% 0.1 0.05% 0.05 0.52% 0.01 0.19% 0.04

Butyrate (g/L) 1.4% 0.4 1.2% 0.4 1.9% 0.3 2.2% 0.2 0.1% 0.1 1.2% 0.1 0.7% 0.2

Isovalerate (g/L) 0.6% 0.1 0.6% 0.1 0.5% 0.1 0.6% 0.1 0.08% 0.07 0.6% 0.1 0.02% 0.01

Valerate (g/L) 0.3% 0.1 0.3% 0.1 0.4% 0.1 0.4% 0.1 0.02% 0.03 0.30% 0.01 0.013% 0.002

Caproate (g/L) 0.2% 0.1 0.2% 0.1 0.4% 0.1 0.5% 0.1 0.01% 0.01 0.22% 0.01 0.003% 0.003

Unless specified, samples from all sampling points, depths and times were included to calculate the mean and standard deviation.

a Sampling date T1.



substrates and environmental parameters. After at least one

mixing episode, the archaeal community stratification was

not detectable at T2 although the gradient of physico-

chemical parameters was reestablished. This phenomenon

may be linkedwith the different time scale of themechanisms

that lead to these two types of stratification after homogeni-

zation. In dairy manure storage tanks, shallow-depth

communities could not be clearly distinguished from bottom

communities even when samples were taken in early spring

(T3). This is consistent with the observationmade on physico-

chemical parameters that the stratification of dairy manure

storage tanks was less marked than that of swine manure

storage tanks (Fig. 1).

3.3. Spatio-temporal variability of manure

methanogenic activity

An example of the dynamics of acetate concentration, propi-

onate concentration and biogas production during the

anaerobic incubation of manure is presented in Fig. 3. At 200

days of incubation, the methane production reached 0.12 L/kg

COD (0.23 L/kg VS), which represents a yield of COD conver-

sion into methane of 34%. To better represent the in situ

conditions, the methanogenic activity was calculated as the

average of methane production rate between days 0 and 20,

the time period during which the acetate and propionate

concentrations were similar to the initial values. The manure

samples were compared on the basis of ANOVA analysis

carried out on themethane emission rates, with p-value¼ 0.05

as the significance threshold.

In each swine manure storage tank, the methanogenic

activity of samples from shallowdepthswas similar and lower

than that of bottom samples. The comparison between

sampling times demonstrated the stability of methanogenic

activity at the shallow depths of both tanks. At the bottom of

both tanks, on the contrary, a higher methane emission rate

was measured in April 2010 than in June 2010 and April 2011,

which were similar. The time-averaged methane emission

rate of tank 1 was higher than that of tank 2, at shallow depth

as well as at the bottom (Fig. 4).

The dairy manure in tank 3 had been mixed before T1 and

T2 sampling times, explaining the spatial homogeneity of

Table 3 e Indicator species analysis of the LH-mcrA fingerprints grouped by tank, regardless of sampling time, point and
depth.

Amplicon (bp) Related toa IVb p-valuec LH-mcrA abundance in group
with maximum IVd (%)

Tank 1 Tank 2 Tank 3 Tank 4

458 e 6 15 0 0 0.065 0.4% 1.1

463 Methanosaeta and

Methanobrevibacter spp.

5 46 0 0 0.001 6% 8

465 Unidentified cluster 13 19 52 3 0.001 10% 7

467 Unidentified cluster 47 19 27 5 0.001 26% 12

481 Methanoculleus and

Methanosarcina spp.

3 0 82 0 0.001 10% 8

483 Methanoculleus spp. 40 11 30 0 0.002 8% 4

485 Methanocorpusculum,

Methanogenium and

Methanospirillum spp.

21 26 20 33 0.001 96% 4

a according to Gagnon et al. (2011) and Barret et al. (2012).

b Indicator Value¼ relative abundance! relative frequency. For each LH-PCR amplicon, themaximum IV across the four clusters is indicated in

bold.

c Statistical significance of the maximum IV for a given amplicon across the four groups.

d Mean% standard deviation.

Axis 1 (r2=0.804) 

A
x
is

 2
 (

r2
=

0
.1

3
4
) 

 

Tank 2 

Tank 4 
Tank 1 

Tank 3 

458 
463 

465 

467 

483 

485 

Fig. 2 e NMSrepresentationofmethanogencommunities in

swinemanure samples (tank 1: red, tank 2: green) and dairy

manure samples (tank 3: blue, tank 4: black). The circles,

triangles and squares respectively represent collection

times 1, 2 and 3 for each tank. The seven LH-mcrA

amplicons (458, 463, 465, 467, 481, 483 and 485 bp) are

indicated in the NMS biplot (crosses). (For interpretation of

the references to colour in this figure legend, the reader is

referred to the web version of this article.)



methanogenic activity in the two corresponding groups of

samples. At T3 sampling time, the activity of shallow-depth

samples was not different from that of bottom ones.

Manures from T1 produced more methane than manures

fromT2, the latter being similar tomanures fromT3. In tank 4,

the samples taken in the surface crust at T1 exhibited a higher

methanogenic activity than the bottom samples, which were

similar to the under-crust samples taken at T2 and T3. The

time-averaged methane emission rate of tank 3 was higher

than that of tank 4 (Fig. 4). Taken as a whole, stored dairy

manures emitted methane with a higher rate than swine

ones.

3.4. PLS regression analysis for manure methanogenic

activity

To evidence some eventual links between the methanogenic

activity data and manure physico-chemical characteristics

and archaeal communities, a PLS regression was carried out.

The regression permitted the estimation of the coefficients

necessary to express the methane emission rate of 90

manures as a function of their 19 physico-chemical and 7

microbiological characteristics (26 explicative variables in X

block). In this regression, it was determined that three groups

of parameters had the same influence, resulting from
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manure incubation. Dynamics of biogas production
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April 2010.

Table 4e Comparison of archaeal communities from the different sampling times (tests 1e3) and from the different depths
at sampling time 1 (tests 4e10) using multi-response permutation procedure (MRPP) on distance matrices from LH-mcrA
fingerprint data of each tank.

MRPP test # p-Value

Tank 1 Tank 2 Tank 3 Tank 4

1 T1 vs T2 0.0061 <0.0001 0.1776 0.0324

2 T1 vs T3 0.0062 0.0001 0.0107 0.4858

3 T2 vs T3 0.0003 0.0004 0.5196 0.0167

Tank 1, T1 Tank 2, T1 Tank 3, T1 Tank 4, T1

4 15 cm vs 60 cm 0.7222 0.0248 0.5589 0.3355

5 15 cm vs bottom 0.0284 0.0222 0.7953 NaNa

6 60 cm vs bottom 0.0262 0.0227 0.8641 NaNa

Tank 1, T2 Tank 2, T2 Tank 3, T2 Tank 4, T2

7 15 cm vs 60 cm 0.5566 0.9025 NaNa

8 15 cm vs bottom 0.0990 0.5813 0.8782 0.9603

9 60 cm vs bottom 0.3122 0.0255 NaNa

Tank 1, T3 Tank 2, T3 Tank 3, T3 Tank 4, T3

10 15 cm vs bottom 0.0223 0.5599 0.2716 0.7558

a Not a number: in several samples from tank 4, only the 485-bp amplicon was detected. If samples of one group had 100% abundance of the

485-bp amplicon, the skewness of delta (weightedmeanwithin-group distance) was"N and no conclusion could bewithdrawn fromMRPP test.



correlations between these variables. The VS group was

composed of TS, VS, TSS, VSS, N-org and alkalinity (r2 between

0.32 and 0.98). Acetate, propionate, isobutyrate and iso-

valerate formed the acetate group (0.76e0.99) and butyrate,

valerate and caproate the butyrate group (0.91e0.95). For

correlated parameters, it cannot be determined whether all of

them or only some of them actually influenced the methane

production rate. To simplify the PLS equation, one variable

was chosen to represent each group: VS, acetate and butyrate,

respectively. A new PLS regression was performed with the

resulting X block of 16 explicative variables, which gave:

rCH4 ¼ 11:9þ 19:0A458 þ 26:0A463 " 11:3A465 " 41:4A467 þ 170A481

þ 163A483 " 16:9A485 þ 0:0057DCOtot " 0:410DCOsol

þ 0:192VSþ 0:0028NH3 " 0:153Pþ 13:2Kþ 5:94pH

" 3:91Acetate" 17:8ButyrateðPRESS ¼ 0:24; dim ¼ 3Þ

With this equation, the regression coefficient r2 between the

90 measured and modelled methane production rates reached

0.82. This regression would make it possible to predict the

methane emission rate at 25 #C for a manure sample from its

characteristics. It is noteworthy that measuring the most

influential parameters among the 16 ones included in the

equation is enough for prediction, since it is possible to deal

with lacking parameters. For predicting on-site methane

emissions, the temperature should be integrated to the

regression as a predictive variable since this parameter has

a major influence (Massé et al., 2008). Moreover, the in situ

availability and transfer of the substrates and products might

differ from that during laboratory incubations, notably because

pressureandmixingconditionsaredifferent.For thesereasons,

the PLS regression can hardly be used for prediction, but it is an

interesting explicative tool since it gives information about the

relativeweight of eachpredictor. Theirweight canbecompared

by considering the regression coefficients relative to centred

and reduced predictors (Fig. 5). Although the influence of some

of the parameters discussed below had already been reported,

we classified suchparameters, alongwithnewones, by order of

weight. This new result made it possible to identify the driving

mechanisms at work during laboratory incubations. The first

observation that can be made is the presence of physico-

chemical as well as microbiological variables in the highest-

weight predictors, which confirms the relevance of inte-

grating both types of indicators.

Among the physico-chemical predictors, we found that the

concentrations of the two groups of VFAs were the most

influential for methanogenic activity. The higher the VFA

concentrations, the lower themethane emission rate. The PLS

analysis thus reflects the well-identified inhibitory effect of

VFAs on methanogenesis (Gorris et al., 1989).

The potassium concentration was found to positively

correlate with the methane emission rate of manure, with

a centred and reduced regression coefficient of 0.22% 0.04

(Fig. 5). The potassium concentration was higher in dairy

manure samples (2.7% 0.9 g/L) than in swine manure ones

(1.9% 0.3 g/L). To investigate more thoroughly the influence of

potassium concentration, two independent PLS regressions

were carried out with swine manures and dairy manures.

Interestingly, Kþ concentration had a major effect in the

regression from swine manures (centred and reduced coeffi-

cient of 0.19% 0.03) and a minor but significant effect in that

from dairy manures (0.08% 0.04). Based on these results, we

could exclude the assumption that the influence of Kþ

concentration in the overall PLS regression would only reflect

the effect of sample type. At a cellular level, potassium is

involved in a wide range of biological mechanisms, including

energy conservation and osmotic pressure balance. It was

demonstrated in Methanohalophilus strain Z7302 that potas-

sium participates in halotolerance mechanisms as a compat-

ible solute to balance the external and internal osmotic

pressures (Lai and Gunsalus, 1992). The methane formation is

linked with the transmembrane potential since the energy

conservation during methanogenesis relies on the trans-

membrane transport of protons and sodium (Thauer et al.,

2008). In addition, the activity of formyltransferases (key

methanogenesis enzymes) depends on potassium salt

concentration (Mamat et al., 2002). At an ecosystem level,
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based on five independent estimates of the coefficients. These estimates were carried out on five sets of randomly selected
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Schnürer et al. (1999) found that the potassium concentration,

between0.05and6 g L"1, positively correlatedwith the fraction

of acetate metabolized through the hydrogenotrophic

pathway (over the acetoclastic one) in biogas reactors. The

positive influence of potassium revealed by the PLS regression

might thus result from biological phenomena. It could also

result from an indirect role linked with the impact of potas-

sium on the chemistry of manure solutions, through ionic

interactions for example. The actual influence of potassium

salt concentration in storedmanure remains tobedetermined.

The next most influential physico-chemical parameter is

the VS group. The VS are composed of active microorganisms

and inactive organic matter, i.e. potential substrates for the

microorganisms. Other parameters included in the regression,

such as VFAs and soluble COD, are better indicators of the

concentration of available substrates for methanogens. Here,

the positive influence of VS group probably reflects the higher

activity of manure when the concentration of microorgan-

isms, including methanogens, increases.

The rest of the physico-chemical parameters had minor

influences. The pH value had a positive effect, probably

because of (i) the reduced toxicity of anionic VFAs at neutral

pH values compared to the unionized species at acidic pH

(Dhaked et al., 2003) and (ii) the optimal pH for growth of

several methanogens being inherently around neutrality

(Boopathy and Kulpa, 1994; Lai et al., 2004).

Among the microbiological variables, the relative abun-

dance of 481- and 483-bp amplicons in LH-mcrA fingerprints

had a strong positive effect on methanogenic activity, while

the relative abundance of 463- and 485-bp amplicons had

a moderate negative effect. These effects jointly show that the

higher the relative abundance of the methanogens corre-

sponding to 481- and 483-bp amplicons, the higher the

methane emission rate of manure. This result suggests that

these amplicons represent the most active methanogens in

swine and dairy manure storage tanks. According to recent

publications, the 481-bp amplicon could be assigned to Meth-

anosarcinaceae and/orMethanoculleus spp., and the 483-bp one

to Methanoculleus spp. (Gagnon et al., 2011; Barret et al., 2012).

Methanosarcinaceae are acetoclastic methanogens, whereas

Methanoculleus spp. are hydrogenotrophic, which indicates

that methane would be produced in manure storage tanks

either exclusively through the hydrogenotrophic pathway

only or through both hydrogenotrophic and acetoclastic

pathways. The hydrogenotrophic pathway was shown to be

dominant at the high ammonia (Angenent et al., 2002;

Schnürer and Nordberg, 2008) and acetate (Hao et al., 2011)

concentrations such as in manure, because of the less sensi-

tive character of hydrogen-utilizing methanogens to inhibi-

tion. Little is known about the active microorganisms in

manure storage tanks. In a recent research study, we found

that hydrogenotrophic Methanoculleus spp. were the main

contributors to methanogenesis during long-term anoxic

incubations of swine manure samples from two storage tanks

collected at one date (Barret et al., 2012). In the present paper,

we show that Methanoculleus spp. represented the main

contributors to methanogenesis not only in swine but also in

dairy manures, in a large number of samples and in environ-

mental conditions that were similar to the in situ ones. More is

known about the active methanogenic archaea in controlled

and engineered ecosystems. In continuous bioreactors treat-

ing a wide range of organic wastes, acetoclastic Methanosaeta

spp. and Methanosarcina spp. have been usually found to

predominate, with Methanosarcina sp. being favoured at rela-

tively high ammonia (2e4 gN/L) and VFA (0.5e3.5 geq.acetate/L)

levels, as found when manure is treated (Tabatabaei et al.,

2010). In addition, the hydrogenotrophic pathway from

acetate oxidation (Karakashev et al., 2006; Schnürer and

Nordberg, 2008) and the Methanoculleus genus were shown to

be predominant in reactors fedwith liquid swinemanure (Zhu

et al., 2011) as well as with mixtures of swine manure and/or

cattle manure with other agricultural wastes (Nettmann et al.,

2010). Our results thus show that Methanoculleus spp. and

possibly Methanosarcina spp. would be active in storage facili-

ties, as this is the case in controlled and engineered systems.

Conclusion

In this study, we showed that both physico-chemical and

microbiological parameters influenced the methanogenic

activity of manures, which highlights the relevance of a multi-

disciplinary approach when studying manure storage tanks.

One important outcome is thatMethanoculleus spp. and possibly

Methanosarcina spp. would be major contributors to methano-

genesis in swine and dairy storage tanks. The identification of

the most influential variables is a first step in addressing the

issue of GHG emissions linked with manure management.

More research is needed to specifically elucidate the mecha-

nisms in which they are involved. In the future, these key

parameters could be used as endpoints tomonitormechanisms

that govern carbon flow through the anaerobic degradation.
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Ruhe, A. (Eds), Springer, Berlin/Heidelberg, 973: 286e293.

Zhu, C., Zhang, J., Tang, Y., Zhengkai, X., Song, R., 2011. Diversity
of methanogenic archaea in a biogas reactor fed with swine
feces as the mono-substrate by mcrA analysis. Microbiological
Research 166 (1), 27e35.


