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  Abstract 

Mental workload is a key factor influencing the occurrence of human error; 

specifically in remotely-operated vehicle operations. Both low and high mental 

workload has been found to disrupt performance in a nonlinear fashion at a given 

task; however, research that has attempted to predict individual mental workload has 

met with little success. The objective of the present study is to investigate the 

potential of the dual-task paradigm and prefrontal cortex oxygenation as online 

measures of mental workload. Subjects performed a computerized object tracking 

task in which they had to follow a dynamic target with their aircraft. Task difficulty 

was manipulated in terms of processing load and difficulty of control: two critical 

sources of workload associated with remotely operating a vehicle. Mental workload 

was assessed by a secondary concurrent time production task and a functional near 

infrared spectrometer. Results show that the effects of task difficulty differ across 

measures of mental workload. This pattern of behavioural and neurophysiologic 

results suggests that the empirically-based selection of an appropriate secondary 

task for the measure of mental workload is critical as its sensitivity may vary 

considerably depending on task factors. 

Introduction 

Remotely operated vehicles (ROVs) operations are becoming increasingly prevalent 

in a wide variety of contexts such as border security, intelligence and military 

operations. Undeniably, the use of ROVs in military has increased tremendously 

over the last decade. According to The New York Times, the U.S. Military has now 

over 7,000 aerial drones as compared to only about 50 a decade ago. Civilian use of 

ROVs is also becoming increasingly frequent as the technology is more affordable, 

safe, and relatively reliable. 

As noted by Cooke (2006), the term “unmanned” that frequently qualifies such 

systems can be misleading. Indeed, these systems involve a strong human-in-the-

loop component for which the capacity could – and should (Parasuraman & Riley, 

1997) – be improved above and beyond the capacity of fully automated systems. 



There is a critical need to improve human-machine interaction within ROV systems 

given that Human Factors issues are responsible for a large proportion of ROV 

accidents. For instance, a document prepared for the Office of Aerospace Medicine 

in the United States reports that Human Factors-related deficiencies are responsible 

for 21% to 67% of ROV accidents in the US Army, Navy and Air Force (Williams, 

2004).  

Mishaps may be attributed to the high mental demands placed on operators and the 

degraded environmental conditions in which ROV operations take place. Indeed, 

ROV operators must often deal with degraded information that decreases the quality 

of their situation awareness (see Chen et al., 2007, for a review). Together with these 

constraints, ROV operators are required to perform cognitively demanding tasks 

such as monitoring, target identification, and manual control. Critically, these tasks 

require high levels of motor control for piloting the ROV under harsh environmental 

conditions, which in turn, imposes high levels of cognitive processing when 

conducting simultaneous sub-tasks. Moreover, in an effort to reduce costs and 

increase efficiency, a great deal of research is concerned with increasing the 

ROV/operator ratio. This trend has led Cummings and Mitchell (2008) to state:  

“Because of the increased number of sensors, the volume of information, and 

the operational demands that will naturally occur in a multiple-vehicle control 

environment, excessive cognitive demands will likely be placed on operators. As 

a result, efficiently allocating attention between a set of dynamic tasks will be 

critical to both human and system performance.” - p. 451  

One could argue that adequate distribution of the operator’s mental resources is 

important – and will become even more essential – to achieve sufficient levels of 

performance in the execution of ROV missions. Operators in this context must 

perform several tasks simultaneously, each with different priorities. It is well known, 

however, that humans are cognitively bounded, insofar as human mental capacities 

are fundamentally limited. Consequently, allocating more resources to a task will 

inevitably limit the amount of resources available for other tasks. Moreover, as these 

environments are highly dynamic, priorities across tasks will be expected to change 

as the mission develops. It is therefore important for the operator to reallocate 

mental resources dynamically according to changes in task priorities (Dehais 

Causse, Vachon, & Tremblay, 2011). This, however, is a dire challenge to human 

cognitive control and its limitations. Mental overload can lead to the phenomenon of 

cognitive tunneling that can be defined as the inability of the operator to reallocate 

his/her attention from one task to another. Cognitive tunneling occurs when attention 

is focused on specific information or areas of display while information presented 

outside of these areas is neglected (Thomas & Wickens, 2001). 

Approaches such as adaptive automation (Sheridan, 2011) and cognitive counter-

measures (Dehais, Causse, & Tremblay, 2011) attempt to solve the problem of 

attention allocation; however, challenges in their implementation still remain. In 

particular, a critical aspect of adaptive aiding system is to provide help in a timely 

and accurate matter (Visser & Parasuraman, 2011). Adaptive automation based on 

an on-line prediction of the operators’ mental workload represents a promising 



 

solution to this challenge. This study investigates how mental workload can be 

predicted in this context. 

  Prediction of Mental Workload 

Typically, mental workload is measured using subjective scales, psycho-

physiological measures, or performance at a secondary concurrent task. Assessing 

mental workload with subjective scales consists of asking participants to rate their 

perceived workload. For instance, NASA-TLX is a multi-dimensional scale that was 

developed to measure the workload of operators either during or directly after task 

performance (Hart, 2006). Although this technique is reliable, it has several 

limitations as it offers only a limited number of data points and represents the 

perceived, not the actual workload of the operator. From a practical standpoint, the 

use of such scales during task performance is not recommended as they are invasive 

and create an additional source of operator workload. However, if they are used post 

hoc the data collected are only an aggregation of the level of workload perceived 

across the testing session. 

An alternative and promising avenue is to adopt a Neuroergonomics approach to 

derive operators’ mental workload from brain imaging techniques and psycho-

physiological measurements (Parasuraman & Wilson, 2008). In the search for non-

invasive and periodic measures of mental workload, recent studies investigated 

neurophysiological measures. For instance, functional near infrared spectrometer is 

an optical brain monitoring device that measures cerebral hemodynamic response 

within the prefrontal cortex. Using such a device, it is possible to measure mental 

workload across various processing load conditions. Ayaz et al. (2011) were able to 

associate different hemodynamic responses with a subset of task difficulty (i.e. 

levels of processing load) on a well-established task: the N-Back task. Although this 

approach yields promising results, it assumes that high task difficulty is associated 

with high workload. Unfortunately, workload cannot be estimated precisely with the 

sole properties of the task because individual factors, such as expertise, or 

environmental factors, such as the time of the day, impact on mental resources 

deployed to perform a given task. In other words, task difficulty is relatively 

independent from mental workload. Consequently, mental workload should be 

defined considering both the task and the individual performing it. 

One way to assess the interaction between mental workload, the task, and the 

individual performing the task is the dual-task paradigm. The rationale behind the 

dual-task paradigm is rooted in the limited attentional capacity theory. This 

paradigm consists of presenting two concurrent tasks to the subjects, who are 

required to prioritize their cognitive resources to the primary task and perform the 

secondary task with the remaining resources. As the amount of cognitive resources 

dedicated to the execution of the primary task increases, resources available for 

completing the secondary task will decrease proportionally. The decrease in 

cognitive resources to complete the secondary task will lead to a decreased 

performance at the secondary task, which can then be used to infer the relative 

amount of resources necessary to complete the primary task. Prospective time 

production represents a good candidate for a secondary task as it is assumed to 

demand the same attentional resources that nontemporal processing requires. Indeed, 



as nontemporal processing demands increase, subjectively experienced duration 

decreases; resulting in longer time intervals when individuals must produce a 

previously learnt criterion (Block et al., 2010). However, from a practical point of 

view, this approach is limited because the addition of a secondary task is invasive. 

Within this context, the objective of the present study is to investigate the potential 

of the dual-task paradigm and prefrontal cortex oxygenation as online measures of 

mental workload. This will be achieved by testing if performance at a secondary task 

and hemodynamic of prefrontal cortex are affected by two subsets of task difficulty 

in the context of ROV operations – namely control difficulty and processing load.  

  Method 

Sixteen volunteers participated in the study (mean age = 25; SD = 4.78; 13 males). 

Thirteen were right-handed and six had piloting experience. Data of four participants 

were removed from the analyses due to problems with data collection. All subjects 

reported normal or corrected vision. They were all native French speakers recruited 

among students from ISAE campus in Toulouse, France. Subjects had two different 

tasks to perform concurrently: a low-fidelity flight simulator task and a time interval 

production task.  

  Primary Task: Low-Fidelity Flight Simulator 

The purpose of this simulation was to solicit similar cognitive functions as to those 

required during a real ROV flight or drone control/supervision task. This approach 

allows the reproduction of key features of the real-world task while keeping a high 

degree of experimental control. The computerized simulation involved the control of 

an aircraft in bird’s-eye view with a joystick (see Figure 1).  

 

Figure 1. Low-fidelity flight simulator interface. 



 

The subjects were instructed to minimize distance between own aircraft and a target 

aircraft. Own aircraft was located at about 60% from the left side of the screen. 

Potential target aircraft were located on the left (approximately 5% to 10% from left 

side). The target aircraft was specified to the subject by a visual cue presented at the 

right hand-side of the screen (approximately 95% from left side). A new cue was 

presented for 1.6 seconds every 8.6 seconds.  

Task difficulty was varied in two ways: difficulty of control and processing load. 

There were two levels of difficulty of control (easy and hard) manipulated by 

varying the strength of the crosswind. The processing load was varied with an N-

Back-like sub-task. Processing load can be varied by manipulating the number of 

items to be maintained and manipulated in working memory (N). Subjects had to 

target the aircraft corresponding to the last cue presented (N; low load condition) or 

the cue before (N-1; high load condition). The combination of the two factors 

yielded a 2 × 2 repeated-measures design with four conditions: i) low load/easy 

control; ii) low load/hard control; iii) high load/easy control; and iv) high load/hard 

control. 

  Secondary Task: Time-Production Task 

The secondary task was a prospective time-production task. The task involved a 

sound presented through loudspeakers at various times during the experimental 

session. The subjects had to start estimating time as soon as they heard the sound. 

Subjects then had to press a button on the joystick whenever they felt that the length 

of the sound was equal to the length of the criterion to be estimated (i.e. a previously 

learnt criterion of 2 s).  

  Procedure 

Subjects were first trained at the primary and secondary tasks independently. The 

primary task training consisted of 10 object-tracking phases for each processing load 

level, and was performed at the easy level of control. Secondary task training 

involved a total of 130 trials. The first 110 trials provided visual feedback about the 

precision of time estimation. The feedback showed subjects whether their production 

was correct (i.e. within a 10% window around the target), too short (below the same 

time window) or too long (above the same time window). During the last 20 trials, 

subjects were not provided with any feedback. Training was necessary so that the 

subjects formed a good representation of the target interval to be produced during 

the experiment (i.e. 2 s).  

After the training session, subjects achieved the four experimental sessions 

consecutively, each session lasting approximately six minutes. The sequence of the 

sessions was counterbalanced across subjects. The experimental session involved 

completing the primary and secondary task concurrently.  

Measures 

Hemodynamic of the frontal cortex was recorded with a functional near infrared 

spectrometer (i.e. Biopac fNIR100) with 16 channels. Each channel, or voxel, 



records hemodynamic in terms of oxygenation level variations in comparison to a 

baseline. Production times at the secondary task were also recorded. Subjects 

received no feedback about the precision of their time estimation. Subjects filled out 

the NASA-TLX after each session. 

Two potential online measures of mental workload were derived: performance at the 

secondary task and prefrontal cortex oxygenation. Performance at the secondary task 

was determined by the lengthening duration of the time production in comparison to 

the criterion. Greater production times are associated with greater levels of mental 

workload. Prefrontal cortex oxygenation was obtained by averaging oxygenation 

levels of the 16 voxels into a single measure. The overall score of the NASA-TLX 

was also used as an offline validation of the various levels of difficulty of the task. 

 Results 

Repeated-measures 2 × 2 ANOVAs were carried out to test whether the effects of 

control difficulty and processing load were statistically significant on the three 

measures of workload, namely NASA-TLX, performance at the secondary task, and 

oxygenation level of prefrontal cortex. 

Subjective Workload 

Figure 2 shows mean subjective workload scores (i.e. overall NASA-TLX) in each 

experimental condition. The ANOVA carried out of these data revealed significant 

main effects of processing load, F(1, 11) = 25.01, p < .001, and difficulty of control, 

F(1, 11) = 4.70, p = .053 (trend significance), indicating higher perceived workload 

with high processing load and hard control. However, the two-way interaction was 

not significant, F(1, 11) < 1. 

 

 
Figure 2. Mean NASA-TLX scores (+SE) by experimental conditions. 



 

Performance on the Secondary Task 

Greater production times are associated with greater levels of mental workload. 

Figure 3 shows mean production time in each experimental condition. The target 

time was 2,000 ms. The ANOVA carried out of these data revealed significant main 

effects of processing load, F(1, 11) = 48.46, p < .001, indicating greater production 

times in high processing load. However, both the effect of difficulty of control, F(1, 

11) < 1 and the two-way interaction F(1, 11) = 2.94, p = .09 were not significant. 

 
Figure 3. Mean production times in ms (+SE) by experimental conditions. 

 

 Hemodynamics of Prefrontal Cortex 

Average oxygenation levels of the 16 voxels were averaged into a single prefrontal 

oxygenation level (Takeushi, 2000). Figure 4 shows mean oxygenation level in each 

experimental condition. The ANOVA carried out of these data revealed significant 

main effects of processing load, F(1, 11) = 9.22, p < .05, difficulty of control, F(1, 

11) = 11.25, p < .01 (i.e. the mean oxygenation level increased with both processing 

load and control difficulty), and two-way interaction, F(1, 11) = 47.55, p < .001. 

Oxygenation level increases from easy to hard control difficulty in the low 

processing load conditions, and it decreases in the high processing load conditions. 



 
Figure 4. Mean oxygenation (+SE) by experimental conditions (normalized data). 

 

  Discussion 

Subjective workload was relatively high and varied across experimental conditions, 

showing that the variations were significant from the perspective of the operators 

performing the task. This result is an indication that the task was engaging to the 

subjects. 

The secondary task performance was not affected by difficulty of control. This may 

be explained by the low sensitivity of the secondary time-production task at 

detecting workload associated with motor control. This finding is in line with 

previous research, showing that motor control may involve different resources than 

the ones required in timing (Robertson et al., 1999). Conversely, processing load 

affected secondary task performance. This result suggests that the sensitivity of this 

measure is adequate for detecting increased processing load during the execution of 

a task; a finding consistent with previous research (see Block et al., 2010). These 

findings do not invalidate the use of the dual-task paradigm for online measurement 

of workload; however, they imply that the selection of the appropriate secondary 

task for assessing mental workload is critical as it might not be sensitive to a wide 

variety of task demands. The measure of workload based on the performance at a 

secondary task would benefit from a characterization of the demands for which the 

latter is sensitive. This characterization would specify the conditions under which 

the measure could operate. 

Mental workload as measured by oxygenation levels of the prefrontal cortex varied 

as a function of both processing load and control difficulty. Although this result is 

similar to previous findings (Ayaz et al., 2011; Takeuchi, 2000), it also shows that 

interactions exist between subsets of task difficulty (in this case, control difficulty 

and processing load). This must be taken into account in the development of a 

neurophysiological model of mental workload; such a model cannot be calibrated 

solely on the basis of processing load, for instance, as its effect on oxygenation level 

is modulated by difficulty of control. 



 

From a practical standpoint, our results suggest that neurophysiological measures 

may exhibit complex patterns that cannot be directly associated with mental 

workload. Future work should further investigate how the latter issue could be 

resolved. For instance, one option would be to calibrate a neurophysiological model 

of mental workload with performance at a secondary task in a simulated ROV 

environment. Such a calibration could be performed by machine learning algorithms 

in order to best capture potential non-linear relations. If successful, this model could 

later be used to predict mental workload in a real ROV situation. 

Overall, these findings suggest that: (1) the task used in the current study seems to 

be engaging for subjects; (2) the dual-task paradigm has the potential to capture 

some aspects of mental workload; and (3) the effect on oxygenation level is 

modulated by various sources of task difficulty.  
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