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A Neural Network Strategy Applied in Autonomous Mobile Localization

André Scolari Conceição, Caroline Ponzoni Carvalho, Eduardo Rath Rohr,

Daniel Porath, Diego Eckhard and Luís Fernando Alves Pereira

Abstract— In this article, a new approach to the problem
of indoor navigation based on ultrasonic sensors is presented,
where artificial neural networks (ANN) are used to estimate
the position and orientation of a mobile robot. This approach
proposes the use of three Radial Basis Function (RBF) Net-
works, where environment maps from an ultrasonic sensor and
maps synthetically generated are used to estimate the robot
localization. The mobile robot is mainly characterized by its
real time operation based on the Matlab/Simulink environment,
where the whole necessary tasks for an autonomous navigation
are done in a hierarchical and easy reprogramming way.
Finally, practical results of real time navigation related to robot
localization in a known indoor environment are shown.

I. INTRODUCTION

Methods for navigation and localization of mobile robots

have been widely investigated in the control community,

mainly in the robotic area in which mobile robots have the

necessity to move themselves in an autonomous way. For au-

tonomous navigation, robots must be able to interact with the

environment around them whether familiar or unrecognized.

In other words, they have to navigate, steer, and position

themselves.

The localization problem has been receiving special at-

tention over the years, with a focus on either - a priori

knowledge or completely unknown navigation environments,

remaining an active topic of interest and allowing the

proposition of new methods and techniques for the prob-

lem solution [1], [2], [3]. According to the characteristics

of the navigation environment, different kinds of sensors

have been employed to perform the localization task. For

outdoor navigation, as an example, the use of a Global

Positioning System(GPS) is common, since the adequate

transmission/reception conditions between the mobile robot

and the set of satellites responsible for the global coordinate
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determination could be provided [4], [5]. For indoor nav-

igation, the mobile robot localization task can be realized

through odometers placed on the traction wheels, or through

special sensors embedded on the robot, as a bar code

reader, video camera, among others, used for the recognition

of natural or artificial landmarks spread in the navigation

environment [6], [3], [7]. The localization techniques based

on odometer sensors present a cumulative error drawback,

while the main disadvantage concerning artificial landmarks

is the previous arrangement of a set of marks on the

navigation environment. Also, the integrity of each landmark

must be preserved in order to assure a good localization

performance. An alternative localization technique employs

ultrasonic sensors or laser scanners to create distance maps

from the robot to the environment’s obstacles. While the

distance maps created by the laser scanners present reliable

information, which is useful for localization tasks, ultrasonic

sensors are commonly used for obstacle avoidance [8]. The

usefulness of lasers scanners is partially justified by the high

directionality and small wavelength of the lasers, making

possible a precise distance measurement in a large number

of reflective surfaces considering a wide range of incidence

angles. Despite of the specular characteristic of most surfaces

and the large aperture angle characteristics, intrinsically

related with the physical properties of acoustic sensors,

there are some researches which consider ultrasonic sensors

as effective and low cost alternatives for the autonomous

mobile robot global localization problem. A seminal article

written by Elfes [9] presents a sonar-based mapping and

navigation system employing a probabilistic approach to

represent occupancy maps, observing the necessity of a sonar

data preprocessing step to remove easily detectable incorrect

readings. To improve the sonar readings reliability, some

articles have been written exploiting some properties of the

acoustic sensors. In [10], [11], a theoretical formulation for

interpreting the sonar data based on the physical principles

of acoustic propagation and reflection was presented.

Other authors prefer to handle the task of processing

sonar data by using artificial neural networks (ANN) [12],

[13]. There are two main approaches in which the research

using neural network can be classified. In one hand, some

researchers [12] use ANN to handle low level sensor in-

formation, such as differentiating the shape of the obstacle

trough the sonar readings. On the other hand, the ANN is

also used to compare and match the mapping provided by

the sensor’s readings and the environment map recorded in

the robot.

In this article, an alternative methodology for localization



of a mobile robot is presented. The proposed technique

is based on ANN to perform the matching between the

mapping obtained by the raw sensor data and a set of maps

previously known from some positions along the navigation

environment.

This paper is organized as follows. In Section II the

description of hardware and software of the mobile robot

is presented. Section III presents the localization strategy

elements: system localization scheme and the RBF training

method. Experimental results of indoor navigation and loca-

lization are presented in section IV. Finally, the conclusions

are drawn in section V.

II. MOBILE ROBOT ARCHITECTURE

A. Hardware

The mobile robot has a differential drive configuration.

The two aligned wheels are driven by independent DC

motors, while the third one is a free wheel just used for

support, as shown in Fig. 1(a).

The world frame (OXY) and the robot’s body frame are

shown in Fig. 1(b). The mobile robot is described on a

2D plane in which a global cartesian coordinate system

is defined. The position of robot in the plane is described

by point P (x, y), between the two driving wheels, and by

orientation angle ϕ. The Robot’s motion is controlled by its

linear velocity (v) and rotational velocity (w). The motion

of the robot can be described by the following kinematical

model,

ẋ = v cos(ϕ) (1)

ẏ = v sin(ϕ) (2)

ϕ̇ = w (3)

Tasks performed by autonomous robots are usually com-

plex; a large quantity of information must be collected about

the environment in which the robot is working. For this

reason it is necessary to use various sensors with different

characteristics [2], [14]. In this context, the developed mo-

bile platform uses ultrasonic range sensors and encoders to

generate the information required by the operations of guid-

ance, control, navigation and localization. The incremental

optical encoders, coupled to the axle of each motor, provide

measurements of the velocity and angular displacement of

each driven wheel independently, giving information about

the relative position of the vehicle. Information on the

platform’s absolute position in the environment in which it

will navigate is obtained by means of a sonar that makes

periodic 360o scans of the navigation environment. This

sonar is of simple construction, consisting of an ultrasonic

range sensor assembled over a stepper motor that provides

readings of the surrounding displaced environment in steps

of 1.8 degrees. In the philosophy adopted for the electrical

design, an ARM7 microcontroller manages the low level

tasks, such as interfacing sonar and odometry measurements

and implementing a PID controller in each driving wheel.

A notebook disposed over the robot is responsible for the

higher level tasks, i.e. motion planning and localization.

The Universal Serial Bus (USB) was used to exchange

data between computer and microcontroller. The use of a

USB allows a fast and reliable communication, while the

compatibility with newer computers is ensured.

B. Software

The notebook over the robot runs MATLAB, which is

worldwide recognized as a simulation environment with tools

capable of reproducing an important class of dynamic pro-

cesses, allowing users to perform the simplest mathematical

calculations whilst extending to the possibility of reproduc-

ing industrial processes. MATLAB/Simulink is used to be

mostly regarded as an environment for simulation, using

tools whose function was to reproduce a physical model

in graphical or descriptive form. However, tools for real-

time execution and interface to hardware are also available,

allowing the designer to model, simulate and execute a

project in the same environment. The block diagram of the

main navigation functions and the control loop of the robot

are shown in Fig. 2.

Fig. 2. Robot control loop - block diagram.

The robot control environment based on

MATLAB/Simulink is shown in Fig. 3.

Fig. 3. Robot control environment.

The main blocks of the control are (see the numbers in

Fig. 3):

1) Localization and navigation →֒ algorithms of locali-

zation and algorithms of planning and generation of

trajectories;

2) Kinematic and inverse kinematic model →֒ calculate

reference speeds and robot position;

3) Communication tools and controller →֒ receive sensor

information and send control signs to the robot (PID

controller);



(a) Robot views. (b) Coordinate system and robot configuration.

Fig. 1. Mobile Robot.

4) Data debug →֒ visualization and log of the robot state

(position and velocities) and sensor data (ultrasonic

sensor).

C. The Neural Network toolbox of Matlab/Simulink

This work proposes the use of Matlab/Simulink not only

as a simulation tool, but principally for the real-time imple-

mentation of control techniques applied to mobile robots. In

this philosophy, the user or designer makes use of all the

resources for simulation and design of controllers that are

built into Matlab/Simulink, and validates them directly in

real time.

The localization strategy proposed in this paper uses Neu-

ral Network Toolbox of Matlab/Simulink for mobile robot

localization in an indoor environment. We chose Artificial

Neural Networks based on Radial Basis Functions (RBF)

for having a faster training and to be an approximator of

functions.

Radial Basis Functions (RBFs) are a universal approxima-

tor in that it can approximate arbitrarily well any multivariate

continuous function[15]. The construction of a radial-basis

function(RBF) network in its most basic form involves three

entirely different layers. The input layer is made up of source

nodes. The second layer is a hidden layer of high enough

dimension, which serves a different purpose from that in a

multilayer perceptron. The output layer supplies the response

of the network to the activation patterns applied to the input

layer[16].

III. STRATEGY OF LOCALIZATION

The strategy of absolute localization of this article is

destined to indoor navigation, where the objective is to

estimate the robot position (x, y) and the robot orientation

(ϕ) in a know environment (see Fig. 4). The strategy of

localization consists of four steps, see Fig. 5:

1) Environment mapping using an embedded ultrasonic

sensor;

2) Estimate robot positions and robot orientations using

three(3) RBF networks, where its input data is the en-

vironment map and its output data are the estimations

(x1..3, y1..3, ϕ1..3);

(a) Navigation environment.

(b) Example of sonar map.

Fig. 4. Know environment.

3) Build synthetic maps composed from the estimated

positions (x1..3, y1..3, ϕ1..3);
4) Compare the environment map with synthetic maps.

The average errors between the synthetic maps and

the environment map is calculated, in order to choose

the best estimation for (xf , yf , ϕf ).

The average error is calculated as follows:

Error(i)i=1..3 =
1

200

200
∑

j=1

√

(Dj − di,j)2, (4)



Fig. 5. System localization scheme.

where Dj is a vector that represents the sonar measurements.

The synthetic maps composed from the estimated positions

(x1..3, y1..3, ϕ1..3) are represented by the di,j matrix. The

best estimation for (xf , yf , ϕf ) is obtained through the

comparision between the real and the synthetic maps which

results in the smallest error.

A. RBF Networks Training

The training method of the RBF networks is based on

environment maps from the ultrasonic sensor of the robot.

These maps were built at 54 equally spaced positions around

the environment, see Fig. 6, called reference grid.

Fig. 6. RBF Training scheme.

The localization strategy proposes the use of three(3)

RBFs. The idea is to divide the rotational space of 360

degrees in three sub-spaces of 120 degrees, where the en-

vironment maps are not similar. In this way, each RBF is

responsable for the angular robot position in a sub-space of

120 degrees. This approach avoids the problem of similarity

of the maps for angles near to 0 and 360 degrees. For

RBF training, similar inputs demand similar outputs, in this

case similar mappings do not have similar angular positions.

This characteristic of the rotational space compromises the

capacity of generalization of the RBF. For example, in

Fig.7 we can see the similarity of the maps at positions

(210, 180, 0o) and (210, 180, 350o).

The training data consist of environment maps as input,

and the robot localization (x, y, ϕ) as output. Each envi-

ronment map has 200 readings with step of 1.8 degrees.

The maps used for the training had been organized in the

following way:

• for each position of the reference grid, its environment

map was rotated between 0 and 360 degrees, with step

of 3 degrees(54 positions x 120 angles per position =

6480 maps);

• The maps with angle between 0 and 120 degrees were

used for training the first RBF. The second one used

maps with angle between 120 and 240 degrees, and the

third one used maps with angle between 240 and 360

degrees(54 positions x 40 angles per position = 2160

maps for each RBF);

• the input data for each RBF has a dimension of

2160x200 and the output data has a dimension of

2160x3.

After the training phase the RBFs have the following con-

figuration, shown in Table I:

TABLE I

TRAINING SUMMARY.

Parameters RBF 1 RBF2 RBF3

totalInputSize: 200 200 200

totalLayerSize: 1895 1897 1906

totalOutputSize: 3 3 3

(a) (210, 180, 0◦). (b) (210, 180, 350◦).

Fig. 7. Environment maps.

Some considerations about the training strategy can be

made. Preliminary, the training was tested with 5 and 4

networks (5 and 4 groups of maps), obtaining very similar

results when compared with 3 networks (3 groups of maps).

The training with 2 networks did not have good results,

because for central points of the environment the RCDs

were almost ambiguous for maps of different positions

and orientations. Another test was conducted to verify the

quantity of data to training the networks. The environment

maps were made with steps of 6 and 10 degrees, but the

errors the positions and orientation increased substantially.

IV. EXPERIMENTAL RESULTS

In this section, experimental results of real time navigation

in the known indoor environment (see Fig. 4) are presented,



as well, the results of the strategy of localization and results

of the internal odometry of the robot.

In most mobile robots, odometry is implemented by means

of optical encoders that monitor the wheel revolutions of the

robot’s wheels. The encoder data is then used to compute the

robot’s offset from a known starting position. Odometry is

simple, inexpensive, and easy to accomplish in real-time. The

disadvantage of odometry is its unbounded accumulation of

errors [17]. Because of the accumulation of errors, absolute

position corrections are often necessary after as little as

10 meter of travel, and they are usually based on external

measurements from localization systems. With this purpose,

the proposed localization strategy is used to reset odometry

errors along the robot path. So, the path was divided into

seven parts, and the localization procedure was apllied at the

end of each part. Obviously, the robot can not move during

the mapping process.

Fig. 8 shows the odometry of the robot, estimated robot

locations, and real robot locations. The real values of the

robot location were carefully measured by hand with a taped

measure. The odometry correction is shown in Fig. 8(b),

where after each correction of the robot position(x, y) and

orientation (ϕ), the odometry errors disappear. It reduces

the navigation errors related to localization, and internal

odometry of the robot.

Table II summarizes the robot locations, besides, the error

between real and estimated positions (x, y) and orientations

(ϕ). The biggest errors obtained in the experiment are 0.13

(m) in X axis, 0.05 (m) in Y axis and 9 degrees of

orientation.

TABLE II

LOCALIZATION SUMMARY.

Real Positions Localization System Error

X Y ϕ X Y ϕ X Y ϕ
(m) (m) (deg) (m) (m) (deg) (m) (m) (deg)

1.03 0.66 90 1.07 0.66 87 -0.04 0 3

1.14 1.09 10 1.12 1.06 5 0.02 0.03 5

1.79 0.85 5 1.66 0.87 -3 0.13 -0.02 8

2.50 1.20 65 2.44 1.18 59 0.06 0.02 6

1.84 1.58 160 1.86 1.62 160 -0.02 -0.04 0

1.35 1.91 105 1.29 1.90 96 0.06 0.01 9

1.53 2.68 80 1.56 2.63 76 -0.03 0.05 4

1.40 2.91 150 1.37 2.95 157 0.03 -0.04 -7

V. CONCLUSIONS AND FUTURE WORKS

This article shows an alternative algorithm for localization

of mobile robots in a structured environment using artifi-

cial neural networks. A set of ultrasonic measurements is

acquired in different places of the navigation environment

and used for training three different neural networks. Each

neural network is responsible to cover a range of 120 degrees

around the training points. Despite of the physical charac-

teristics of the ultrasonic sensor, which sometimes results in

erroneous distance measurements, the obtained results shows

the effectiveness of the proposed localization strategy.

The results were obtained using an experimental mo-

bile robot with an embedded notebook, with all the con-

trol and localization features performed by a real-time

(a) Robot localizations.

(b) Odometry error correction by localization system.

Fig. 8. Indoor navigation.

Matlab/Simulink platform. The generality of the proposed

methodology supports the use of different kinds of sensors

based in a 360 degrees scan measurements. As a future work,

the authors intend to replace the sonar sensor by a laser

scanner, ameliorating the absolute localization results.
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