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Solving Thermoacoustic Tomography with an
observer-based algorithm

Ghislain Haine

Department of Mathematics, Computer Science, Control

Introduction

In medical imaging, we mostly need to recover the initial (or final)
state of a physical system from partial observation over some finite
time interval. In general, measurements are performed outside the
body. This constraint leads to incomplete data. For instance in breast
or kidney imaging, we cannot expect a measurement all around the
object of interest. In this paper we investigate the problem of data
recovery with this lack of information. In other words, we investigate
systems which are not exactly observable (more than one initial state
lead to the same observation).

In the last decade, new algorithms based on time reversal (see Fink
[5, 6]) have been proposed for data recovery. We can mention, for
instance, the Back and Forth Nudging proposed by Auroux and
Blum [2], the Time Reversal Focusing by Phung and Zhang [18], the
algorithm proposed by Ito, Ramdani and Tucsnak [12] and finally, the
one we will consider, the algorithm studied in [20].

In thermoacoustic tomography, the problem is to recover from surface
measurements the initial state of a wave equation (see Gebauer and
Scherzer [7]), see for instance Kuchment and Kunyansky [13].

Various methods have been used to tackle the problem of ther-
moacoustic tomography, such as inverse source concepts in Fourier
domain [1], Fourier series [14, 15, 16] and time reversal method [11].
A new method has been proposed in [21], based on time reversal
and leading to a Neumann series. It has been studied in recent
works [19, 17]. Finally, observer-based algorithm for data assimila-
tion [2] has been successfully applied to thermoacoustic tomography [3].

We propose the use of the iterative observer-based algorithm of [20],
which also leads to a Neumann series. However, it involves only the
resolution of direct wave equations in practice. Our main result shows
that the algorithm converges at least polynomially to the initial state.
Moreover, in the case of incomplete data, we prove that it converges to
the observable part of the initial state.

The wave system

Let us state our mathematical inverse problem. We consider the wave
equation in the whole domain R

3, with initial position compactly sup-
ported in a bounded open set Ω ⊂ R

3. More precisely, let w0 ∈ H1
0(Ω),

and consider the following system
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∂2

∂t2
w(x, t) = ∆w(x, t), ∀ x ∈ R

3, t ≥ 0,

w(x, 0) = w0(x), ∀ x ∈ Ω,

w(x, 0) = 0, ∀ x ∈ R
3 \ Ω,

∂

∂t
w(x, 0) = 0, ∀ x ∈ R

3.

(1)

The observation is performed on a surface surrounded the initial state.
We then suppose that we observe the state w on ∂Ω, during a time
interval [0, τ ], with τ ≥ diam (Ω), where diam (Ω) is the supremum of
the path rays from boundary to boundary Ω.

Cut in the plane containing diam (Ω) of an example of

configuration.

This leads to

y(x, t) = w(x, t), ∀ x ∈ ∂Ω, t ∈ [0, τ ]. (2)

This last assumption will make the inverse problem well-posed.
However, our method allows to consider ill-posed cases. For instance,
we could observe only on a part of the boundary, as it is done in the
numerical tests.

The inverse problem we consider is to recover w0 from y.

The algorithm

We consider a bounded domain Ωτ+ sufficiently large, i.e. such that
any information in Ω does not hit ∂Ωτ+ in time τ (using Huygens’
principle). We then construct the n-th couple of systems
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w+
n (x, t) = ∆w+

n (x, t), ∀ x ∈ Ωτ+, t ∈ [0, τ ],

w+
n (x, t) = y(x, t), ∀ x ∈ ∂Ω, t ∈ [0, τ ],

w+
n (x, t) = 0, ∀ x ∈ ∂Ωτ , t ∈ [0, τ ],

w+
1 (x, 0) = 0, ∀ x ∈ Ωτ+,
∂

∂t
w+
1 (x, 0) = 0, ∀ x ∈ Ωτ+,

w+
n (x, 0) = w−

n−1(x, 0), ∀ x ∈ Ωτ+, n ≥ 2,
∂

∂t
w+
n (x, 0) =
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∂t
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n−1(x, 0), ∀ x ∈ Ωτ+, n ≥ 2,
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n (x, t) = y(x, t), ∀ x ∈ ∂Ω, t ∈ [0, τ ],

w−
n (x, t) = 0, ∀ x ∈ ∂Ωτ , t ∈ [0, τ ],

w−
n (x, τ ) = w+

n (x, τ ), ∀ x ∈ Ωτ+, n ≥ 1,
∂

∂t
w−
n (x, τ ) =

∂

∂t
w+
n (x, τ ), ∀ x ∈ Ωτ+, n ≥ 1.

(4)

Remark that the system is not exactly observable in this case. So the
results of [20] is not sufficient.

The dashed ray is trapped.

Main results

We prove in [10, 9] that systems (3)–(4) reconstruct w0. More precisely,
we have

Theorem .Assume that w0 ∈ H1
0(Ω) and let y given by (2) be the

observation of the solution of (1). Let w+
n and w−

n be the solutions

of (3) and (4) respectively, for each n ≥ 1. Then

∫

Ω
‖w−

n (x, 0)− w0(x)‖
2dx +

∫

Ω
‖∇w−

n (x, 0)−∇w0(x)‖
2dx

+
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∂t
w−
n (x, 0)

∥

∥

∥

∥

2

dx = o

(

1

n

)

.

When the observation is not complete, that is when we do not observe
on a surface surrounding the object to image, the inverse problem is
ill-posed. Our theoretical result shows that the previous theorem re-
mains valid, with a projector Π on the subspace of all observable data

(i.e. leading to non-zero measurement). We then rewrite the above
reconstruction error with Πw0 instead of w0. It is important to note
that we do not need to know Π to reconstruct the observable part Πw0
of the initial data, if the first initial guess lies in the subspace of the
observable data (for instance, we choose here zero).

3D numerical simulations

We implement the algorithm
on GMSH [8] and GetDP [4].
In these first tests performed on
a coarse mesh, we observe on a
sphere of radius 0.5 surround-
ing the support of the initial
data. We add Gaussian noise
to the observation, with 0.25 of
deviation. We test three cases:
full reconstruction from com-
plete observation on a sphere
surrounding the initial data,
partial reconstruction from ob-

servation on a half-sphere (not
shown on this poster) and par-
tial reconstruction from obser-
vation on the following grid of
lines detector.

Comparison of reconstructed data

The phantom to reconstruct, visualize on three orthogonal planes.

The reconstruction obtained with observation on a sphere.

The reconstruction obtained with observation on the grid.
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