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Evaporation of a sodium chloride solution from
a saturated porous medium with efflorescence

formation

Stéphanie Veran-Tissoires and Marc Prat†
Université de Toulouse; INPT, UPS; IMFT, Avenue Camille Soula, 31400 Toulouse, France CNRS;

IMFT, 31400 Toulouse, France

Precipitation of sodium chloride driven by evaporation at the surface of a porous
medium is studied from a combination of experiments, continuum simulations, pore
network simulations and a simple efflorescence growth model on a lattice. The
distribution of ions concentration maxima at the porous medium surface, which are
seen as the incipient precipitation spots, is shown to be strongly dependent on the
factors affecting the velocity field within the porous medium owing to the significance
of advection on ion transport. These factors include the evaporation flux distribution
at the surface at Darcy’s scale as well as the scale of surface menisci and the internal
disorder of the porous medium, which induce spatial fluctuations in the velocity
field. The randomness of the velocity field within the porous medium and at its
surface explains the discrete nature of incipient precipitation spots at the surface of a
porous medium. Experiments varying the mean size of the beads forming the porous
medium lead to the identification of two main types of efflorescence, referred to as
crusty and patchy, and the impact of these two types on evaporation is completely
different. The crusty efflorescence severely reduces the evaporation rate whereas the
patchy efflorescence can enhance the evaporation rate compared with pure water. The
crusty–patchy transition is analysed from a simple growth model on a lattice taking
into account the porous nature of efflorescence structures.
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1. Introduction
Salt crystallization in porous media or at the surface of a porous medium is a

phenomenon of interest in relation with several important applications, such as soil
physics, underground storage of CO2, civil engineering and the protection of our
cultural heritage, to name only a few. The soil-physics-related issues concern the
impact of salt on evaporation of water from soils and the associated impacts on many
aspects of water management, global water cycle, soil and groundwater salinization,
agriculture (e.g. Nachshon et al. 2011, and references therein). As discussed in
Peysson et al. (2011), the evaporation process occurring during the injection of
CO2 in a saline aquifer can induce the dissolved salt precipitation in the porous
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structure. The result can be the filling of the pores by the crystallized salts inducing
in turn a severe decrease in the permeability. Permeability alteration by salting out
is thus a serious risk of injectivity decline in the context of CO2 geological storage
in saline aquifers where high levels of gas injection have to be maintained over
decades. The applications having motivated the largest number of studies are related
to the salt weathering issues Goudie & Viles (1997). As discussed for example by
Scherer (2004), Coussy (2006) and Schiro, Ruiz-Agudo & Rodriguez-Navarro (2012),
the crystallization process in the pores generates pressure against the pore walls
that might eventually result in damage to the host material. The induced internal
stresses can be sufficient to completely destroy a stone subjected to evaporation (e.g.
Rodriguez-Navarro & Doehne 1999). The salt crystallization process is therefore a
major cause of deterioration of sculpture and monuments made of stone and masonry.
For example, it is generally admitted that salt crystallization is one of the greatest
threats to monuments in the Mediterranean basin (Theoulakis & Moropoulou 1999).

In spite of the significance of these various applications, the understanding of
the interplay between the salt crystallization and evaporation processes is not very
advanced and many aspects need to be clarified. As mentioned before, the salt
crystallization process in porous materials has motivated many works but only very
few of them focus on the impact of crystallization on the evaporation process or on
the detailed understanding of the factors controlling the localization of crystallized
salt structures within or at the surface of a porous medium subjected to evaporation.
This is however a crucial aspect before attempting any poromechanical analysis.
The crystallized salt structures forming inside a porous medium are referred to as
subflorescence whereas the crystallized structures forming at the surface are referred
to as efflorescence.

Two main reference situations can be distinguished in this context (Scherer 2004):
drying and evaporation–wicking. In drying (e.g. Huinink, Pel & Michels 2002; Sghaier,
Prat & Ben Nasrallah 2007; Guglielmini et al. 2008; Gupta et al. 2012; Eloukabi et al.
2013; Hidri et al. 2013; Norouzi Rad, Shokri & Sahimi 2013), the limiting surfaces
of the porous sample are in contact with impervious walls or exposed to evaporation.
In the evaporation–wicking situation (e.g. Puyate & Lawrence 1998; Puyate et al.
1998; Puyate & Lawrence 1999; Veran-Tissoires, Marcoux & Prat 2012a,b), the
difference with drying is that the sample is in contact at its bottom with an aqueous
solution. The liquid is drawn into the pores by capillary suction. In contrast with
drying, there is a permanent supply of solution and therefore a steady-state can
possibly be reached when the flow rate of liquid sucked into the medium by capillary
action exactly balances the evaporation rate. The medium can be fully saturated by
the solution when the capillary action is sufficiently strong or an internal evaporation
front can exist when the capillary action is insufficient to maintain the medium fully
saturated. This leads to eventually identify three main generic situations: drying,
(e.g. Eloukabi et al. 2013; Hidri et al. 2013), evaporation–wicking with the medium
fully saturated (e.g. Veran-Tissoires et al. 2012a,b) and evaporation–wicking with an
internal evaporation front (e.g. Noiriel et al. 2010). These three related but different
situations correspond to real situations (e.g. Scherer 2004). For example, the fully
saturated evaporation–wicking case can correspond to the section of a wall near the
ground, whereas an internal evaporation front can exist at higher elevations along the
wall. The drying case can apply to stones at still higher elevations, where the stones
cease to be connected to the solution in the ground at one time or another.

In this paper, we focus on the evaporation–wicking situation, where the porous
medium remains fully saturated all along the evaporation process. The situation we



focus on is sketched in figure 1. A porous medium is exposed to evaporation at its
top surface and is in contact with a sodium chloride aqueous solution at its bottom.
This is the same situation as that considered by Veran-Tissoires et al. (2012a,b).
The case of a homogeneous porous medium was considered in Veran-Tissoires et al.
(2012a), whereas the case of a heterogeneous porous medium made of a column of
a fine porous medium set in the middle of a coarse porous medium was considered
in Veran-Tissoires et al. (2012b). Both papers contribute to elucidate the factors
controlling the localization of efflorescence structures at the evaporative surface of
porous medium. These factors are the distribution of evaporation flux at the surface
and the local (homogeneous porous medium) and large-scale (heterogeneous porous
medium) disorder of the porous medium. These factors affect the structure of the
velocity field within the porous medium. Under usual evaporation conditions, the
transport of the ions by this heterogeneous and random velocity field has a dominant
effect on the ion concentration at the surface and therefore on the localization of
concentration maxima, which correspond to the places where precipitation first occurs.
Then the fact that the efflorescence structures continue to grow as well-individualized
structures was explained by the progressive reorganization of the velocity field in the
underlying porous media. This reorganization is due to the screening of evaporation
flux in the regions of surface located between the efflorescence structures and the
preferential sucking effect associated with the porous nature of the salt structures as
the salt structures grow. These results were presented in two short letters. However,
two important aspects were not discussed at all. First, the efflorescence does not
always take the form of a series of well-individualized growing structures. The
efflorescence can form a compact crust, generally blocking or severely limiting the
evaporation. Second, the disordered nature of the porous induces local fluctuations in
the evaporation flux at the surface. These fluctuations were not taken into account
properly in the analysis. Also, the effect of supersaturation was overlooked.

In addition to these important points, the objective is to present additional elements
not reported in Veran-Tissoires et al. (2012a,b). In particular, we emphasize the
dynamic aspect of efflorescence structure growth. The combination of crystallization
and salt redissolution processes at the surface of the porous medium leads to a sort of
efflorescence dance when the film of the successive images of the surface during the
evaporation–crystallization process at the surface is viewed at an accelerated speed.

The paper is organized as follows. The experimental set-up is presented in § 2.
Section 3 is devoted to a numerical study of the distribution of evaporation flux at
the surface of the porous medium from both a continuum and a discrete approach.
The factors affecting the distribution of ion concentration local maxima at the
porous medium surface and the time of first precipitation are studied in § 4 from
a combination of experiments, continuum simulations and pore network simulations.
Section 5 presents some dynamic aspects of efflorescence growth, indicating that
efflorescence growth should be considered, in fact, as a dissolution–crystallization
process. The effect of porous medium pore size is explored in § 6, which leads to the
identification two types of efflorescence, referred to as crusty and patchy. The crusty
efflorescence severely reduces the evaporation rate whereas the patchy efflorescence
can increase the evaporation rate. The crusty–patchy transition is analysed from a
simple growth model of efflorescence on a lattice. A summary of the work and some
possible future works are presented in the conclusion.

2. Experimental set-up
The experimental set-up is sketched in figure 2. A pack of glass beads of mean

size db in a 50 mm long hollow cylinder of inner radius rw = 19 mm forms a porous
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FIGURE 1. (Colour online) Sketch of the evaporation–wicking situation considered in the
article. A porous medium is in contact with a sodium chloride aqueous solution at its
bottom and exposed to evaporation at the top surface. The medium remains fully saturated
owing to capillary action at the top. The evaporation process combined with the capillary
action induces a flow all along the porous medium balancing at the top the evaporation.

medium. The packing of height L is in contact at its bottom with a sodium chloride
almost saturated aqueous solution (the initial salt mass fraction is C0 = 25 %; the
saturation mass fraction is Csat = 26.4 %). The liquid level h in the reservoir is at any
time such that the porous medium remains fully saturated owing to capillary suction.
The system is set in a cylindrical enclosure of controlled temperature (T ≈ 22 ◦C) and
relative humidity (thanks to a LiBr saline solution, relative humidity RH ≈ 7 %). The
wick being fully saturated with the aqueous solution (see below), evaporation takes
place at the top surface of the wick. Note that the cylinder containing the porous
medium is open at the top. Thus, the porous medium surface is in contact with the
dryer air in the enclosure.

The evaporation rate at the wick surface is varied by changing the distance δ
between the wick surface and the hollow cylinder entrance (this will be clarified
in § 4). In a first set of experiments with beads 1 mm in diameter, three different
distances δ between the packing surface and the rim of the hollow cylinder, namely
2.5, 7.5 and 15 mm are considered. In a second set of experiments focusing on
the effect of bead diameter on the salt precipitation/evaporation process δ will be
set constant at 15 mm. Four ranges of bead diameters are then used: (5–50 μm),
(50–62 μm), (100–120 μm) and (1–1.125 mm). The two series of experiments also
differ by the position of the free surface in the aqueous solution reservoir, i.e. the
height h or equivalently the vertical distance Ls between the free surface in the
reservoir and the surface of the porous medium (see figure 2). In the first set of
experiments, which focuses on the effect of δ, the distance Ls was not set carefully.
This distance was of the order of 10 mm or less and the idea was just to make sure
that the medium was fully saturated all along the experiment. In the second set of
experiments on the impact of bead diameter, the distance was set carefully at the
beginning of each experiment with Ls = 22 mm, thus greater than in the first series
of experiments.
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FIGURE 2. (Colour online) Sketch of experimental set-up. Note the enclosure which
corresponds to the computational domain for the transport of the vapour as described in
the text.

The medium remains saturated during the experiments. A simple computation helps
estimate the level h of the solution that should be imposed in the reservoir containing
the solution. As reported in Masoodi, Pillai & Varanasi (2007) the maximum suction
in a packed bed of monodisperse beads can be estimated by Pc = 6(1 − ε)γ cos θ/εdb
where γ is the surface tension, θ the contact angle, ε the porosity and db the bead
diameter. The surface tension increases with the salt concentration but the product
γ cos θ does not vary significantly (Sghaier, Prat & Ben Nasrallah 2006). As a result,
one can safely take the value for pure water. Assuming, for example, θ = 45◦, which is
a conservative upper bound according to the measurements of contact angle reported
by Sghaier et al. (2006), and db = 1 mm, which is the largest bead size used in our
experiments, this gives a maximum imbibition height Limb = (Pc/ρ�g) (Jurin’s law)
≈4.5 cm (with ε ≈ 0.36, ρ� is the density of the sodium chloride aqueous solution
≈1200 kg m−3). As mentioned before, the length Ls (Ls = L − h) of the sample above
the liquid level in the bath is equal to 22 mm in the second set of experiments and of
the order of 10 mm in the first set of experiments at the beginning of the experiments.
The total decreases of the liquid level in the bath due to the evaporation process are
typically of the order of 0.2, 0.9 and 2.3 mm in our experiments for δ = 2.5, 7.5 and
15 mm, respectively; thus only slightly lower than at the beginning of experiments. As
a result Ls is always lower than Limb and the porous medium remains fully saturated
during an experiment. This is confirmed by the visual inspection of the sample surface
when we stop the experiment, which shows that the solution still saturates the medium.
The liquid level h in the reservoir (see figure 2) is thus at any time such that the wick
remains fully saturated owing to capillary action. It can be argued that this simple
analysis does not take into account the additional pressure drop due to the viscous
flow in the porous medium. It can be easily shown that this pressure drop is negligible
compared with the variation in the hydrostatic pressure.



The initial salt mass fraction throughout the sample when the experiment starts is
uniform and is the same at the mass fraction imposed in the bottom reservoir, thus
equal to C0 = 25 %. The sodium chloride aqueous solution is prepared by adding a
certain mass of distilled water to a given mass of salt (e.g. 75 g of water for 25 g of
salt). The duration of each experiment is in the range (1–3 weeks).

The evolution of the mass m(t) of the wick–aqueous solution reservoir system is
measured by placing the sample on a Mettler-Toledo PM 6100 precision scale with
an accuracy of 0.01 g. The solution mass loss is measured at 1 min intervals with
data automatically stored on a computer.

The relative humidity and temperature are recorded during the experiment using a
Rotronic Hygroclip SP05 probe set in the chamber. A Nikon D100 camera with a
resolution of 3008 pixels × 2000 pixels is set above the sample. Top images of the
efflorescence developing on sample surface are recorded using the acquisition software
Nikon Capture Control with a frequency between 2 and 12 images per hour depending
on the value of δ.

3. Evaporation flux at the surface: influence of local disorder
3.1. Continuum computation of evaporation flux

The evaporation flux distribution along the surface of the porous medium is first
computed using the classical continuum approximation at the surface of the porous
medium. The gas phase is a binary mixture made of air and water vapour. Neglecting
heat transfer, the equations governing the transport of the vapour in the enclosure can
then be expressed as

∂ρg

∂t
+ ∇ · (ρg ug) = 0. (3.1)

ρg
∂ug

∂t
+ ρg ug · ∇ug = −∇Pg + μg ∇2ug + ρg g (3.2)

∂ρgXv

∂t
+ ∇ · (ρgXvu) = ∇ · (ρgD∇Xv), (3.3)

where ρg is the density of the gas mixture, μg the gas viscosity, Pg the gas pressure,
ug the gas velocity vector, g the gravitational acceleration, D the binary molecular
diffusion coefficient and Xv the vapour mass fraction. Equations (3.1)–(3.3) are the
gas-phase continuity equation, momentum conservation equation and vapour transport
equation, respectively. It should be noted that ρg and μg are functions of Xv, see,
for instance, (Bird, Stewart & Lightfoot 2002). Hence, there is in general a coupling
between the vapour transport and the flow. To solve the above equations and determine
the evaporation flux along the liquid saturated surface of the porous wick, boundary
conditions should be supplemented. To this end, we first need to discuss the boundary
condition to impose at an evaporative porous surface.

Consider a saturated porous surface, that is a porous surface where all surface pores
are occupied by liquid. The basic question is whether the evaporation rate from a
porous surface, that is a surface which is partially solid and partially liquid, is different
(and a priori smaller) from the same surface fully covered by liquid. This problem
was first addressed by Suzuki & Maeda (1968), who showed that the evaporation
rate from a porous surface was identical to that from the same surface assumed fully
liquid provided the porous surface was sufficiently finely divided. In other terms, the
average pore size and the mean distance between the pore openings at the surface



must be sufficiently small compared with the characteristic size of the external mass
transfer. Here this constraint can be expressed as db � δext, where δext is the external
transfer characteristic length (the average thickness of the mass boundary layer in
convective drying for example (e.g. Masmoudi & Prat 1991) or the diameter of the
surface in the case of diffusion driven evaporation from a disk (e.g. Picknett & Bexon
1977)). This has been recently confirmed from 3D simulations (e.g. Veran-Tissoires
et al. 2013). Hence, the remarkable result is that a porous surface behaves as a fully
wetted surface provided that the bead size db is sufficiently small compared with
δext. In our case where diffusion is the main transport mechanism of the vapour in
the enclosure, an order of magnitude of δext is therefore the diameter of the hollow
cylinder δext ≈ 38 mm and therefore db � δext, noting however that the ratio db/δext is
small but not very small for the beads 1 mm in diameter.

The boundary condition at the surface is thus expressed as

Xv = Xve(C), (3.4)

where Xve is the equilibrium vapour mass fraction at a liquid/gas interface. For the
almost-saturated sodium chloride aqueous solution considered in this paper, the water
activity aw (aw = pv(C)/pv0, where pv(C) and pv0 are the vapour pressure for a sodium
chloride aqueous solution and the vapour pressure for pure water, respectively) is less
than for pure water and is close to 0.75 (Robinson 1945). Hence, Xve(Csat) = 0.0198
at T = 22 ◦C.

The evaporation flux at the porous medium surface is given by

j = − ρgD
1 − Xve

∇Xv · n, (3.5)

where n is the unit normal vector at the surface.
For solving the flow equation (3.2), a no-slip boundary condition is imposed as

regards the tangential component of the velocity vector whereas the normal component
is expressed as

u · n = − D
(1 − Xve)

∇Xv · n. (3.6)

Equation (3.6) reflects the fact that the evaporation process induces a flow within the
gas phase. One can refer for instance to Carey (2008) for more details.

In the simplest situation, the external mass transfer is governed by diffusion. This
is a correct assumption when the liquid is not too volatile and the evaporative
surface is small. When the size of the evaporative surface is not sufficiently
small, convective effects due to variation of density with gas mixture composition
cannot be ignored. This can be understood from the expression of the Grashof
number, which characterizes the competition between buoyancy effects and viscous
effects Gr = gβ(ρvsat − ρv∞)Λ3/ν2

g where β = −(1/ρg)
(
∂ρg/∂ρv

)
T,P,νg is the gas

kinematic viscosity, ρvsat the vapour concentration at the surface and ρv∞ the vapour
concentration in ambient (surrounding) medium. The Grashof number varies as Λ3,
where Λ is the characteristic length of the surface (Λ = 2rw in our case). The high
value of the exponent (3) explains why free convection effects cannot generally
be neglected as soon as the size of the surface is typically greater than a few
millimetres. This is illustrated from the simple experiment sketched in figure 2.
The evaporation rate J is deduced from the evolution of the mass m(t) of the
wick-aqueous solution reservoir system. Hence, J = −dm/dt. Then the evaporation



rate is computed from the numerical solution of (3.1)–(3.3) supplemented by the
boundary condition Xv ≈ Xve(C0) ≈ Xve(Csat) at the porous medium surface and the
condition Xv = 0.066Xve(0) at the surface of the LiBr solution. A zero-flux condition
is imposed at other surfaces bounding the gas phase within the enclosure. The same
computation was also made assuming a purely diffusive transport, that is, by solving
(3.3) with ug = 0 and ρg constant. In both cases the evaporation rate is computed
from

J =
∫

A
je dS = −

∫
A

ρgD
1 − Xve

∇Xv · n dA (3.7)

where A is the evaporative surface of the porous medium (i.e. the top disk-like surface
of the porous medium). The commercial simulation software COMSOL Multiphysics
was used to obtain all of the numerical solutions discussed in this section. Simulations
were run using cylindrical coordinates on the gas domain of the experimental set-up,
with triangle meshes of approximately 45 000 elements. Meshes are finer at the porous
medium surface.

This was done for the three different values of δ so as to vary the evaporation rate.
Reducing δ increases the overall evaporation rate (the external mass transfer resistance
due to transfers between the porous medium surface and the hollow cylinder entrance
is reduced) and modifies the evaporation flux distribution over the surface. Increasing
δ reduces the evaporation rate (the resistance due to transfers between the porous
medium surface and the hollow cylinder entrance is increased) and makes the local
evaporation flux distribution increasingly uniform. The results are summarized in
table 1. As can be seen, the purely diffusive computation leads to discrepancies with
the experimental results. Although the agreement is not perfect, the computation
including the free convection effect leads to better results. More details can be
found in Veran-Tissoires (2011). Figure 3 shows the corresponding distributions of
evaporation flux at the surface. As can be seen, the evaporation flux is greater at
the periphery when the distance δ is sufficiently small and tends to be increasingly
uniform as δ increases. The consideration of free convection effects leads to slightly
more uniform distributions compared with those obtained with the purely diffusive
approximation. It can be also noted from table 1 that the evaporation flux is sensitive
to parameter Ls, i.e. to the curvature and position of menisci at the interface, at least
for the 1 mm beads. A greater Ls means a greater curvature of menisci and a mean
position of menisci a bit more inside the spaces between the beads at the surface.

3.2. Influence of local disorder
The analysis of the distribution of the precipitation onset points at the porous medium
surface requires studying the possible impact of the pore-scale heterogeneities at the
porous medium surface on the evaporation flux distribution. To gain insights into the
distribution, we consider the simple model surface sketched in figure 4. The circular
porous surface is of radius rw. Pore openings are located at the nodes of a square
mesh. The distance between two nodes (mesh spacing) is a (a ≈ db in a packing
of monodisperse beads). The diameter do of openings is distributed randomly in the
range [domin, domax] according to a Gaussian distribution with the following parameters:
mean value of 0.3a, standard deviation of 0.04a, domin = 0.18a and domax = 0.42a. This
model surface is consistent with the cubic pore network model presented in § 4.2. The
computation is performed as follows. Free convection effects are neglected within the
reduced computational domain considered. The later is the domain occupied by the
gas phase above the porous surface in the hollow cylinder. This domain is therefore



Ls (mm) δ = 2.5 mm δ = 7.5 mm δ = 15 mm

Jexp (kg s−1) (db = 1 mm) ≈10 2.7 × 10−8 2.37 × 10−8 2.02 × 10−8

Jexp (kg s−1) (db = 1 mm) 22 — — 1.80 × 10−8

Jexp (kg s−1) (db = 100–125 μm) 22 — — 1.74 × 10−8

Jexp (kg s−1) (db = 50–62 μm) 22 — — 1.75 × 10−8

Jexp (kg s−1) (db = 5–50 μm) 22 — — 1.9 × 10−8

Jnum (kg s−1) pure diffusion 1.92 × 10−8 1.53 × 10−8 1.21 × 10−8

Relative error (%) 29 35 30–40
Jnum (kg s−1) free convection + diffusion 2.72 × 10−8 2.08 × 10−8 1.55 × 10−8

Relative error (%) 0.7 12 10–23

TABLE 1. Comparison between computed and measured evaporation rates. The relative
error is between experimental results (beads 1 mm in diameter) and the computed ones.
For the beads (5–50 μm) and (50–62 μm), the experimental evaporation rate in the table
is that at the beginning of evaporation before the significant development of efflorescence
(see § 6).

0.2 0.4 0.6 0.8 1.00

0.5

1.0

1.5

2.0

FIGURE 3. Variation of evaporation flux at the surface of porous medium as a function of
radial position for the three values of δ. The thick lines are for the computations taking
into free convection effects whereas the thin lines are for the purely diffusive model. The
reference evaporation flux jref depends on δ and is given by J(δ)/(πr2

w) where J(δ) is the
computed evaporation rate over the wick top surface.

the cylindrical domain located between the plane z = L and z = L + δ. In the dilute

limit considered here, the equation governing the mass fraction of vapour in the

computation domain (see figure 2) reads,

�Xv = 0. (3.8)
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FIGURE 4. (Colour online) Sketch of model porous surface considered to evaluate the
influence of surface opening disorder on the evaporation rate from surface openings. The
aperture of openings is randomly distributed.

At the porous surface, the boundary conditions read,

∇Xv · n = 0 at Ωs (3.9)

Xv = Xve(Csat) at Ωo, (3.10)

where Ωs and Ωo represent the solid part of the porous medium surface and the
surface of openings, respectively. Note that the liquid surface at the entrance of
openings is assumed to be flat for simplicity. Equation (3.9) expresses that there is
no evaporation flux over the solid part of the porous surface. On the lateral side
(corresponding to the hollow cylinder inner wall), a zero flux condition is imposed
(∇Xv · n = 0), whereas the boundary condition over the plane located at z = L + δ is
expressed as

∇Xv · n = ∇Xvc · n at z = L + δ, (3.11)

where ∇Xvc is the gradient computed using the continuum approach when free
convection effects in the enclosure are neglected, see § 3.2. According to the results
presented in § 3.2, it would be of course desirable to take into account the free
convection effects but this would quite considerably increase the computational
effort. The above problem was solved using the free open-source CFD software
OpenFOAM�. The gas domain is decomposed into an union of rectangular cuboids.
Each cuboid contains an opening and is finely meshed by 840 000 hexahedron
elements. Then the evaporation rate Jo from each surface opening is computed.

The results obtained for one realization of the surface and the three values of
distance δ are depicted in figure 5. The remarkable result is that there is not
a one-to-one correspondence between the evaporation rate at the entrance of an
opening and its diameter. There are two main effects. The first is obvious and is
the peripheral effect (figure 3), which is marked for δ = 2.5 mm and δ = 7.5 mm.
The evaporation rate from an opening of small radius at the periphery can be greater
than the evaporation rate from a larger opening located closer to the centre of the
surface. The second is subtler and results from the variation in the opening size
of neighbour openings. For example, the evaporation rate from an opening whose
neighbours are on average of small diameter is greater than the evaporation rate
from an opening of same diameter and located at the same radial position whose
neighbour openings are on average of greater diameter. This is illustrated in figure 6.
This effect is referred to as a cooperation effect between neighbour openings. The
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FIGURE 5. (Colour online) (a) Dimensionless evaporation rate at the entrance of each
opening as a function of opening diameter, (b) mean evaporation flux at the entrance of
each opening as a function of opening diameter; the reference evaporation flux jref is given
by jref = J15num/(πr2

w) where J15num is the evaporation rate computed with the continuum
model assuming a purely diffusive vapour transfer for δ = 15 mm (as reported in table 1,
J15num = 1.21 × 10−8 kg s−1). The average velocity u in an interfacial throat is given by
u = jo/ρ�. Thus, jo/jref = u/uref . The reference evaporation rate Jref is computed as Jref =
jref a2. Here δ = 2.5 mm (◦), δ = 7.5 mm (�), δ = 15 mm (×). The dispersion in the data
is due to the peripheral effect and the spatial variability in the opening diameter.
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FIGURE 6. (Colour online) Water vapour isoconcentration lines from three discrete
openings at the surface. The normalized vapour concentration is set at one at the
liquid surface and zero far from the heterogeneous surface. The normalized concentration
associated with each isoline varies from 0.995 to 0.9 with steps of 0.005. In the image on
top, the two neighbour side openings have a larger surface area compared with the central
opening (ratio 8/3). In the image on the bottom, the surface area of the two neighbour
side openings is the same as the surface area of the central opening. One can clearly
see from the isoconcentration lines that the evaporation fluxes from the central opening
are higher in the second case. The evaporation rate from the central opening surrounded
by the larger openings is here 1.33 times smaller than when the central opening and the
neighbour openings are of the same surface area.

essential point is that there are spatial fluctuations in the evaporation rate from one
opening to the other at the surface. This is illustrated in figure 5, which also shows
that not only the variations due to the peripheral effect but also the fluctuations due
to the cooperation/neighbouring effect diminish as the distance δ is increased. The
computation were also performed for the case δ = 15 mm with a spatially uniform
boundary condition at L + δ (corresponding to the mean evaporation flux deduced
from the continuum computation). The results are very close to those shown in
figure 5. This is an indication that the relatively good correlation with the opening
size for the case δ = 15 mm (Jo ∝ do) has nothing to do with the peripheral effect.

Of particular interest is the distribution of the mean evaporation flux jo = Jo/(π d2
o/4)

at the surface of the openings because there is a direct link between the mean velocity
u induced in the liquid solution right below the opening and the evaporation flux at
the entrance of the interfacial throats, u = jo/ρ�.

The fact that the evaporation flux distribution should be properly estimated can be
illustrated as follows. Suppose that we determine the evaporation rate at the surface
of the interfacial bonds from the simple mapping of the average flux

Jom(r, δ) = j(r, δ)a2 (3.12)

where j(r, δ) is the evaporation flux distribution deduced from the continuum approach
(figure 3). Consider as an example, the case δ = 15 mm. The results are shown in
figure 7. As can be seen, the numerical computation of the evaporation rate from
the discrete computation leads to quite different results from the simple mapping
given by (3.12). Of particular interest is the evolution of the interfacial velocities
u = Jo/(πd2

o/4)/ρ�. As can be seen from figure 7(b), the variability of the interfacial
velocity is much less when the cooperation effect between neighbour openings is
taken into account.

A last effect must also be considered. It is well known that the porosity of a random
packing of spherical particles is greater in the vicinity of the solid wall (e.g. Vafai
1984). Following Vafai (1984), the porosity variation near the solid wall (porosity wall
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FIGURE 7. (Colour online) Comparison of evaporation rate and mean evaporation flux
at the entrance of each opening of the model surface (figure 4) between the full
three-dimensional computation (direct numerical simulation) and the simple mapping
corresponding to (3.12): (a) dimensionless evaporation rate at the entrance of each opening
as a function of opening diameter; (b) mean evaporation flux at the entrance of each
opening as a function of opening diameter. The reference evaporation flux jref is given by
jref = Jtot/(πr2

w) where Jtot is the global evaporation rate leaving the evaporation surface.
The average velocity u in an interfacial throat is given by u = jo/ρ�. Thus jo/jref = u/uref .
The reference evaporation rate Jref is computed as Jref = jref a2.



effect) can be expressed as

ε(rw − r) = ε0

(
1 + α exp

(
β

(rw − r)
db

))
(3.13)

where ε0 is the porosity far from the wall and α and β two numerical factors
(α = 0.98, β = −2).

As a result, it is surmised that the size of the openings should be greater on average
at the periphery. This effect has been taken into account by increasing the size of the
openings at the periphery in accordance with (3.13). This leads to the results depicted
in figure 8. The comparison with the results reported in figure 5, shows the greater
evaporation rates at the periphery resulting from both the increase in the opening sizes
(porosity wall effect) and the flux peripheral effect (figure 3). As shown in figure 8(b),
the porosity wall effect leads to lower evaporation flux, and thus lower interfacial
velocities in the near-wall region (peripheral region of the surface) compared with the
situation when this effect is not considered.

4. Ion distributions at the surface of the porous medium
4.1. Experiments

As illustrated in figure 9, the experiment leads to the crystallization of salt at the
surface of porous medium. The images shown in figure 9 were obtained for a packing
of monodisperse beads 1 mm in diameter and the three different distances δ = 2.5,
7.5 and 15 mm. The effect of bead size is discussed in § 5. As can be seen, the
efflorescence does not form a crust covering all of the surface of the porous medium
but forms a set of well-individualized structures referred to as patches. This type
of efflorescence, frequently observed in nature or at the surface of porous stones,
is therefore called ‘patchy’. One can distinguish two main phases. During the first
phase the surface of the porous medium is free of efflorescence. This phase is
relatively short, ∼5 mn, 45 mn and 8 h for the experiments with δ = 2.5, 7.5 and
15 mm, respectively, since the initial salt concentration in the system is close to
the saturation concentration. As discussed below, the salt mass fraction increases
constantly at the interface during this phase. When the crystallization mass fraction
Ccris is reached somewhere at the surface, crystals form at the surface. In general,
it is expected that Ccris > Csat. Defining here the supersaturation as σ = Ccris/Csat,
it is thus expected that the onset of crystallization occurs for a certain degree
of supersaturation. It is often considered that supersaturation effects are weak for
NaCl and therefore that the crystallization mass fraction is close to the saturation
mass fraction (Csat = 26.4 %), Chatterji (2000), Pel, Huinink & Kopinga (2002) and
Espinosa-Marzal & Scherer (2010). However, recent experiments of crystallization
in capillary tubes (e.g. Shahidzadeh & Desarnaud 2012) or at the surface of porous
media (e.g. Hidri et al. 2013), indicate that the supersaturation can be noticeable.
As we will see invoking supersaturation effect is also necessary to obtain a good
agreement between the simulations and the experiments discussed in the present
paper as regards the time of first precipitation. For the moment, we therefore simply
state that crystallization is expected to start when the ion mass fraction C ≈ Ccris
somewhere at the surface with Ccris > Csat.

In the case of the experiment illustrated in figure 9(c) (δ = 15 mm), precipitation
starts at only one point of the surface. Then after a noticeable time (∼13 h in our
experiment), other precipitation spots can be observed. However, several precipitation
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FIGURE 8. (Colour online) Influence of peripheral porosity increase on local evaporation.
The results for the opening sizes greater than 0.42 (vertical dashed line) correspond to
the peripheral region of greater porosity (see the text): (a) dimensionless evaporation rate
at the entrance of each opening as a function of opening diameter; (b) mean evaporation
flux at the entrance of each opening as a function of opening diameter; the reference
evaporation flux jref is given by jref = J15num/(πr2

w) where J15num is the evaporation rate
computed with the continuum model assuming a purely diffusive vapour transfer for δ =
15 mm (as reported in table 1, J15num = 1.21 × 10−8 kg s−1). The average velocity u in
an interfacial throat is given by u = j/ρ�. Thus, j/jref = u/uref . The reference evaporation
rate qref is computed as qref = jref a2. Here δ = 2.5 mm (◦), δ = 7.5 mm (�), δ = 15 mm
(×). The dispersion in the data is due to the spatial variability in the opening diameter,
the peripheral effect and the porosity wall effect.
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FIGURE 9. (Colour online) (a–c) Images of the top surface of porous medium a little after
the beginning of precipitation (rs = 0.02) and later when the projected area of efflorescence
is equal to 10 % of the area of the porous medium surface (rs =0.1) for the three distances
δ. Efflorescence structures in white are clearly visible; rs = As/A is the ratio between the
surface area As covered by efflorescence on a 2D image and the area A of the porous
medium surface. (d–f ) Position of 20 greater salt concentration maxima at the surface
from full pore network simulations. (g–i) Position of 20 greater salt concentration maxima
at the surface from pore network simulations without the near-wall porosity variation (the
empty squares in figure 9(i) correspond to the 20 throats of higher evaporation flux).



spots can appear almost simultaneously for lower δ. The remarkable result illustrated
in figure 9 is that the number of crystallized spots is small and still more remarkable
is that the number of individualized crystallized salt growing structures remains
small, much less than the number of pore openings at the surface, during the entire
experiment duration (the number of pore openings is roughly No ≈ (π r2

w/d2
b) ≈ 1100).

This is obvious from figure 9(c) and will be characterized in more detail in § 6. In
this section, we focus on what happens during the first phase up to the occurrence of
first crystals, that is on the ion distribution at the surface of the porous medium before
the onset of crystallization. The second remarkable result emerging from figure 9 is
that the distribution of precipitation discrete spots greatly depends on the distance δ.
A clear peripheral distribution is observed when the distance δ is sufficiently small.

4.2. Continuum approach
4.2.1. Ion transport volume-averaged equation

Within the framework of the classical continuum approach to porous media
(e.g. Bear 1972), the equation governing the ion transport within the porous medium
reads

∂ρ�εC
∂t

+ ∇ · (ρ�ε U C) = ∇ · (ρ�ε D∗
s ∇C

)
(4.1)

where C is the mass fraction of dissolved salt. Here D∗
s is the effective diffusive

coefficient of the dissolved salt in the liquid, ρ� the solution density, ε the porosity
of the porous medium and U the average interstitial velocity of the solution. For a
random packing of spherical particles, D∗

s ≈ ε0.4Ds (Kim, Ochoa & Whitaker 1987),
where Ds = 1.3 × 10−9 m2 s−1 is the ion diffusion coefficient. The initial condition is
C = C0 throughout the sample. Using cylindrical coordinates, the boundary conditions
can be expressed as

C = C0 at z = 0. (4.2)

(ρ�εUC − ρ�εD∗
s ∇C) · n = 0 at z = L for all r and at r = rw for all z. (4.3)

The zero flux boundary condition (4.3) expresses that the dissolved salt cannot leave
the porous medium before the onset of crystallization.

For simplicity, the solution density ρ� and its viscosity are considered as constant.
This implies that the flow problem is decoupled from the dissolved salt transport
problem.

The above problem is cast into dimensionless form using Ccris, L, tref = L/Ū, as

the characteristic ion mass fraction, length and time, respectively, with Ū = J/A/ε/ρ�,
where A = π r2

w is the porous medium surface area. Using the superscript ′ to define
the dimensionless variables, this gives

Pe
(

∂C′

∂t′
+ U′ · ∇C′

)
= ∇ · ∇C′ (4.4)

(Pe U′C′ − ∇C′) · n = 0 at z′ = 1 or r′ = rw/L C′ = C0/Ccris at z′ = 0 (4.5)

where Pe = (ŪL/D∗
s ) is the Péclet number. To solve the above problem, the velocity

field in the porous medium must be known. Using Darcy’s law, the boundary value
problem describing the flow in the porous medium is given by (after decomposition
of the pressure according to P = Pvis + ρ�g z),

∇ · V = 0 (4.6)

V = −K
μ

∇Pvis (4.7)



where V is the filtration velocity, V = εU, K the porous medium permeability and
μ the liquid solution viscosity. The boundary conditions read Pvis = P0 (arbitrary
constant) at z = 0, V · n = 0 on the porous column lateral side (n is here the unit
vector normal to the inner surface of cylinder containing the porous medium). At the
porous medium surface, the evaporation flux is balanced by the liquid flow coming
from the porous medium,

ρ�Vz = ρ�ε Uz = j(r, δ) at z = L. (4.8)

Using Pref = (μŪ/εL) as the reference pressure, the problem giving the filtration
velocity field is expressed in dimensionless form as

∇ · v′ = 0 (4.9)

v′ = − K
L2

∇P′
vis (4.10)

v′
z = j(r, δ)

ρ�Ū
at z′ = 1, P′

vis = P′
0 (arbitrary constant) at z′ = 0, v′ · nr = 0.

(4.11)

As discussed in previous papers (e.g. Puyate & Lawrence 1998; Puyate et al. 1998;
Puyate & Lawrence 1999; Huinink et al. 2002; Sghaier et al. 2007; Guglielmini
et al. 2008; Veran-Tissoires et al. 2012a), the distribution of the ions depends on the
competition between advection, which tends to transport the ions towards the porous
medium surface, and diffusion, which tends to make the ion distribution uniform. The
Péclet number Pe characterizes this competition. Under usual evaporation conditions,
the Péclet number is greater than one. In our experiments the Péclet number, which
can thus be expressed as Pe = JL/ρ�AεD∗

s , is equal to 3, 2.4 and 1.7 for δ = 2.5, 7.5
and 15 mm, respectively. When the Péclet number is of the order or greater than one,
the advective effect is sufficient to lead to the accumulation of ions at the evaporative
surface. The crystallization concentration is thus first reached at the surface, which
leads to the formation of efflorescence.

First insights can be gained from the solution to the above problem in one
dimension.

4.2.2. One-dimensional solution
When the medium is homogeneous (negligible spatial variations in K or ε) and the

evaporation spatially uniform at the surface (δ ≈ 15 mm or greater in our experiments),
the ion transport problem greatly simplifies. First the filtration velocity is spatially
homogeneous and simply given from (4.9) and (4.11) by

V ′ = (0, 0, ε). (4.12)

The typical distribution of ion within the sample is sketched in figure 10. Owing
to the advection effect, the ion mass fraction is in fact uniform, equal to the mass
fraction C0 in the region of the sample adjacent to the bottom reservoir. As illustrated
in figure 10, the salt mass fraction gradients are significant only in a region of high
salt mass fractions of size ξ(t) adjacent to the porous medium surface. The size of
this region increases with time.

To solve the 1D versions of (4.4) and (4.5), we use a method similar to that
developed in Guglielmini et al. (2008) for the drying problem. The method is based
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FIGURE 10. Typical ion distribution within the sample. The vertical dashed line indicates
the position of the sample top surface.

on the observation that the distribution of the ions in the gradient region of size ξ(t)
can be considered as quasi-steady. In our case, this quasi-steady distribution reads
C = C0 exp(PeZ′), where Z′ = 0 in z′ = 1 − ξ ′(t). We then express the extra mass of
salt contained in the gradient region as a result of the advection effect as

Mex

ρ�ALεC0

=
[∫ ξ ′(t)

0

exp(PeZ′) dZ′ − ξ ′(t)

]
. (4.13)

Then we express that the variation of this mass is due to the salt entering into the
porous medium at is bottom (where the salt concentration is C0 as long as ξ ′(t) < 1),

dMex

dt
= ρlAC0εŪ. (4.14)

Combining (4.13) and (4.14) and using as dimensionless time τ = tD∗
s /L2 give the

equation governing the evolution of ξ ′(t)

exp(Peξ ′) − Peξ ′ = Pe2τ + 1, ξ ′ = 0 at τ = 0. (4.15)

The associated salt mass fraction profile is given by C′ = C0/Ccris for 0 � z′ � 1 −
ξ ′(τ ) and C′ = (C0/Ccris) exp(Pe(z′ − 1 + ξ ′)) for 1 − ξ ′(τ )� z′ � 1.

The general solution to (4.15) is given by

ξ ′ = −W(−1, − exp(−Pe2τ − 1)) + 1 + Pe2τ

Pe
, (4.16)

where W is the Lambert W function.
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FIGURE 11. Dimensionless time of first precipitation for a uniform evaporation flux at
the surface as a function of Péclet number. Comparison between the time obtained from
the numerical solution of the dissolved salt transport problem in one dimension and the
time given by the analytical prediction (4.18).

Combining the above equation leads to the following results when C′ = 1 (onset of
crystallization) at the porous medium surface,

ξ ′
c = −Pe−1Ln

(
Ccris

C0

)
(4.17)

and

τc = Pe−2

(
Ccris

C0

− Ln
(

Ccris

C0

)
− 1

)
. (4.18)

The prediction given by (4.18) is compared in figure 11 with the prediction obtained
from the numerical solution to the original transient problem (4.4)–(4.5) for C0 = 25 %
and Ccris = Csat = 26.4 %. As can be seen, the agreement is quite good.

4.2.3. Numerical solution in cylindrical coordinates
The 1D formulation used in the previous section cannot predict the peripheral effect

visible in figure 9. To capture this effect, the problem governing the dissolved salt
mass fraction is solved using cylindrical coordinates. The key ingredient is that the
(continuum) evaporation flux distributions depicted in figure 3 are used in (4.11) to
compute the velocity field in the porous medium. As already discussed and shown
in figure 3, the evaporation flux is greater at the periphery when the distance δ is
sufficiently small.

Since it has been shown that the porosity heterogeneities could have a great impact
on the location of efflorescence at the porous surface (Veran-Tissoires et al. 2012b),
the impact of the possible different arrangement of the beads near the wall, i.e. the
porosity wall effect, is taken into account in the computations through (3.13).



The results are depicted in figure 12. As can be seen, the peripheral effect is well
predicted. The effect is due to the greater evaporation fluxes at the surface periphery
(see figure 3), which induce greater velocities in the upper region of the porous
medium close to the hollow cylinder wall. Owing to the significance of the advection
effect, the higher salt concentrations at the surface are directly correlated with the
higher solution velocities in the porous medium periphery. As expected, the porosity
increase near the wall (3.13) has a significant impact. The greater porosity near
the wall induces a lower interstitial velocity (we recall that the interstitial velocity
U = V/ε, where V is the filtration velocity), and therefore a lesser advection effect
in the dissolved salt transport. The effect is not sufficient to overcome the peripheral
effect due to the increase in the evaporation flux with r, i.e. the distance from the
surface centre. According to figure 12, it is expected that the first crystals are seen at
a distance of approximately one or two bead diameters from the wall. This is not what
can be seen from figure 9 where some efflorescence structures are clearly attached to
the wall. However, figure 9 corresponds to elapsed times relatively long after the onset
of first crystals. Interestingly, the close inspection of the images obtained for the case
δ = 2.5 mm, do indicate that the very first efflorescence structures do not form at the
wall but at a distance from the wall consistent with the concentration profile depicted
in figure 12. This does not hold, however, for the case δ = 7.5 mm. No near-wall
exclusion distance is observed in the experiment but the peripheral preferential onset
is marked, in agreement with the concentration profiles depicted in figure 12. By
contrast, the peripheral effect still predicted by the continuum computation for the
case δ = 15 mm is not seen at all at in the experiment. The first crystal appears
actually close to the centre of the surface and not at the periphery.

The continuum approximation is in fact not sufficient to explain the distribution
of salt structures shown in figure 9(c), nor of course the discrete distributions of
precipitation sites also visible in figure 9(a,b).

4.3. Pore network model
As discussed in § 3, the evaporation flux varies from one surface opening to the other
not only because of the peripheral effect but also because of the spatial fluctuations in
the sizes of openings. The objective is to take into account this effect in the analysis
of the distribution of the salt concentration maxima at the surface of the porous
medium. To this end, pore network simulations of the salt transport were developed.
As sketched in figure 13, a cubic network was considered. In this type of model
(e.g. Blunt et al. 2002; Joekar-Niasar, Hassanizadeh & Dahle 2010), the pore space
is conceptualized as a network of randomly sized pores (located at the nodes of the
cubic mesh) joined by randomly sized throats. As sketched in figure 14, each node
of network is connected to six neighbour nodes. Note that a node is also located
within the top half of each interfacial bond (figure 14b). An interfacial throat at the
top surface is a throat oriented along the z direction whose entrance is level with
the surface. Thus, the menisci at the surface are located at the entrance of interfacial
bonds. Each of these interfacial nodes is therefore connected to only one node. The
lattice spacing, i.e. the distance a between two nodes is dp, thus corresponding to a
bead diameter, except at the surface where the distance is 0.75dp (see figure 14b).

The pore network simulations are performed as follows. First, a realization of
the random pore network geometry is generated (with the parameters detailed
previously) and the interface geometry (throat diameter and position) is exported
as input geometry for an OpenFoam computation. Hence, the top surface geometry
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FIGURE 12. Continuum computation of distribution of salt mass fraction at the porous
medium surface when the crystallization mass fraction is reached assuming Ccris = Csat.
The thick lines are for a uniform porosity. The thin lines are when the porosity increases
near the wall. Note the shift in the position of the mass fraction maximum toward the
centre of the surface when the porosity wall effect is taken into account.

is used to create the geometry and mesh for an OpenFoam computation of the
evaporation rates at the entrance of each opening at the surface. The OpenFoam
computation is similar to those described in § 3.2. The computed evaporation rate
over each opening is then imported as input data for the pore network simulation.
The problem governing the pressure in the network problem is then solved and the
velocity field inside each bond of the network is computed. Finally, the transient
concentration problem is solved until the saturation concentration is reached in an
interfacial throat. The details on this pore network model are given in the Appendix.

4.4. Precipitation onset times, supersaturation effect
The comparison between the theoretical, numerical and experimental precipitation
onset times is presented in table 2 when no supersaturation effect is taken into
account in the computations, i.e. Ccris = Csat. Experimentally, the onset time, also
referred to as the time of first precipitation, corresponds to the first time that crystals
are visible at the surface. Given the limitation/accuracy of the imaging technique
used in the experiments, the very first salt crystals (which appear at the nanoscale)
cannot be actually visualized. The crystal should, in fact, be greater than about
one pixel (which corresponds to a size of 25 μm). A side experiment made with
a capillary tube indicates that the growth of sodium chloride crystal up to the size
of the capillary diameter is quite rapid. It is thus surmised that the elapsed time
between the formation of first crystals and a crystallized structure visible at the
surface is quite short. It is therefore concluded that the elapsed time between the
moment when C = Ccris in the experiment and the moment when the first crystallized
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FIGURE 13. (Colour online) Cubic network of interconnected channels as a model porous
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FIGURE 14. (Colour online) (a) Sketch of a pore element in network with its neighbours.
(b) Sketch of an interfacial element (throat). The dark region represents the volume
associated with the considered element.

structure is visible at the surface must be short. Although this would deserve to be
further explored, it is thence concluded that this point cannot be invoked to explain
possible discrepancies between the theoretical predictions and the observations. Note
also that the image acquisition frequency (one image every 300 s) is too low for
detecting accurately the precipitation onset time for the case δ = 2.5 mm. Thus, the
experimental time 300 s indicated in table 2 should be regarded as a conservative
estimate.

To perform the 2D continuum simulations, the free convection distributions of
the evaporation flux at the surface are used after rescaling so as to obtain the same
evaporation rate as in the experiments. A similar procedure is performed for the Péclet
number simulations, i.e. a rescaling so as to obtain the same evaporation rate as in
the experiment (however, we recall that free convection effects were not considered
in the study of evaporation flux from the discrete surface shown in figure 4).

As can be seen from table 2, all numerical approaches underpredict the time of first
precipitation except for the case δ = 2.5 mm, for which the time of first precipitation
is quite short. The theoretical approach (4.18) leads to reasonable values compared
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to the 2D continuum approach and the Péclet number simulations. This was expected
for the case δ = 15 mm since the evaporation flux is quasi-uniform for this value
of δ (see figure 3) but not for the smaller values of δ for which the problem is
clearly not 1D. The consideration of the porosity wall effect in the 2D continuum
simulations and the Péclet number simulations lead to slightly larger values of the
time of first precipitation. This was expected since the increase in porosity near
the wall, that is in the region of higher evaporation flux at the surface, leads to
local lower interstitial velocities (the interstitial velocity is inversely proportional
to the porosity) and, thus, to a lesser advective effect in the near-wall region. Not
surprisingly, the Péclet number and continuum simulations lead to similar results,
which was of course expected from the construction of the Péclet number model (see
the Appendix). Note that only one realization of network is considered throughout
the present study. However, the consideration of several realizations does not change
the main results (Veran-Tissoires 2011).

The time of first precipitation decreases with the Péclet number as expected.
Interestingly, the experiments with the various sizes of beads lead to comparable
times of first precipitation, except for the 1 mm beads, with a time about twice
as long as for other diameters. This difference is not captured by the simulations.
The experimental results also indicate that the level in the reservoir (distance Ls,
see figure 2) is a sensitive parameter. The comparison between the experiment for
Ls = 22 mm and that for the lower Ls (≈1 cm) leads to a factor of three in the
time of first precipitation (δ = 15 mm). This would indicate that the exact position
of menisci between the beads at the surface has some impact, at least for sufficiently
large beads.

The fact that the simulations lead to lower precipitation times (with the only
exception of the case δ = 2.5 mm which is characterized by a quite short precipitation
time) is interpreted as a supersaturation effect. To evaluate the supersaturation we
have performed for each case the simulations over a longer period, the period
corresponding to the experimental time of first precipitation as reported in table 2.
This leads to crystallization salt mass fractions greater than the solubility mass
fraction and thus to supersaturation. The results are summarized in table 3. Except
again for the case δ = 2.5 mm, which leads to a time of first precipitation at least
one order of magnitude smaller than in the other cases and no supersaturation effect,
this procedure leads to supersaturations in the range (1.05–1.26). This confirms the
existence of a noticeable supersaturation effect. According to the results reported in
table 3, the supersaturation does not seem to depend greatly on the bead diameter,
which is in agreement with experiments with capillary tubes of different diameters
(Desarnaud et al. 2014).

4.5. Locations of salt concentration maxima at the surface
The key aspect discussed in this section is that the ion concentration at the surface
is not locally uniform, i.e. varies from one meniscus to another. This non-uniformity
is distinct from the non-uniformity associated with the peripheral effect (greater
evaporation flux at the periphery) or the wall porosity effect. The heterogeneous
nature of the ion distribution discussed here is a direct consequence of two factors:
(i) the significance of the advection effect in the transport of ions toward the
evaporative surface; (ii) the disordered nature of the porous medium at the pore
network scale. As a result of the spatial variations in the pore size throughout the
pore space, the velocity field at the pore network scale is not uniform: the average
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velocity in the passages between two pores fluctuates spatially. It is well known
that the transport of a species in a stationary random velocity field leads to the
phenomenon of dispersion (e.g. Koch & Brady 1985 and references therein). Here we
have a similar effect, spatial fluctuations in the ion concentration at the pore network
scale induced by the spatial fluctuations of the velocity field. Note however that the
Péclet number based on a pore scale classically considered in the studies on dispersion
in porous media is lower than one in our experiments (the Péclet number considered
in the previous sections is based on a macroscopic scale, the height of the sample,
not on a characteristic length at the pore scale). This explains why the coefficient
D∗

s in (4.1) is a diffusion coefficient and not a dispersion coefficient. Interestingly,
although the pore-scale Péclet number is small, the fluctuations in the velocity field
have nevertheless a significant impact on the ion distribution. Two sources of velocity
fluctuations can be distinguished. The first is the fluctuations induced by the internal
disorder of the porous medium. By analogy with classical dispersion in porous media,
this internal disorder effect could be called the ‘dispersion’ effect even if the pore
scale Péclet is much smaller than one as discussed previously. We decided to name
this the ‘internal disorder effect’. The second is due to the local fluctuations in the
evaporation flux at the surface as discussed in § 3.2, which in turn induce fluctuations
in the average velocity in the interfacial throats. This effect is referred to as the
‘surface disorder effect’.

The influence of both effects is discussed from pore network simulations in what
follows.

We first discussed the ability of pore network model to capture the localisation
of maxima at the surface. The simulation is stopped when C = Ccris somewhere at
the surface. As mentioned before, there are approximately 1000 points at the surface
where the ion concentration is computed with the pore network model. Ranking the
nodes at the surface from that of highest concentration (=Ccris) to that of lower
concentration, we have decided to concentrate on the 20 first points in this list, that
is on the 20 first points of highest concentrations at the surface. The results are
depicted in figure 9. For each value of δ, two simulations were performed. The
full simulations (figure 9d–f ) take into account all effects, including the increase
in the porosity near the wall (3.13). The latter is neglected in the second series
of simulations (figure 9g–i). As can be seen the discrete peripheral effect is well
captured by the pore network simulations for the cases δ = 2.5 mm and δ = 7.5 mm
in accordance with the experiments. The simulations without the porosity wall
effect lead to maxima located much closer to the edge of the surface than with the
porosity wall effects. As discussed previously, the simulations including the porosity
wall effects are in better agreement with the observations of the films showing the
formation of crystals at the surface of porous medium. This is of course much more
obvious for the case δ = 15 mm. When the porosity wall effect is neglected, the
slightly greater evaporation flux at the periphery (figure 3) is sufficient to lead to the
preferential onset of precipitation at the periphery (figure 9i). Thus, the concentration
fluctuations induced by the internal disorder and the surface disorder are not sufficient
to overcome the effect of the slightly greater evaporation flux at the periphery. By
contrast, the results of pore network simulation are much more consistent with
experiments when the porosity wall effect is taken into account (compare figure 9c
with figure 9f,i). In summary, the pore network simulations fully support the physical
interpretation that the discrete precipitation spots seen in the experiments originate
from the ion concentration fluctuations resulting from the transport of the ions in a
velocity field heterogeneous at the pore network scale. All of the factors affecting



(a) (b)
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FIGURE 15. (Colour online) Influence of supersaturation σ on the position of twenty
greater salt concentration maxima at the surface of the porous medium from pore network
simulations. The supersaturations imposed for the computations when σ > 1 (column on
the right) correspond to the values reported in table 3.

the velocity spatial variations and fluctuations should therefore be taken into account
to predict the distribution of precipitation onset points at the surface.

The Péclet number simulation results reported in figure 9 were obtained assuming
a negligible supersaturation (Ccris ≈ Csat). Taking into account the non-negligible
supersaturations determined in § 4.4 and presented in table 3 leads to the results
shown in figure 15. As can be seen, assuming a greater supersaturation does not
change qualitatively the results but interestingly indicates that the position of maxima
at the surface changes with time.

This point is further investigated hereafter neglecting the porosity wall effect for the
case δ = 15 mm. Figure 16 shows the evolution of ion mass fraction in the interfacial
throats at different times up to steady state (we have thus run the simulation up to
steady state no matter the level of the ion mass fraction at the surface). To characterize
the evolution of salt concentration maxima at the surface, we computed the following



correlation coefficients,

χ(t) =

n∑
1

(Ci(t) − C̄(t))(Ci(tf ) − C̄(tf ))√√√√ n∑
1

(
Ci(t) − C̄(t)

)2

√√√√ n∑
1

(
Ci(tf ) − C̄(tf )

)2

(4.19)

ω(t) =

n∑
1

(Ci(t) − C̄(t))(ui(t) − u(t))

√√√√ n∑
1

(
Ci(t) − C̄(t)

)2

√√√√ n∑
1

(ui(t) − u(t))2

(4.20)

where χ(t) is the correlation coefficient between the distribution of C at time t and the
steady-state distribution C(tf ) whereas ω(t) is the correlation coefficient between the
distribution of C at time t and the distribution of the velocity u in the interfacial bonds
of pore network, i.e. with the distribution of evaporation flux jo from the menisci
located at the entrance of interfacial bonds since u = jo/ρ�.

As can be seen from figure 16, the position of the maxima is dominated by the
local fluctuations in the evaporation flux at the surface, i.e. by the surface disorder,
at short times. The ion concentration maxima correspond to the interfacial throats of
higher evaporation flux (= of higher induced average velocity). Then the correlation
between the local evaporation fluxes and the salt concentration peaks dies out as the
salt concentration gradient zone expands from the surface (figure 10). As reported in
table 2, the Péclet number is of the order of 1.5, which gives ξ(tf ) ≈ L/Pe ≈ 24
bead diameters. Thus the ion concentration gradient zone when the steady state is
reached is sufficiently wide for the impact of internal disorder to greatly affect the
distribution of salt concentration peaks at the surface. In brief, the surface disorder
is dominant at short times whereas the internal disorder is dominant at longer times
provided that ξ(tf ) is not too small, i.e. ξ(tf ) is greater than a few bead diameters.
This is confirmed by the comparison between figures 16 and 17, which shows that
χ(t) decreases sharply as soon as ξ(t) increases.

In summary, the simulations indicate that the distribution of concentration peaks at
the porous medium surface is not frozen. There is a permanent reorganization of the
maxima distribution with time. This can be related in part to the dynamic evolution
of the crystallized salt structures discussed in § 5. The dynamic evolution revealed by
figures 15 and 16 results from the effect of the internal disorder effect (dispersion). As
noted before, the size ξ(t) of the concentration gradient zone adjacent to the surface
(see figure 10) increases with time. Thus, the region where the ion distribution is
impacted by the internal disorder increases in time and this affect the ion distribution
at the interface.

5. On the efflorescence growth
5.1. Patchy efflorescence is porous

As discussed in previous papers (Sghaier & Prat 2009; Veran-Tissoires et al. 2012a,b),
a patchy efflorescence is porous. This can be illustrated from a simple impregnation
(Washburn) experiment. A dry efflorescence structure is gently detached from the
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FIGURE 16. Black line with diamonds: evolution of correlation coefficient χ(t) =
(
∑n

1(Ci(t) − C̄(t))(Ci(tf ) − C̄(tf )))/

(√∑n
1

(
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)2
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1

(
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)
between

salt mass fraction distribution at the pore network surface at time t and ion mass fraction
distribution at the pore network surface corresponding to the steady state distribution.

Black line with x: evolution of correlation coefficient ω(t) = (
∑n

1(Ci(t) − C̄(t))(ui(t)−
u(t)))/

(√∑n
1(Ci(t) − C̄(t))2

√∑n
1(ui(t) − u(t))2

)
between ion mass fraction distribution

at the surface and the interstitial velocity in the interfacial throats at time t. The insets
show the normalized ion mass fraction distribution at the surface at different times. The
normalized ion mass fraction is C∗

i (t) = (Ci(t) − Cmin(t))/(Cmax(t) − Cmin(t)) where Cmax
and Cmin are the maximum and minimum ion mass fractions at the surface at time t,
respectively.

porous surface. The structure is then hung on a scale and put in contact at its base

with a red dye ricin oil. Owing to capillary action, the solution is sucked into the

efflorescence structure and the mass of the efflorescence increases with time. An

example of a result obtained in this spontaneous imbibition experiment is shown

in figure 18 for an efflorescence structure of approximately 1 cm in height. This

clearly demonstrates the capillary nature of the efflorescence structure. As shown in

the inset, the variation of the mass as a function of time obeys a power law over

most of the imbibition dynamics as in a classical (Washburn) imbibition experiment.

However, the exponent (∼0.44) is lower than the classical exponent 0.5 which is not

surprising owing to the shape of the efflorescence and its probably not homogeneous

microstructure.
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FIGURE 17. Evolution of size ξ(t) of the ion mass fraction gradient zone (see figure 10)
with time. Here, ξ(t) is defined as the thickness of the upper layer of the pore network
where the mean (= horizontal slice averaged) ion mass fraction is equal or greater than
1.01 C0 (= at least 1 % greater than C0), where C0 is the initial ion mass fraction and
the ion mass fraction imposed at the bottom of pore network.

5.2. Patchy efflorescence growth
The porous nature of an efflorescence structure is important to understand its growth.
The ions are in fact transported as the result of the capillary action through the
efflorescence structure up to its top where the evaporation flux is higher. As a result
the efflorescence structure preferentially grows at its top since crystallization takes
place preferentially in the regions of high evaporation flux. Hence, as discussed
by Veran-Tissoires et al. (2012a,b), the porous nature of the patchy efflorescence
also explains why the efflorescence continues to grow forming isolated structures
leaving surface pores between efflorescence structures free of efflorescence. The
efflorescence structures first act as sinks at the porous surface (the dissolved salt is
directed toward the efflorescence). The second effect is a screening effect, i.e. the
fact that the evaporation flux becomes negligible in the porous surface regions
located between the efflorescence structures when the structures have sufficiently
grown. Since the velocity in the interfacial throat is proportional to the evaporation
flux at the entrance of the throat (ui = j/ρ�), this velocity tends to zero as the nearby
efflorescence structures grow. The advection effect is therefore killed and this explains
why the crystallization concentration is not reached in the regions of surface located
between the growing efflorescence. However, the situation can be slightly subtler than
described by Veran-Tissoires et al. (2012a). For instance, it is possible that crystal
forms between two growing efflorescence already in place, then stop growing and
disappear later when the nearby taller efflorescence structures have sufficiently grown.
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FIGURE 18. (Colour online) Example of impregnation experiment of an initially dry
efflorescence structure. Mass of liquid sucked into the efflorescence as a function of
time. The inset bottom shows images of the efflorescence structure at different stages of
impregnation. The inset top shows the results in log–log coordinates.

This is illustrated in figure 19. Figure 19 thus confirms the analysis proposed in
Veran-Tissoires et al. (2012a).

5.3. Dynamic aspect of efflorescence growth: the efflorescence dance
The images of patchy efflorescence in figure 9 present a static view of efflorescence
structures at the surface. In fact, watching the film made from the successive snapshots
of the porous medium surface in accelerated mode reveals that the efflorescence
growth is a dynamic process characterized by major reorganization of the efflorescence
structures. The impression is an efflorescence dance characterized by displacements
of the individual efflorescence structures over the surface of the porous medium. The
detailed analysis of this dynamics is beyond the scope of the present paper. We have
simply selected two results illustrating in part the observed dynamics. Figure 20
shows the evolution of the number of individualized salt structures at the surface as a
function of time. As can be seen, the number of efflorescence structures at the surface
is not a monotonous function of time. The salt structure population varies because of
births (growth of new salt structures), marriages (coalescence of two salt structures)
and deaths (a salt structure can disappear as already shown in § 5.2). The results
reported in figure 20 raise several interesting questions deserving future studies, such
as the understanding of the influence of δ or the evaporation rate on the number of
precipitation spots. The dynamic aspect of the efflorescence growth is also illustrated
in figure 21 which shows a zoom of the porous medium surface with a cycle of
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FIGURE 19. Illustration of the efflorescence development as a precipitation–dissolution
process: (a) porous medium surface free of efflorescence; (b,c) growth of efflorescence;
(d–g) growth of large efflorescence (on the right-hand side of images, close to the wall)
and dissolution of small efflorescence structures (in the centre of images).
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FIGURE 20. Number of individual efflorescence structures as a function of time at the
surface of the porous medium. The reference time t0.1 corresponds to the time when the
fraction of porous medium surface covered by efflorescence on the 2D images is 0.1.

growth and dissolution of a salt structure. The observation of the efflorescence dance
also indicates possible changes in the colour of a salt structure. The colour change
indicates a change in the liquid content within the salt structure. A dry salt structure
is much whiter than an imbibed salt structure, which appears greyer when wet. This
is visible in figure 21.

This confirms in a more acute way the complex interactions existing between
the transfers within the porous medium, the transfers (with precipitation) within
the salt structures and the transfers of the vapour in the external air. The coupling
between those transfers leads to dynamic, albeit slow, changes in the ion concentration
distribution in both the region of the porous medium adjacent to the surface bearing
the efflorescence and the salt structures. The main conclusion of this section is
therefore that the salt structure development at the surface should not be considered
as a ‘simple’ precipitation process but as a precipitation–dissolution process, in which
the precipitation overcomes the dissolution. The existence of the dissolution process
is qualitatively explained by the variations of the ion mass fraction field during the



(a) ( f )(e)(d)(c)(b)

FIGURE 21. Growth and dissolution cycles of efflorescence at the surface of a packing
of 1 mm beads: (a) 660 mn; (b) 675 mn; (c) 1305 mn; (d) 1830 mn; (e) 2220 mn;
(f ) 2370 mn.

development of efflorescence. In brief the ion mass fraction can decrease and becomes
lower than the solubility mass fraction in regions which are not exposed to high
evaporation flux anymore because of, for instance, the faster growth of neighbouring
efflorescence structures and because of the salt transfer between the solution and the
efflorescence structures (the solution can, thus, become less concentrated in some
places). All of these need further studies to be explored in detail.

6. Crusty versus patchy efflorescence
6.1. Experiment

In this section, the distance δ is set to δ =15 mm and we look at the influence of bead
size db on the interplay between the efflorescence development and the evaporation
rate. Four ranges of bead size are considered, namely (5–50 μm), (50–62 μm),
(100–120 μm) and (1–1.125 mm). This is the only parameter we vary. All other
parameters (temperature, δ, RH, etc.) are identical in the experiments discussed in
this section. The distance Ls between the level of the free surface in the solution
reservoir and the porous medium surface at the beginning of each experiment is
22 mm as mentioned in § 2.

As can be seen from figure 22, two main situations can be distinguished depending
on bead size. For sufficiently fine porous medium, the efflorescence eventually forms
a crust covering all of the porous medium surface whereas for a sufficiently coarse
porous medium the it forms well-individualized structures with a significant fraction
of the porous medium surface remaining free of efflorescence. The first type of
efflorescence is referred to as ‘crusty’ and is shown in figure 22(b,d). The second
type, which was the only one considered in the previous sections, is referred to as
‘patchy’ and shown in figure 22(f,h).

Yet it is clear from figure 22 that the situation is subtler and certainly would
require to distinguish more than only two types of efflorescence. Note, for instance,
the tessellation pattern obtained with the beads in the range (5–50 μm). This pattern
looks very much like a small-scale replica of the polygonal patterns often observed
at the surface of natural systems, like the Salar de Uyuni in Bolivia for example
(e.g. Svendsen 2003). This pattern is quite different from the sort of frozen sea
obtained with the beads in the range (50–62 μm). Explaining this difference and the
mechanisms leading to these different crusty patterns is only one of the numerous
questions not yet solved in the field. In passing, we note that one could probably be
tempted to think that this tessellation pattern has to do with hydrodynamic instability
effects since there is a resemblance with Bénard–Marangoni convection patterns. Free
convection effects do exist in the gas phase but there are very limited, the transport
in the gas phase being dominated by vapour diffusion. The density differences in



(a)

(g)

(e)

(c)

(b)

(h)

( f )

(d)

360 min 5820 min

FIGURE 22. Efflorescence patterns obtained by changing the size of the beads forming
the porous medium.

the liquid are very small since the salt concentration variations, albeit important to
understand the beginning of the efflorescence formation, are small in our experiments
(we recall that the solution in the reservoir feeding the porous medium is nearly
saturated). Thus, we believe that this puzzling tessellation pattern has nothing to
do with free convection effects, see also Svendsen (2003). Figure 23 shows the
evolution of the evaporated mass of liquid, me, for the different bead sizes together
with the evolution for pure water as well as the evolution obtained by correcting
the activity. The water activity for a saturated sodium chloride aqueous solution
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FIGURE 23. Evolution of evaporated mass as a function of time for the various bead sizes
tested. The inset shows a zoom of the main figure over the range of time (0–7500 mn).

is 0.75aw0, where aw0 is the activity of pure water. Since the evaporation process
is driven by the vapour partial pressure difference Pvpm–PvLibr between the porous
medium surface and the LiBr aqueous solution surface (see figure 2), the evaporation
rate of a saturated sodium chloride solution if no crystallization would occur should
be J ≈ Jwater(0.75 − 0.07)/(1.0 − 0.07), where Jwater is the evaporation rate for pure
water and 7 % is the relative humidity at the surface of the LiBr solution. This
correction leads to the straight line labelled ‘pure water + activity correction’ in
figure 23.

Several interesting results can be seen from figure 23. First the type of efflorescence
can have a dramatic effect on the evaporation rate. The crust obtained with the
(5–50 μm) beads severely reduces the evaporation. By contrast, such an effect is not
observed for a sufficiently coarse porous medium when the efflorescence is patchy.
For example, with the 1 mm beads, the evaporation rate is in a first phase on the
same order of magnitude as the rate that would be obtained with a liquid solution
having the same activity as a saturated sodium chloride solution. As can be seen
in figure 23 for the experiment with the 1 mm beads, the development of a patchy
efflorescence then leads to evaporation rates even greater than for pure water. This
counterintuitive result, also observed in drying experiments as reported in Sghaier
& Prat (2009) and Eloukabi et al. (2013), is explained by the enhanced exchange
surface resulting from the development of efflorescence. This effect is sufficient to
overcompensate the reduction in the water activity due to the ions.

The evolution reported in figure 23 for the beads in the range (50–62 μm) is also
instructive. Three main phases can be identified. A first phase of rapid evaporation,
slightly slower than for the case of the 1 mm beads but comparable, is followed by
a period during which the evaporation rate decreases quite significantly. This period
lasts approximately 25 h. Then the evaporation rate increases and recovers a value
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FIGURE 24. Top views of efflorescence during (a) phase 1, (b) phase 2 and (c) phase 3
for the beads (50–62 μm).

comparable with that in the first phase. An explanation can be proposed from the
images of the efflorescence shown in figure 24.

Over a significant period of phase 1 the efflorescence is patchy (figure 24a) and
then progressively becomes crusty (figure 24b). As a result of the crust formation,
the evaporation rate is much smaller during phase 2. The somewhat unexpected
result is that patches form on top of the crust at the end of the second phase
(figure 24c). As a result, the evaporation rate increases up to values comparable with
those observed during the first phase. These results confirm that efflorescence patches
do not hinder the evaporation whereas a crusty efflorescence can very significantly
reduce the evaporation. Also, this result illustrates that a mixed efflorescence, i.e. both
crusty and patchy, can form. One possible element of explanation is as follows. As
discussed in § 4, the ion concentration in the porous medium is governed by (4.1).
The advection effect induces a concentration peak at the porous medium surface. The
greater the Péclet number, the greater the concentration peak. The Péclet is expressed
as Pe = (JL/Aερ�Ds). As a result the ratio of Péclet between phase 1 and phase
2 scales as Pe2/Pe1 ∝ (J2/J1) ≈ 0.35. As a result of the significant decrease in the
advection effect, the concentration in the upper layer of porous medium adjacent to
efflorescence should decrease during phase 2. It is surmised that this induces a partial
dissolution of the crust opening up or widening passages for the solution through the
crust. As a result, new patches form and develop at the top of these passages, which
increases the evaporation rate.

6.2. Patchy–crusty transition from a simple growth model
Clarifying the mechanisms leading to the patchy–crusty transition when the bead size
is varied is among the main open questions in the field. In this respect, it would be
certainly interesting to learn more about the internal porous structure of efflorescence
as the bead size is varied. Nevertheless, we believe that first insights can be gained
from a relatively simple mechanistic model. The main idea is that there is a direct link
between the pore size in the efflorescence and the pore size in the porous substrate,
that is the bead size in our experiments. The smaller the bead size, the smaller the
pore in the efflorescence. Then, since there is a capillary rise in the efflorescence, it
is surmised that the viscous resistance associated with the flow of the solution in the
efflorescence limits the height of the efflorescence when the pore in the efflorescence
becomes sufficiently small. The salt structures would then grow laterally, coalesce and
then eventually form a crust.
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FIGURE 25. (Colour online) Sketch of unit cell of the efflorescence growth model in a
two-dimensional lattice.

These ideas, which build on the observation of the films showing the efflorescence
development at the surface of the porous medium, can be tested and illustrated from a
discrete growth model. Consider the two-dimensional computational domain sketched
in figure 25 which is seen as a representative unit cell as (square delimited by the
dotted line in figure 25). The domain contains a growing salt structure and a gas
region. In the gas region, a pure diffusive transport of the water vapour in the dilute
limit is assumed. The growth being slow, the transport of the vapour can be considered
as quasi-steady. Under these conditions, the problem to solve in the gas phase reads

�Xv = 0 (6.1)

Xv = Xv∞ at z = δ (6.2)

Xv = Xve at Ωpm ∪ Ωsw; −ρD∇Xv · n = 0 at Ωsd, (6.3a,b)

where Ωs and Ωpm are the surface of efflorescence and surface of porous medium
(free of efflorescence), respectively. Here Ωs = Ωsw ∪ Ωsd where Ωsw and Ωsd are the
sections of the salt structure boundary which are wet and dry, respectively. Spatially
periodic boundary conditions are imposed along the vertical edges of computational
domain.

From the numerical solution of (6.1)–(6.3), the evaporation flux along the boundary
of efflorescence can be computed

j = −ρD∇Xv · n at Ωs. (6.4)

The next approximation is to assume that the salt structure locally grows proportionally
to the evaporation flux,

jcr = jCsat, (6.5)

where jcr is the flux of crystallized salt. Thus, the efflorescence cannot grow along the
dry section of its boundary.

The salt structure is supposed to be saturated by the solution and a homogeneous
isotropic porous medium Combining Darcy’s law with the continuity equation leads
to the boundary value problem describing the flow in the salt structure. After
decomposition of the pressure according to P = Pvis − ρ�g z, this problem reads

�Pvis = 0 (6.6)

with the boundary conditions Pvis = Patm (atmospheric pressure taken equal to zero for
convenience) at z = 0 (bottom side of computational domain). At the boundary of the



salt structure, we invoke quasi-steady conditions and express that the evaporation flux
balances the liquid flow in the porous medium,

j = − ks

μs
∇Pvis · n (6.7)

where ks is the permeability of the salt structure. Then we have the compatibility
condition that the curvature radius of a meniscus cannot be lower that a certain critical
radius Rc at any point of the salt structure. The capillary rise compatibility condition
thus reads

Pcth �−(Pvis − ρ�g z), (6.8)

where Pcth is thus the maximum capillary pressure possible at a meniscus located
along the boundary of efflorescence. When this condition is not satisfied, the salt
structure cannot grow and the evaporation flux from this cell is then set to zero in
the next step of the growth. Actually, the cell is then supposed to become dry (dry
efflorescence condition), which means both a zero flux evaporation condition from the
considered cell and no salt solution present in the cell. The idea is that such a cell
becomes a local barrier to the exchange between the porous medium and the external
air owing to salt crystallization.

The above problem is solved on a square lattice of sites. Each site adjacent to the
salt structure boundary is a potential growth site. Some randomness is introduced by
assuming that the maximum volume that the salt can occupy in a site varies randomly.
In this simplified version of the model, the salt structure boundary is formed by a
series of edges of the square sites. The efflorescence boundary is therefore a connected
series of vertical and horizontal segments. Each segment has the size of the square
lattice spacing. The Laplace equations governing Xv and Pvis are solved numerically
using a standard finite volume technique (Patankar 1980). The growth algorithm can
be summarized as follows.

(i) A few connected sites adjacent to the surface of the porous medium (which is
located at z = 0) are selected to form the seed of the salt structure. This seed is
located in the middle of the bottom edge of computational domain.

(ii) Compute the evaporation rate Ji at the boundary of each empty or partially empty
cell adjacent to the salt structure. These cells are the boundary cells.

(iii) Compute the pressure field in the salt structure.

(iv) Check for the capillary rise compatibility condition. Set to zero the evaporation
rate in the cell where the capillary rise is not possible.

(v) Compute the filling time of the boundary cells as ti =ρscVi(t)/(JiCsat), where Vi(t)
is the volume of the cell that can still be ‘invaded’ by crystallized salt in cell
no. i. Here ρsc is the density of crystallized salt.

(vi) Fully invade the cell corresponding to the minimum time computed in step (iii)
and partially invade the other boundary cells: Vi(t + dt) = Vi(t) − (JiCsatdt)/ρsc,
where dt = min(ti).

(vii) Go back to step (ii) or stop simulation.

To run the simulation, we have to link the transport properties of the salt
structure with the properties of the porous substrate. Thus, we have to specify the
permeability ks of the salt structure and the capillary pressure threshold Pcth. Since
very little is actually known as regards the relationships between the salt structure
properties and the porous substrate properties, many options are clearly possible.
Here, since the objective is mainly to illustrate the ideas (the characterization
of efflorescence microstructure for different porous substrates, using for example
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FIGURE 26. Simulation of growth of efflorescence on a lattice: (a) patchy; (b) crusty. The
number of invaded cells is the same on both images.

X-ray microtomography techniques is probably possible but represents a considerable
work much beyond the scope of the present work), we have chosen for simplicity,
but rather arbitrarily, to keep the same capillary pressure threshold (we took
Pcth = 6(1 − εs)γ cos θ/εsdbs with εs = 0.1 and dbs = 100 μm) regardless of the
pore size in the substrate and play with the permeability ks, starting from a reference
value equal to ksref = (ε3

s d2
bs)/(180 (1 − εs)

2), thus equivalent to the permeability of
a packing of beads of size 100 μm. Since there is indications that a crust is much
less permeable that the substrate (Nachshon et al. 2011) whereas patchy efflorescence
is clearly not a barrier to transport (Sghaier & Prat 2009), the idea is to start with
a value comparable with the permeability of a substrate for which we do observe
patchy efflorescence and then to study the impact of a decreasing permeability.

It should be obvious that other choices, such as varying both the capillary pressure
threshold and the permeability would lead to the same qualitative results. The results
obtained from this simple growth algorithm using a domain containing 100 × 80 cells
are summarized in figures 26–28.

When ks = kreff , one obtains a patchy efflorescence as illustrated in figure 26(a).
In this case, the capillary rise limit is not reached. The evolution of the evaporation
rates reported in figure 27 illustrates the screening effect (evaporation at the surface
of the porous medium between efflorescence structures decreases dramatically) and
the increase of the evaporation rate from the salt structure with the structure growth,
as already discussed in Veran-Tissoires et al. (2012a) and in § 5.2. Note also that
the net (or total) evaporation rate does not change very much since the increase
in the evaporation rate from the efflorescence is compensated by the decrease in
the evaporation rate from the surface of the porous medium free from efflorescence.
This is pretty much the situation observed in our experiments with large beads.
The situation depicted in figures 26(a) and 27, is actually still observed when the
permeability ks is reduced by a factor up to 10−6 (for the same number of invaded
cells as in figure 26(a); for taller efflorescence structures the reduction in permeability
corresponding to the occurrence of the capillary rise limit is of course less). For still
lower permeabilities, the flow viscous resistance limits the maximum height of the
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FIGURE 27. Variation of evaporation rates as a function of efflorescence development for
the efflorescence pattern shown in figure 26(a); tref is the time at the end of simulation.
Here Jefflo. is the evaporation rate from the efflorescence, Jpm is the evaporation rate
from the porous medium surface free of efflorescence (bottom side of lattice free of
efflorescence in figure 26a); Jtot. = Jefflo. + Jpm is the total evaporation rate. The reference
evaporation rate Jref is the evaporation rate in the absence of efflorescence.

efflorescence (capillary rise limit). The results obtained for ks = 10−8kreff are depicted
in figures 26(b) and 28. As can be seen, one obtains the formation of a crust covering
progressively all of the porous surface (note that the total number of invaded cells is
the same in figure 26a,b).

As shown in figure 28, the evaporation rate from the crust is very low whereas
the total evaporation rate decreases markedly with the development of efflorescence
crust. In fact here, the total evaporation rate is essentially equal to the evaporation
rate from the porous medium surface free of efflorescence: Jtot ≈ (Apm − Aeff )/ApmJ0

where Apm and Aeff are the surface of porous medium and the projected surface of
efflorescence respectively (thus, Apm − Aeff is the surface of the porous medium free
of efflorescence) and J0 is the evaporation rate at the beginning of efflorescence
formation. The results reported in figure 28 are in qualitative agreement with the
experimental result reported in figure 23 for the beads (5–50 μm), which shows a
severe reduction in the evaporation rate.

6.3. Discussion
The experiment for the beads (5–50 μm) shows that the formation of the crust
severely reduces the evaporation rate (figure 23). Since the evaporation is reduced
but not blocked completely, one can assume that there is still a connected network
of pores through the crust. Thus, we have to explain the evaporation flux reduction.

The very low permeability leading to the formation of the crust in our model
suggests that hygroscopic effects should be included in the analysis. Using the
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FIGURE 28. Variation of evaporation rates as a function of efflorescence development for
the pattern shown in figure 26(b); tref is the time at the end of simulation. Here Jefflo.

is the evaporation rate from the efflorescence, Jpm (dotted line with empty circles) is the
evaporation rate from the porous medium surface free of efflorescence (bottom side of
lattice free of efflorescence in figure 26b); Jtot. (thick solid line) is the total evaporation
rate, Jtot. = Jefflo. + Jpm The reference evaporation rate Jref is the evaporation rate in the
absence of efflorescence.

Carman–Kozeny relationship ks = ε3
s d2

bs/180 (1 − εs)
2ks = 10−8kreff leads indeed to

equivalent bead sizes of the order of 10 nm, which thus would correspond to very
tiny pores in the crust). It is well known that the activity of water is reduced at
the surface of curved meniscus. The effect is referred to as the Kelvin’s effect,
which can be expressed as aw = Pvs/Pv∞ = exp (−(Mv/RT)(2γ cos θ/r)), where
Mv, R and T are the water’s molecular weight, the universal gas constant and the
temperature, respectively. Here we have assumed a meniscus of maximum curvature
at the entrance of a cylindrical pore of radius r. For water, this relationship gives
a significant reduction of water activity aw when the pore size r is in the range
(1–100 nm). The picture with the Kelvin effect would not be a full blockage but a
severe reduction in the evaporation rate since the water activity at the surface of the
crust can become comparable to the activity in the surrounding air. In our experiment
with the beads (5–50 μm), the evaporation rate is decreased by a factor 14 due to the
development of the crusty efflorescence (see figure 23). Expressing the evaporation
rate as

J = AD
Mv

RT

(
Pvs − Pv∞

δ

)
(6.9)

the water activity at the surface to obtain a decrease of the evaporation rate by a factor
14 must be

aw = Pvs − Pv∞
14Pvs

+ Pv∞
Pvs

. (6.10)



Using representative values of our experiment, this leads to aw ≈0.15, which according
to Kelvin’s relationship corresponds to pores less than 1 nm. This is of course so
if one assumes that the effective evaporative surface with the crust is the same as
for the porous medium free of efflorescence (A in (6.9)). If the tiny pores on top of
crust are in fact scarcely distributed at the surface (the tessellation pattern reported in
figure 22(b) suggests for instance that the evaporation could be only from the rim
of the tessellation cells), then the evaporation rate could be reduced by the factor
14 with greater pore sizes at the top of efflorescence. As discussed in § 3.1, it is
indeed well known that the evaporation rate from a porous surface is reduced when
the mean distance between the open pores at the surface is not small compared with
the characteristic length of the external mass transfer (δ in our problem); see, e.g.,
Suzuki & Maeda (1968) for more details.

Suppose for instance pores of aperture do with a mean distance between pores λ
such that λ do. Then we can assume that the evaporation rate from each pore is
about the same as if the pore was alone at the surface. According to Picknett & Bexon
(1977), the evaporation rate from an individual disk over a flat surface is given by

Jpore = 2D do
Mv

RT
(Pvs − Pv∞). (6.11)

We can then determine the number of pores np leading to the same total evaporation
rate as in the experiment (phase of reduced evaporation due to the salt crust with the
5–50 μm beads where the evaporation rate is reduced by a factor of 14),

np = (J/14)/Jpore. (6.12)

The mean distance between is then simply given by

λ≈ 2 ·
(

A
π np

)2

. (6.13)

Computations from the above equations for the data corresponding to the experiment
with the 5–50 μm beads lead to the results shown in figure 29. Note that the
Kelvin’s effect has been taken into account in the computations, which explains
the non-monotonous variation of the ratio λ/do in figure 29. For example, for pore
openings of 100 nm, the mean distance between pores for obtaining the reduced
evaporation rate by the factor 14 would be 264 μm and the ratio λ/do would be
equal to 2640, thus consistent with the assumption λ do. The results reported in
figure 29 are thus consistent with the idea that the external boundary of the crust is
a porous surface with small open pores far apart from each other.

In summary, the discussion presented here suggests that the crusty–patchy transition
is more complex than the simple picture where the efflorescence porous microstructure
would be the same regardless of the bead size once rescaled by the bead size. We
surmised that the crusty–patchy transition is characterized not only by variation in
efflorescence mean pore size but also in the geometry of efflorescence microstructure
(roughly less porous for the crusty efflorescence than for the patchy efflorescence).
There is of course a need to characterize this transition in much more depth. We
simply hope that the model and the discussion presented in this section will be
instrumental in the development of more advanced studies.

7. Conclusion
The formation and evolution of efflorescence structures at the surface of a porous

medium is a dynamic process resulting from the interplay between evaporation, ions
transport and precipitation–dissolution processes.
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FIGURE 29. Ratio λ/do leading to the same reduced evaporation rate as in the experiment
with the (5–50 μm) beads (see figure 23) as a function of opening size. Here λ/do is the
ratio between the mean distance between openings at the surface and the opening size.
The inset shows the mean distance between openings in millimetres.

The incipient precipitation spots at the surface are discrete and must correspond to
local maxima in the ions concentration at the surface.

The distribution of the salt concentration peaks at the surface is first impacted by
the distribution of evaporation flux at the surface. The greater peripheral flux observed
for sufficiently small δ in our experiments lead to the onset of precipitation at the
surface periphery under the form of a sort a fairy ring. This is due to the greater
advection effect near the periphery induces there by the greater evaporation fluxes.
This effect can be captured by continuum Darcy’s scale models. The continuum model
is of course unable to predict the discrete nature of the precipitation spots distribution,
which was analysed from pore-network simulations.

The discrete distribution of ion concentration maxima or concentration peaks at the
surface is intimately related to the disordered nature of porous medium at the pore
network scale. Two types of disorder were distinguished: surface disorder and internal
disorder. Both disorders contribute to generate velocity fluctuations in the pore space
and in turn ion concentration spatial fluctuations owing to the significance of advection
in the ion transport. The surface disorder, that is the variation in the surface area
of the menisci present at the porous medium surface, is responsible for fluctuations
in the local evaporation rates, i.e. in the evaporation rate from the various menisci
forming the gas–liquid interface at the porous medium surface. The internal disorder
is responsible for fluctuations in ion concentration somewhat similarly as in dispersion
problems in homogeneous porous media, that is when a species is transported in a
random velocity field.

The surface disorder controls the distribution of ion concentration peaks at the
surface at short times whereas the effect of internal disorder becomes dominant when



the zone of significant concentration gradients adjacent to the surface develops over
a distance of a few bead diameters or greater.

The study confirms that supersaturation effects are non-negligible for sodium
chloride. The supersaturation effect delays the crystallization and thus has an impact
on the localization of concentration peaks at the surface.

Two main types of efflorescence were distinguished: crusty and patchy from
both the morphology of efflorescence and the impact of efflorescence development on
evaporation rate. The development of patchy efflorescence can increase the evaporation
rate whereas the crusty efflorescence significantly reduces the evaporation rate. In
the experiments, the transition from patchy to crusty efflorescence was observed
in reducing the size of the beads forming the porous medium. This transition was
analysed from a simple growth model taking into account the porous structure of
efflorescence and assuming that the mean pore size in the efflorescence decreases
with the pore size in the underlying porous medium. The analysis suggests that both
the viscous resistance to the flow within the efflorescence and the reduction of water
activity at the efflorescence external surface, which both increase with decreasing
pore sizes contribute to the patchy–crusty transition.

The study is based on several approximations and there are of course many aspects
that could be improved. For example, the impact of surface disorder was studied from
a model surface, which is clearly much simpler that the surface of a bead packing.
It would be interesting to study the evaporation flux distribution from images of the
phase distribution at the surface of packing obtained either experimentally using X-ray
tomography techniques for example or numerically. This does not seem out of reach.

The patchy–crusty transition certainly deserves further experimental or numerical
studies. In particular, it would be interesting to characterize the pore size in
efflorescence so as to study the relationship between the pore size in the porous
medium and the pore size in the efflorescence for a given evaporation demand. Our
growth model of efflorescence suggests that varying the evaporation demand for a
given porous medium should also lead to a crusty–patchy (or blocking–non-blocking)
transition. This would deserve to be confirmed experimentally.

Appendix

The appendix gives details on the pore network model. The pressure in the liquid
is expressed as

P = Ph + P̃ (A 1)

where Ph = Pres + ρ�gz is the hydrostatic pressure distribution in the porous medium;
Pres is the pressure at the interface between the porous medium and the bottom

reservoir. To determine the pressure field P̃ corresponding to the flow induced by the
evaporation process in the porous medium, the mass conservation of the liquid at
each liquid node (pore) of network is expressed as

∑
i

Qij = 0 i ∈ {W, N, E, S, Sup, Inf } (A 2)

where the volumetric flow rate between two nodes i and j of network is expressed as

Qij = gij

μ�

(
P̃i − P̃j

)
. (A 3)



The local hydraulic throat conductance gij (viscous resistance is neglected in the pores)
is expressed as (Poiseuille’s law),

gij = α
r4
�ij

dp
, (A 4)

where r�ij is the throat radius. How the numerical factor α is specified is described
below.

The boundary condition at the interface between the network and the bottom
reservoir is expressed as P = Pres at z = 0 where Pres is in fact an arbitrary numerical

constant. As a result P̃ = 0 at the network bottom surface. On the sidewall, a zero flow
rate condition is imposed (gij = 0 in the corresponding throats). The more interesting
boundary condition is the one at the top surface of network. The flow rate in the
interfacial throat n at the top surface is expressed as

Qint
n = Jn(δ)

ρ�

, (A 5)

where Jn is the evaporation rate from the meniscus located at the entrance of the
throat. The way of computing Jn was discussed in § 3.2. The resulting linear problem
is solved numerically using a conjugate gradient method (Saad 1994).

The dissolved salt transport on the network is solved numerically from the following
discrete transport equation, which can be seen as a discrete version of a transient
convection–diffusion equation,

Ve
Ct+dt

p − Ct
p

dt
+

∑
i∈{W,N,E,S,Sup,Inf }

(
Qip

Ct+dt
p + Ct+dt

i

2
− gDi(Ct+dt

i − Ct+dt
p )

)
= 0 (A 6)

where Ve is the volume assigned to the element (Ve = pore volume + half-volume of
adjacent throats for an inside pore as shown in figure 14a; for the first plane of nodes
at the surface see figure 14b); Qip is the volumetric flow rate in the neighbour throat i
(positive when the flow is leaving the pore). The diffusive conductance gDi associated
with throat i is expressed as

gDij = βDs
r2
�ij

dp
, (A 7)

where β is a numerical factor.
The numerical factors α and β are specified so that the pore network models lead

to the same concentration and velocity fields as the continuum approach when the
network is perfectly ordered (all of the throats with the same size; all of the pores
with the same size). From the comparisons with the finite difference discretized forms
of the continuum equations (see § 4.2.1), one obtains

Ve = εd3
p (A 8)

α
r4
�

dp
= K dp = ε3d3

p

180 (1 − ε)2
(A 9)

βDs
r2
�

dp
= εD∗

s dp = ε1.4Dsdp. (A 10)



The parameters are determined from experimental data for a random packing of
monodisperse glass beads (e.g. Dullien & Dhawan 1974). The throat radii are
distributed randomly in the range [0.09dp, 0.21dp] according to a truncated Gaussian
distribution (r̄� = 0.15dp, σr�

= 0.02dp). With this value for r̄� and ε = 0.363,
one obtains from (A 8)–(A 10) α = 1.29 and β = 10.76. The volume Ve of the
elements is also varied randomly according to a truncated Gaussian distribution
(Ve ∈ [0.3d3

p, 0.426d3
p], V̄e = 0.363 d3

p, σVe = 0.02d3
p). The porosity wall effect is taken

into account by increasing the throat and pore sizes near the wall so as to satisfy
approximately (3.13).

The initial condition is C = C0 in the network. The boundary conditions are
analogous to those used for the continuum models (salt mass fraction C = C0 at the
bottom of network, zero flux condition on the lateral sides). The boundary condition
in the interfacial bonds (bonds at the top surface of network) is also a zero flux
condition so that the mass balance at a node n located close to the interface (see
figure 14b) reads

Ve
Ct+dt

n − Ct
n

dt
+ Qinf

Ct+dt
n + Ct+dt

inf

2
− gD inf(Ct+dt

inf − Ct+dt
n ) = 0 (A 11)

and can be also expressed as

Ve
Ct+dt

n − Ct
n

dt
− Jn

ρ�

Ct+dt
n + Ct+dt

inf

2
− βDs

r2
n

dp
(Ct+dt

inf − Ct+dt
n ) = 0 (A 12)

where Jn is the evaporation rate at the entrance of the considered interfacial bond.
Under quasi-steady condition, it follows from (A 12) that,

Cn = Cinf + Jndp

ρ�βDsr2
n

(
Cn + Cinf

2

)
= Cinf + πUz dp

ρ�βDs

(
Cn + Cinf

2

)
(A 13)

where Uz is the cross-section averaged velocity in the interfacial bond induced by the
evaporation process.
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