

To cite this document: Trang, Si Quoc Viet and Kuhn, Nicolas and Lochin, Emmanuel

and Baudoin, Cédric and Dubois, Emmanuel and Gelard, Patrick On The Existence Of

Optimal LEDBAT Parameters. (2014) In: IEEE ICC 2014 : IEEE International

Conference on Communications, 10 June 2014 - 14 June 2014 (Sydney, Australia).

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 11769

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/33663601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

On The Existence Of Optimal LEDBAT Parameters

Si Quoc Viet Trang1, Nicolas Kuhn4, Emmanuel Lochin1, Cedric Baudoin2, Emmanuel Dubois3, Patrick Gelard3

1Université de Toulouse, ISAE, TeSA, Toulouse, France
2Thales Alenia Space, Toulouse, France

3CNES Toulouse, France
4Institut Mines Telecom Bretagne, France

Abstract—The Low Extra Delay Background Transport (LED-
BAT) protocol is a recently standardized protocol that aims to
offer a scavenger service (i.e. the goal is to exploit the remaining
and unused capacity of a link). LEDBAT is a delay-based protocol
mainly defined by two parameters: a target queuing delay and
a gain. The RFC 6817 provides guidelines to configure both
parameters that strongly impact on the LEDBAT behavior in
terms of fairness with other protocols. However, these guidelines
are questioned by several studies as they might lead to the
generation of a non-LBE (Less-than-Best-Effort) traffic. This
paper explores the set of optimal parameters allowing LEDBAT
protocol to effectively perform as an LBE traffic. We conclude
that the optimal couple of target and decrease gain is (5ms; 10).
However, we observe that the aggregated use of optimized
LEDBAT sources still disturb the overall traffic performance and
that the exponential backoff is not an answer to this issue. As a
result, we believe that additional strategies to limit the number
of LEDBAT flows are required for integrating this protocol at a
large scale.

I. INTRODUCTION

Internet Engineering Task Force (IETF) has recently stan-

dardized the RFC of Low Extra Delay Background Transport

(LEDBAT) [1] which is a delay-based congestion control

mechanism providing a Less-than-Best-Effort (LBE) service,

also known as a “scavenger” service. LEDBAT is designed

for background applications like automatic backup, software

updates, or bulk data transfer. As an example, since december

2008, the official BitTorrent client is using LEDBAT for data

transfer [2]. It is also worth noting that LEDBAT is a potential

solution to provide free Internet access [3].

LEDBAT aims to exploit the remaining capacity while

limiting the queuing delay around a predefined target τ , which

may be set up to τ = 100ms according to the RFC [1].

Consequently, LEDBAT flows lower their impact on Best-

Effort flows like TCP. Despite being a promising protocol,

LEDBAT has been revealed to be difficult to configure. In

particular, its tuning highly depends on the network condition

and LEDBAT may become more aggressive than TCP in case

of misconfiguration [4]. As an illustration, in a recent study,

the authors of [5] conclude that the LEDBAT target parameter

should not be higher than 5ms in a large bandwidth-delay

product (BDP) network. Furthermore, the authors of [6] show

that LEDBAT can greatly increase the network latency making

its impact on the network not transparent anymore.

Considering that:

1) LEDBAT is currently deployed over BitTorrent network;

2) the misconfiguration of LEDBAT can significantly in-

crease the network latency;

3) LEDBAT might exacerbate the bufferbloat issue [7];

4) several projects attempt to reduce Internet latency, such

as RITE1 or the Workshop on Reducing Internet La-

tency2;

5) the congestion cannot be clearly localized [8] (i.e. this

recent study shows that the bottleneck is not always on

the access router);

we believe that a deep study on the impact of LEDBAT internal

parameters would allow to find sets of parameters to reduce

its potential negative effect on the network. In particular, we

question the optimal setting of two LEDBAT key parameters,

the target and the gain, considering various buffer sizes. We

also study the impact of LEDBAT on TCP in a highly loaded

network. The main objective of such study is to close to

the discussion about the feasibility to integrate LEDBAT at

a large scale, before diving into possible improvements of its

algorithm as proposed in [9].

We first gives in Section II an overview of LEDBAT

algorithm. Then using ns-2, we evaluate in Section III the

impact of different buffer sizes on the behavior of LEDBAT

in the presence of TCP New Reno. In Section IV, we assess

whether there exists a couple of target and decrease gain

that let LEDBAT have an LBE behavior in different network

configurations. Section V tests the optimal couple of target

and decrease gain of LEDBAT in a highly loaded network.

We propose a discussion in Section VI.

II. LEDBAT ALGORITHM AND RELATED WORK

In this section, we detail the algorithm of LEDBAT conges-

tion control.

LEDBAT is characterized by the following parameters: tar-

get queuing delay (τ), gain (i.e. impact of the delay variation)

(γ), minimum One-Way Delay (Dmin) and current One-Way

Delay (Dack). For each ACK received, the new congestion

window (cwnd) value is updated according to:

cwnd = cwnd+
γ(τ − (Dack −Dmin))

cwnd
(1)

LEDBAT congestion control is based on queuing delay vari-

ations (i.e., the queuing delay is used as a primary congestion

1See http://riteproject.eu
2See http://www.internetsociety.org/latency2013

 10

 20

 30

 40

 50

C
o
n
g
es

ti
o
n

w
in

d
o
w

 (
p
k
ts

) LEDBAT

 10

 30

 50

 70

 90

0 10 20 30 40 50

B
u
ff

er
si

ze
 (

p
k
ts

)

Time (s)

Buffer size
Target=83.3 pkts

(a)

 50

 140

 230

 320 New reno
Ledbat

 50
 140
 230
 320

C
o
n
g
es

ti
o
n
 w

in
d
o
w

 (
p
k
ts

)

magnifying in Fig. 1c

 50
 140
 230
 320

0 50 100 150 200
Time (s)

(b)

 50

 100

 150

 200

 250

 300

C
o
n
g
es

ti
o
n

w
in

d
o
w

 (
p
k
ts

) New reno
Ledbat

 10

 30

 50

 70

 90

0 10 20 30 40 50

B
u
ff

er
si

ze
 (

p
k
ts

)

Time (s)

Buffer Size
Target=83.3 pkts

(c)

Fig. 1: Time evolution of LEDBAT and TCP congestion windows and the queue length

notification), estimated by (Dack−Dmin). The target queuing

delay τ embodies the maximum queuing time that LEDBAT

is allowed to introduce.

The impact of delay variation, γ, is the reactivity of

LEDBAT to queuing delay variations. The bigger γ is, the

faster LEDBAT congestion control increases or decreases its

congestion window. In order to prevent LEDBAT from being

too aggressive, the RFC states that γ must be lower than 1.

However in the RFC [1], in the LEDBAT implementation

in ns-2 [10] and in one study on the solutions to reduce

the aggressivity of LEDBAT [9], it has been implemented or

discussed that the gain can be set to different values depending

on the sign of D = τ − (Dack −Dmin): if D > 0, γ = γicr
(increase gain) and we define an upper bound for γicr×D (so

that LEDBAT does not increase its congestion window faster

than TCP); if < 0, γ = γdcr (decrease gain) which may not be

limited, to let LEDBAT raise the pace at which it decreases its

congestion window when the queuing delay increases. To sum

up, increasing γdcr let LEDBAT be more sensitive to increases

of queuing delay and defining an upperbound for γicr × D
prevent LEDBAT from increasing its congestion window faster

than TCP.

These considerations suggest that, in order to conclude on

the possibility to integrate LEDBAT, it is primordial to assess

the reduction of LEDBAT aggressivity by increasing γdcr. Our

idea is thus to study the impact of buffer sizes, target value

and decrease gain on the capability of LEDBAT to enable a

Less-than-Best-Effort service.

III. LEDBAT BEHAVIOR

In this section, we evaluate by simulation the impact of

different buffer sizes on the behavior of LEDBAT in the

presence of TCP New Reno (hereinafter simply denoted TCP).

A. Simulation setup

Simulations have been performed using the network simu-

lator ns-2. We use the LEDBAT module developed by Valenti

et al. [10], based on the IETF RFC 6817 [1].

As reference network topology, we use a dumbbell topology

where a TCP flow and a LEDBAT flow share a single

bottleneck link. Both LEDBAT and TCP sources send packets

size of P = 1500B. The bottleneck link has a capacity set to

C = 10Mb/s and a one-way propagation delay d = 50ms.

The bottleneck router uses a FIFO drop-tail queue with a

size of B packets. For convenience, we express the bottleneck

buffer B as the ratio to the bandwidth-delay product BDP
in terms of packets. Hence, we have B = ⌈n ∗ BDP ⌉ =
⌈n∗C∗2∗d/(8∗P)⌉, where the ratio n ∈ [0.1, 0.2, . . . , 1.9, 2.0]
and ⌈x⌉ is the ceiling function. Since the value of B must

be an integer, we use the ceiling function to get the smallest

integer not less than B. We explore the set of target queuing

delays τ ∈ [25, 50, 100]ms and the set of decrease gains

γdcr ∈ [1, 10]. We also express B as the ratio to the target

τ in the same way as with the BDP .

To analyze the behavior of LEDBAT with respect to dif-

ferent buffer sizes, we consider the LEDBAT congestion

window, the queue length of the bottleneck buffer, and the

link utilization η of LEDBAT and TCP flows.

We consider only long-lived TCP and LEDBAT flows.

Every simulation lasts 200 seconds, and the link utilization

is computed over the last 150 seconds of the simulation. We

denote by tX the time at which the flow using protocol X
starts to transmit data. The following scenarios are simulated:

• Scenario A: tLEDBAT = tTCP = 0 s;

• Scenario B: tLEDBAT = 0 s, tTCP = 20 s;

• Scenario C: tLEDBAT = 20 s, tTCP = 0 s.

B. Endangered TCP – LEDBAT misconfiguration

This section presents misconfiguration leading to a full

utilization of the capacity by LEDBAT flows whatever the TCP

load. Similar situations are also reported by other authors [4],

[9]. In this work, we take a closer look at this problem and

its relationship with the buffer sizing. Fig. 1 shows the time

evolution of LEDBAT and TCP congestion windows as well as

the queue length, in cases where LEDBAT does not fulfill its

primary objectives. The target is τ = 100ms (≃ 83.3 packets),

and the decrease gain is γdcr = 1.

L
in

k
 u

ti
li

za
ti

o
n

 (
%

)

Buffer size (% BDP in pkts)

τ=100 ms, γdcr=1

Buffer size (% τ in pkts)

New Reno
Total

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.4 0.8 1.2 1.6 2.0

0.1 0.4 0.8 1.2 1.6 2.0

L
in

k
 u

ti
li

za
ti

o
n

 (
%

)

Buffer size (% BDP in pkts)

τ=100 ms, γdcr=10

Buffer size (% τ in pkts)

New Reno
Total

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.4 0.8 1.2 1.6 2.0

0.1 0.4 0.8 1.2 1.6 2.0

Buffer size (% BDP in pkts)

τ=50 ms, γdcr=1

Buffer size (% τ in pkts)

New Reno
Total

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.4 0.8 1.2 1.6 2.0

0.2 0.8 1.6 2.4 3.2 4.0

Buffer size (% BDP in pkts)

τ=50 ms, γdcr=10

Buffer size (% τ in pkts)

New Reno
Total

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.4 0.8 1.2 1.6 2.0

0.2 0.8 1.6 2.4 3.2 4.0

Buffer size (% BDP in pkts)

τ=25 ms, γdcr=1

Buffer size (% τ in pkts)

New Reno
Total

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.4 0.8 1.2 1.6 2.0

0.4 1.6 3.2 4.8 6.4 8.0

Buffer size (% BDP in pkts)

τ=25 ms, γdcr=10

Buffer size (% τ in pkts)

New Reno
Total

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.4 0.8 1.2 1.6 2.0

0.4 1.6 3.2 4.8 6.4 8.0

Fig. 2: Link utilization in terms of buffer size

RFC 6817 [1] states that, if a compromised target is set

to infinity, “the algorithm is fundamentally limited in the

worst case to be as aggressive as standard TCP”. Actually,

it corresponds to the case where the buffer size is too small

in comparison to the target, as shown in Fig. 1a. In this case,

the buffer size is 9 packets, so the ratio of the buffer size to

the target is 0.1. Thus, the queuing delay sensed by LEDBAT

never reaches the target. Therefore, LEDBAT always increases

its sending rate until a loss event is reported.

However, there are circumstances “worse than RFC worst

case” in which hostile LEDBAT makes TCP back off. Fig. 1b

illustrates three hostile scenarios with a same network con-

figuration but with a buffer size of 92 packets. Even in an

unfavorable situation for LEDBAT, when it starts after TCP,

LEDBAT succeeds to increase its congestion window more

than TCP. Whatever the scenario presented in this section,

TCP cannot compete against LEDBAT.

To understand this hostile behavior of LEDBAT, we inspect

the scenario where two flows TCP and LEDBAT start at the

same time (middle plot in Fig. 1b). In Fig. 1c, we magnify

the results of the first 50 seconds of the simulation. In the

slow-start phase, TCP increases exponentially its congestion

window. As a consequence, the buffer fills up immediately and

then blocks the LEDBAT congestion window to one packet.

After the slow-start phase, from t = 3 s to t = 5 s, as the

queuing delay is small compared to the target, LEDBAT and

TCP congestion windows conjointly grow at the same speed.

As the queue continues to increase, LEDBAT reduces the

increasing speed of its congestion window. Meanwhile, TCP

continues to increase linearly its congestion window. After

t = 11 s, when the queuing delay is higher than the target,

LEDBAT decreases slowly and slightly its congestion window.

Although the buffer size is bigger, it remains relatively small

to the target. The ratio of the target to the buffer size is 1.1

in this case. Thus, LEDBAT does not have enough time to

react to queuing delay before TCP causes a buffer overflow

at t = 15 s. After that, TCP halves its congestion window,

resulting in a reduction of the queuing delay. Since the queuing

delay is now below the target, LEDBAT raises again its

congestion window conjointly with TCP. Consequently, after

several cycles, LEDBAT exploits more capacity than TCP.

C. LEDBAT working regions

The previous section illustrates cases where LEDBAT is

too aggressive. In this section, we identify different working

regions of LEDBAT. We denote as “working regions” areas

where LEDBAT behaves correctly as a LBE protocol. For each

couple of target and decrease gain, we plot the link utilization

of TCP flow and the total link utilization of two flows against

the buffer size.

Fig. 2 presents only the simulation results from the scenario

where two TCP and LEDBAT flows start at the same time (i.e.,

Scenario A). We do not present the results of Scenario B and

C as similar behavior is observed. Each plot corresponds to

a couple of target and decrease gain. From left to right, the

target slides from 100ms to 25ms. The decrease gain is set to

1 in the first row and 10 in the second row. The first (bottom)

x-axis is the ratio of the buffer size to the BDP . The second

(top) x-axis represents the same buffer size but as the ratio to

the target. The y-axis is the link utilization.

1) Impact of the target: Fixing the decrease gain to 1,

we study the impact of the target setting on the behavior of

LEDBAT. As shown in Fig. 2, we distinguish three operating

regions of LEDBAT. First, in the leftmost region, LEDBAT

behaves like TCP. In other words, as previously explained

in Section III-B, LEDBAT always increases its sending rate

until a loss event is reported. In this case, the buffer size is

small in comparison to the target. Hence, TCP and LEDBAT

fairly share the link capacity (ηTCP ≃ ηLEDBAT). Then, in the

middle region, LEDBAT starts to become hostile to TCP. In

consequence, the link utilization of TCP reduces progressively

to a certain point (ηTCP ≪ ηLEDBAT). As the buffer size still

increases, the aggressiveness of LEDBAT decreases. Finally,

in the rightmost region, LEDBAT works correctly as a LBE

protocol (ηTCP ≫ ηLEDBAT). To have enough time to react to

queuing delay variations, we measure that LEDBAT needs a

large buffer size in comparison to its target (more than 1.5
times).

Considering now the buffer size in terms of the ratio to the

BDP , we see that a target of 100ms requires a buffer size

as large as 1.6 times the BDP in order to perform in low-

priority mode. This excess need of buffer introduces an ex-

cessive queuing delay known as bufferbloat phenomenon [7].

A smaller target mitigates this issue. As seen in Fig. 2, the

smaller is the target, the smaller is the size of the buffer.

2) Impact of the decrease gain: We now study the impact of

the decrease gain setting on LEDBAT behavior. Fig. 2 shows

that, for each target, increasing the decrease gain shrinks the

hostile region from both sides. As a consequence, the LBE

region expands to the left, meaning a reduction in the need

for buffer size of LEDBAT for low-priority mode. However,

a higher decrease gain also amplifies the loss-based region.

As a conclusion, to increase the LBE working region of

LEDBAT, we can reduce the target or raise the decrease gain

separately or in the same time. We also highlight that setting

LEDBAT parameters is a trade-off as a target too small could

make LEDBAT sensible to network conditions and a decrease

gain too high could reduce significantly its performance.

IV. OPTIMAL COUPLE OF TARGET AND DECREASE GAIN

In this section, we assess if there exists a couple of target

and decrease gain allowing LEDBAT to behave as LBE

protocol whatever the network configuration is.

A. Network configuration

We use the same dumbbell topology as in

Section III. We consider different capacities

C ∈ [1, 5, 10, 20, 50]Mb/s and different one-way propagation

delays d ∈ [10, 50, 100, 150, 200, 250]ms of the bottleneck

link. As in Section III, we express the bottleneck buffer B
as the ratio to the bandwidth-delay product BDP . For each

network setting C, d, and B, we explore the set of target

queuing delays τ ∈ [5, 25, 50, 75, 100]ms and the set of

decrease gains γdcr ∈ [1, 10]. Therefore, we run about 60
simulations for each setting of target and decrease gain. We

drove only fewer simulations for small BDP networks as we

exclude all cases with duplicate values of B caused by the

ceiling function and where B is equal to 1.

In each simulation, a LEDBAT flow starts at t = 0 s and

then a TCP flow starts at t = 200 s later. The simulation lasts

1000 seconds. We calculate the link utilization η of each flow

over the last 500 seconds.

We use the following clustering method to classify our data

and represent the set of working couples. The classification

method is defined as follows: for each couple of target and

 0

 20

 40

 60

 80

 100

 120

5 25 50 75 100

5 25 50 75 100

5 25 50 75 100

5 25 50 75 100

5 25 50 75 100

N
um

be
r

of
 R

 a
nd

 W

R

W

1 (Mb/s)5 (Mb/s)10 (Mb/s)20 (Mb/s)C=50 (Mb/s)

Fig. 3: Number of R and W cases for each target setting

 0

 10

 20

 30

 40

 50

 60

5 25 50 75 100

5 25 50 75 100

5 25 50 75 100

5 25 50 75 100

5 25 50 75 100

N
um

be
r

of
 R

γdcr=1
γdcr=10

1 (Mb/s)5 (Mb/s)10 (Mb/s)20 (Mb/s)C=50 (Mb/s)

Fig. 4: Number of R cases when γdcr = 1 and γdcr = 10 for

each target setting

decrease gain, when B = BDP , if the link utilization of TCP

flow ηTCP is greater than or equal to 0.8, then we choose the

link utilization of LEDBAT flow as reference ηref = ηLEDBAT.

Then, for every other value of B, we calculate ∆ = |ηLEDBAT−
ηref|. If ∆ is less than or equal to a certain value of ε and

ηTCP ≥ 0.8, then we classify B in the cluster “Right” (denoted

R), otherwise, in the cluster “Wrong” (denoted W). In our

study, we use ε = 0.15. So, for different buffer sizes, if ηTCP is

always greater than or equal to 0.8 and the difference between

ηLEDBAT and ηref is in a limit of 15%, then we say that the

couple of target and decrease gain works well for these buffer

sizes.

Finally, we use statistical analysis to find which couple

of target and decrease gain works well in most network

configurations.

B. Choosing the target

We begin our analysis by finding the optimal target value.

In Fig. 3, using histogram, we group the simulation results

into different categories of network capacities and then, into

subclass of target values. For every target value, the stacked

column represents the number of R and W cases. The col-

umn height corresponds to the total simulations including all

decrease gain setting for a target value. For each setting of

target, we have 120 simulations for high capacity networks

and fewer simulations in case of small capacity networks.

In Fig. 3, we observe that the number of R cases of a

target decreases as the network capacity decreases. Actually,

the buffer size, expressed in ratio to the BDP , reduces when

the network capacity is smaller. Therefore, the ratio of the

buffer size to the target also becomes smaller. In consequence,

LEDBAT behavior falls back into either hostile region or loss-

based region.

As expected, Fig. 3 shows that a target value of 5ms works

in most cases. These experiments allow us to conclude that

setting the target to 5ms is optimal.

C. Choosing the decrease gain and the optimal couple of

LEDBAT parameters

Having the optimal target value, we still use the histogram

representation to find the optimal decrease gain. For each

target setting, we present the number of R cases for each

corresponding decrease gain value. As shown in Fig. 4, setting

the decrease gain to 10 is better as it increases the number of

R cases.

D. Testing the optimal couple

We now evaluate the optimal couple of target and decrease

gain using the network configuration in Section III. Moreover,

for reference purpose, we also simulate the scenario where

TCP is the only protocol in the network. Table I reports

results of two cases where B = BDP = 84 packets and

B = BDP

2
= 42 packets. For comparison, we are only inter-

ested in couples of parameters that work in low-priority mode

with either buffer sizes, i.e., (25ms; 1) and (25ms; 10) (see

Fig. 2 in Section III). Beside, we report also the performance

of the runner-up couple (5ms; 1).

TABLE I: Optimal LEDBAT sharing bandwidth with Reno

Buffer Reno+LEDBAT η Reno η LEDBAT η Total
(pkts) (τ ; γdcr) (% C) (% C) (% C)

84 (BDP)

(25ms; 1) 98.04 1.95 99.99
(25ms; 10) 98.02 1.97 99.99
(5ms; 1) 99.15 0.84 99.99
(5ms; 10) 99.13 0.86 99.99
Only Reno 99.99 X 99.99

42 (BDP

2
)

(25ms; 1) 88.77 8.82 97.59
(25ms; 10) 89.87 8.02 97.89
(5ms; 1) 93.93 3.35 97.28
(5ms; 10) 94.21 3.53 97.74
Only Reno 96.04 X 96.04

When the buffer size equals to BDP , TCP alone exploits

almost full capacity of the network (99.99%). Introducing

LEDBAT using the optimal couple of parameters reduces TCP

performance by 0.86% while keeping the total throughput

same as in the case of TCP alone. In this case, the performance

of the runner-up couple (5ms; 1) is a little better than the

optimal couple and could be neglected.

When the buffer size equals to BDP

2
, TCP alone obtains

less network capacity (96.04%). But in this case, introducing

LEDBAT using the optimal couple of parameters increases the

total network capacity exploited by 1.7% while causing least

impact on TCP performance. The couple (25ms; 10) allows to

obtain a better network capacity, but also makes more impact

on TCP in the same time.

Finally, we conclude that the optimal couple of target and

decrease gain is (5ms; 10). This result is consistent with our

discussion in Section III.

V. LEDBAT IN HIGHLY LOADED NETWORKS

In this section, we test the optimal couple of target and gain

of LEDBAT found in Section IV in a highly loaded network.

We also take this opportunity to evaluate other LBE protocols

like TCP Nice [11] and TCP-LP [12]. TCP-LP implementation

is available in ns-2 TCP-Linux. For TCP Nice, we use the

module proposed in [4].

As in Section III, we use a dumbbell topology with a

bottleneck capacity C = 10Mb/s and a one-way propagation

delay d = 50ms. The buffer size is set to 84 packets and

equals to the BDP , according to the classical “rule-of-thumb”.

In each simulation, we consider N LBE sources and N TCP

sources, where N ∈ [1, 10, 20, 40, 60, 80, 100]. The starting

time of a TCP flow is uniformly distributed between 0 and 200

seconds. To assess on the impact of LBE protocols on TCP,

LBE flows begin to transfer data in an unfavorable situation,

i.e., only after all TCP flows have started. Therefore, the

starting time of a LBE flow is uniformly distributed between

300 and 500 seconds. It should be noticed that the late-comers

problem of LEDBAT is negligible when there is interaction

between LEDBAT and TCP [10]. Thus, in our study, we

introduce LEDBAT at random time neglecting any effects on

our results. We also simulate only N TCP flows without other

competing LBE flows as reference.

As performance metrics, apart from the aggregate aver-

age throughput, we also define the TCP bandwidth released

(TCPreleased) as the link utilization of TCP when it shares

the bottleneck link with the tested LBE protocol over the link

utilization of TCP when it is the only protocol on the same

link, i.e., TCPreleased = ηTCPReno+LEDBAT/ηTCPonly Reno.

Every simulation lasts 1200 seconds, and all metrics are

measured over the last 600 seconds.

A. Results and discussions

Fig. 5a presents the aggregate average throughput of N
TCP flows and N LBE flows sharing the bottleneck link. To

weight up the impact of LBE flows, we plot in Fig. 5b the

TCPreleased depending on the network load, i.e., the direct

impact of the introduction of LBE flows on TCP performance.

As seen in Fig. 5, when the number of TCP and LBE flows

is small, LBE protocols fulfill their role. However, increasing

the number of LBE flows also increases their impact on TCP

traffic, even though an equivalent amount of TCP flows is

also introduced into the network. The more we introduce LBE

flows, the less capacity is left for TCP traffic. For instance,

100 LEDBAT flows compete as aggressive as 100 TCP flows

for the full capacity. In this case, TCP flows must yield to

LEDBAT flows 47% of the bandwidth obtained when they

are alone in the network.

When the number of flows is above 100 (Fig. 5a), LEDBAT

is even more aggressive. This is explained by the misesti-

mation of the OWD. Indeed, LEDBAT keeps track of the

minimum One-Way Delay Dmin in order to estimate the

queuing delay variation. Thus, if LEDBAT runs long enough

and the queue is never empty, Dmin is always nearly equal

to Dack and to the maximum queuing delay allowed by the

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 50 100 150 200

A
g

g
re

g
a
te

 M
e
a
n

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Number of flows (N)

Reno (w. LEDBAT)
LEDBAT

Reno (w. TCP-LP)

TCP-LP
Reno (w. TCP-NICE)

TCP-NICE

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

T
C
P
r
e
le
a
s
e
d
 (

%
)

Number of flows (N)

Reno w. LEDBAT

Reno w. TCP-LP

Reno w. TCP-NICE

(b)

Fig. 5: Impact of N LBE flows on N TCP flows

bottleneck buffer. As a result, the queuing delay sensed by

LEDBAT always approximates to zero (Dack − Dmin ≃ 0).

In consequence, LEDBAT tends to raise its congestion window

to reach the target queuing delay. This limitation of LEDBAT

algorithm is studied in detail in [6]. As shown in Fig. 5, if we

do not limit the number of LBE flows, an aggregate of LBE

flows do not behave as a LBE traffic anymore.

To better understand this problem, we measure the average

congestion window of a LEDBAT flow, in the case where the

number of flows of each protocol TCP and LEDBAT is 100.

As a result, the average congestion window of a LEDBAT flow

is 1.3 packet. Thus, a LEDBAT flow sends data at an average

rate of 1.3 packet per RTT. For 100 LEDBAT flows, the

router always receives on average a burst of 130 packets. An

exponential backoff mechanism, as proposed in RFC 6817 [1],

could help to reduce the burst size at a given time. Note

that this mechanism is already implemented in the LEDBAT

module used in our simulations. Unfortunately, exponential

backoff does not resolve this issue on the long term as we must

impose a maximum backoff time. Although the RFC 6817

states that a maximum value MAY be placed on backoff time,

we argue that this maximum value MUST be always set. If

LEDBAT flows can backoff in unlimited time, their impact on

long-lived TCP traffic will then reduce significantly. This could

lead to case where long-lived TCP flows cut off LEDBAT

traffic in long periods of time. Moreover, unlimited backoff

time could raise a potential intra-unfairness of LEDBAT flows

as a side effect.

Our results in this section indicate that when LEDBAT is

deployed at large scales, we must use additional strategies to

limit the number of LEDBAT flows.

VI. CONCLUSION

Recent studies pointed out cases in which the capacity of

LEDBAT to carry out Less-than-Best-Effort is questioned. The

misconfiguration of this protocol may result in a significant

delay in the network. This motivated us to lead a deep analysis

on the impact of its internal parameters on its performance.

We propose an optimal parametrization for the internal

parameters of LEDBAT. We found that a target of 5 ms and a

decrease gain of 10 are optimal. The optimal target is far from

the guideline in the RFC, which says that the target must be

lower than 100 ms. However, it is worth pointing out that in all

simulation cases, LEDBAT is not fully LBE and borrows some

capacity of the primary flows. We also measure the impact of

the increasing number of LEDBAT flows which is alarming.

We conclude that the congestion control of LEDBAT must

be adapted before large scale implementation.

ACKNOWLEDGMENTS

This research work has been supported by funding from

CNES and Thales Alenia Space. Nicolas Kuhn is supported

by the RITE project. The authors wish to thank Arjuna

Sathiaseelan for numerous discussions.

REFERENCES

[1] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, “Low Extra
Delay Background Transport (LEDBAT),” RFC 6817, 2012.

[2] D. Rossi, C. Testa, and S. Valenti, “Yes, We LEDBAT: Playing with
the New BitTorrent Congestion Control Algorithm,” in Passive and

Active Measurement, ser. Lecture Notes in Computer Science, A. Kr-
ishnamurthy and B. Plattner, Eds. Springer Berlin Heidelberg, 2010.

[3] A. Sathiaseelan and J. Crowcroft, “The free Internet: a distant mirage
or near reality?” University of Cambridge, Tech. Rep., 2012.

[4] G. Carofiglio, L. Muscariello, D. Rossi, and C. Testa, “A hands-on
assessment of transport protocols with lower than best effort priority,”
in Proceedings of the 2010 IEEE 35th Conference on Local Computer

Networks, ser. LCN ’10. IEEE Computer Society, 2010.
[5] N. Kuhn, O. Mehani, A. Sathiaseelan, and E. Lochin, “Less-than-Best-

Effort Capacity Sharing over High BDP Networks with LEDBAT,” in
VTC 2013-Fall, 78th Vehicular Technology Conference, O. Altintas,
F. Dressler, and A. Wyglinski, Eds., IEEE Vehicular Technology Society.
Los Alamitos, CA, USA: IEEE Computer Society, 2013.

[6] D. Ros and M. Welzl, “Assessing ledbat’s delay impact,” Communica-

tions Letters, IEEE, vol. 17, no. 5, pp. 1044–1047, 2013.
[7] “BufferBloat: What’s Wrong with the Internet?” Queue, 2011.
[8] D. Genin and J. Splett, “Where in the Internet is congestion?” ArXiv

e-prints, Jul. 2013.
[9] M. Kühlewind and S. Fisches, “Evaluation of different decrease schemes

for LEDBAT congestion control,” in Proceedings of the 17th interna-

tional conference on Energy-aware communications, ser. EUNICE’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 112–123.

[10] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “LEDBAT: The New
BitTorrent Congestion Control Protocol,” in Computer Communications

and Networks (ICCCN), 2010 Proceedings of 19th International Con-

ference on, 2010, pp. 1–6.
[11] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: a mechanism

for background transfers,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp.
329–343, 2002.

[12] A. Kuzmanovic and E. W. Knightly, “TCP-LP: low-priority service via
end-point congestion control,” IEEE/ACM Trans. Netw., vol. 14, no. 4,
pp. 739–752, 2006.

