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et al., 2002a; Barber et al., 2003) and palynological (eg, Anshari

et al., 2001; Davis et al., 2003; Finsinger et al., 2006) proxies.

However, climatic fluctuations during the last millennium have

been rarely characterized using inorganic geochemistry (eg,

Shotyk et al., 1998; Kylander et al., 2007). In addition, multiproxy

analyses of northeastern European peat deposits, which include

inorganic geochemistry, are scarce (eg, Lukashev et al., 1974;

Twardowska et al., 1999; Vile et al., 2000; Novak et al., 2003;

Mihaljevic et al., 2006; Syrovetnik et al., 2007).

Introduction

Recent studies have demonstrated the potential of ombrotrophic

bogs to record past pre-industrial fluctuations of elements during

the Holocene (eg, Kylander et al., 2005, 2007). Other studies have

assessed the potential of peat bogs to record past climatic fluctua-

tions during the last c. 3000 years using botanical (eg, Mauquoy
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The climate of the last millennium is characterized by a warm

period known as the ‘Medieval Warm Period’ (MWP) between

c. AD 1000 and 1300. It is followed by a series of climatic deteri-

orations between c. AD 1300 and 1800, the so-called ‘Little Ice

Age’ (LIA). The causes of these climatic deteriorations may be

due to changes in solar activity (van Geel et al., 1999; Mauquoy

et al., 2004). Cold periods coincide with solar activity minima, as

recorded by low sunspot numbers (Stuiver and Braziunas, 1993).

During periods of reduced solar activity there is an increased pro-

duction of 14C, as there is less solar magnetic shielding against

cosmic rays (van Geel et al., 1999). The ∆14C is thus anti-corre-

lated with the number of sunspots. The highest ∆14C values are

observed during cold periods. Climatic deteriorations during the

LIA have been investigated using various archives, for example,

ice cores (eg, O’Brien et al., 1995; Dahl-Jensen et al., 1998), lake

sediments (eg, Blass et al., 2007; Haltia-Hovi et al., 2007) and

peat deposits (eg, Mauquoy et al., 2002a). These climate recon-

structions record several periods of climatic deteriorations,

namely the Wolf (AD 1300–1380), Spörer (AD 1420–1470)

Maunder (AD 1645–1715) and Dalton (AD 1790–1820) minima.

However, it remains challenging to attempt tracking these rapid

climatic changes using peat inorganic geochemistry, a tool that has

been abundantly used to reconstruct past human activities.

Pomeranian Baltic bogs are located on the Southern edge of the

cupola-like raised bog area of Europe (Osvald, 1923, 1925;

Kulczyński, 1949). Palaeoenvironmental high-resolution multi-

proxy studies on these mires are very rare in NE Europe. Most of

the previous research has focused on past vegetation changes

(Wodziczko and Thomaschewski, 1932; Otłuszewski, 1948;

Otłuszewski and Borówko, 1954; Szafrański, 1961; Latałowa and

Pedziszewska, 2003). The investigation of Herbichowa (1998)

provided a Holocene record of local vegetation and basic geo-

chemistry of Słowińskie Błota bog and Staniszewskie bog. In

addition, recent investigations using a multiproxy approach are

currently in progress (Lamentowicz et al., 2009).

This paper attempts to use the atmospheric soil dust flux (ASD)

derived from titanium concentration of a peat record to reconstruct

the possible climatic events during the last millennium in northern

Poland. Other proxies (carbon stable isotopes and macrofossils)

and accurate age dating are also used in order to tentatively picture

the various phases characterizing this cold period. Special atten-

tion is given to the environmental conditions inferred by the vari-

ous proxies during the LIA. A comparison with other records from

this peat bog and with records over Europe allows us to draw a

sketch of the LIA synchroneity over northeast Europe.

Site description

Słowińskie Błota bog is located 8 km to the southeast of Darłowo city,

and 10 km away from the Baltic Sea (Figure 1 top). Up to the end of

eighteenth century, Słowińskie Błota bog had been an open bog (ie,

not covered by trees). It has been drained twice: (1) in 1880 when sur-

rounding ditches were dug and (2) in 1970 when two ditches were

dug through the central part of the bog. The latter were renewed in

1985 (Herbichowa, 1998). The actual vegetation is composed of sev-

eral species of Sphagnum. In the outer parts, Vaccinium uliginosum,

Calluna vulgaris and Betula pubescens are present (Figure 1 bottom).

Methods

Coring and subsampling
A 1 m core (SL4) was retrieved from the central part of the bog

(Figure 1 bottom), but away from the 1970 drainage ditches, using

a stainless steel 10 cm × 10 cm Wardenaar corer (Wardenaar,

1986). The core was then wrapped in plastic bags and stored in a

fridge. The edges of the core were removed to avoid any metal

contamination by the corer. The remaining core was then sliced

into 1 cm thick samples using a titanium knife. Each sample was

stored in a plastic bag. In this study, we present various proxies

obtained on SL4: macrofossils, inorganic geochemistry, δ13C,

radiocarbon and lead dating. They are compared with selected

water-table change indicators from a second core (SL2) retrieved

in the same bog, 10 m away from SL4. SL2 has also been dated

and analysed for biological proxies such as pollen, macrofossils

and testate amoebae by Lamentowicz et al. (2009).

Chronological control
210Pb analyses
Polonium was extracted from 2 g of dry peat powder using a

sequential H2O2-HNO3-HCl digestion. To control efficiency of

Figure 1 Top. Site location and surrounding eastern European Pb-

Zn ore (light grey) and coal (dark grey) basins (after Bibler et al.,

1998; Mukai et al., 2001). Bottom. Peatland preservation indices

based on stereoscopic aerial photographs (after Herbichowa, 1998). 1,

open peatland complex of Sphagno-tenelli- Rhynchosporetum albae,

Sphagnetum magellanici typicum and <5% single dwarf pines of

c. 2 m high; 2, open Sphagnetum magellanici pinetosum peatland with

more densely (max.10%) distributed pines of 2 to 5 m high; 3, small

patches of open Sphagnetum magellanici pinetosum peatland with ini-

tial state of Vaccinio uliginosi-Pinetum, small patches of Sphagnetum

magellanici typicum and sparse pine of 4 to 8 m high; 4 (4+5), 8 m to

20 m high pine and birch-pine cover (50% to 80%) tree (Vaccinio

uliginosi-Pinetum and Betuletum pubescentis); 5, community with

Calluna vulgaris on dried peat; 6, degenerated form of alder and

young pine forest; 7, meadow and pasture communities (class

Molinio-Arrhenatheretea) on humified peat; 8 (9+10), deciduous for-
est meadow communities from Molinio-Arrhenatheretea class on

mineral soils; 9, initial stage of development of peatland vegetation

and young forest planted in remnants of peat exploitation; 10, anthro-

pogenic vegetation (ie, recent); 11, active ditches
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deposition and alpha detection, a portion of HCl containing a

known amount of artificial 208Po was added before evaporation

and deposition on a silver disc. Efficiency of deposition up to 80%

was commonly achieved.

Alpha activity was measured with a spectrometer Canberra

model 7401, with a surface-barrier Si semiconductor detector. The

sensitive area of the detector is 300 mm2 and its energy resolution

is 20 keV. This enables a good separation of 210Po (E = 5.308

MeV) and 208Po (E = 5.105 MeV) peaks. As absolute activities of

both isotopes are rather low, each measurement lasted two days in

order to obtain sufficient accuracy. The results of the calculation

were corrected for radioactive decay of 208Po since the moment of

its calibration, and decay of 210Pb since the moment of polonium

extraction from sediments.

The Constant Rate of Supply (CRS) model (Appleby, 2001)

was applied in order to build the 210Pb age model. The activity of

autigenic 210Pb is assumed to be constant along the sediment col-

umn. It is determined by measurements on sediments old enough

to contain no allochthonous 210Pb. The activity of allochthonous

lead is then calculated by subtracting the activity of autigenic lead

from the total lead activity. Uncertainties were calculated using

the propagation of errors technique according to ISO, Guide to the

expression of uncertainty in measurement. Results are summa-

rized in Table 1.

14C dating
Macrofossils were carefully selected from eight peat samples of

SL4, after soaking in mQ water and transfer in a Petri dish, fol-

lowing the protocol developed by Kilian et al. (1995) and

Mauquoy et al. (2004). In this way only the parts of aboveground

plants were selected for 14C dating. Young carbon contamination

by downward growing rootlets was therefore prevented. In the

samples from Słowińskie Błota, the main macrofossils collected

were Sphagnum spp. stems and opercula, Calluna vulgaris stems,

Erica tetralix stems and inflorescences and Andromeda polifolia

leaves (Table 2). Charcoal fragments and some seeds were also

Table 1 Results of 210Pb analysis

Lab nr. Mean 210Pb corrected Uncertainty Lab nr. Mean 210Pb corrected Uncertainty

depth (cm) date (AD) (yr) depth (cm) date (AD) (yr)

0–1 0.5 2006 1 18–19 18.5 1978 2

1–2 1.5 2005 2 19–20 19.5 1975 2

2–3 2.5 2004 2 20–21 20.5 1973 3

3–4 3.5 2003 2 21–22 21.5 1970 3

4–5 4.5 2002 2 22–23 22.5 1966 3

5–6 5.5 2001 2 23–24 23.5 1962 3

6–7 6.5 2000 2 24–25 24.5 1958 3

7–8 7.5 1999 2 25–26 25.5 1953 3

8–9 8.5 1998 2 26–27 26.5 1946 3

9–10 9.5 1997 2 27–28 27.5 1936 3

10–11 10.5 1996 2 28–29 28.5 1928 3

11–12 11.5 1995 2 29–30 29.5 1919 3

12–13 12.5 1993 2 30–31 30.5 1911 3

13–14 13.5 1991 2 31–32 31.5 1902 4

14–15 14.5 1988 2 32–33 32.5 1890 4

15–16 15.5 1985 2 33–34 33.5 1870 6

16–17 16.5 1983 2 34–35 34.5 1824 8

17–18 17.5 1980 2

Table 2 Description of samples chosen for 14C AMS dating and results of measurements and calibration

Lab no. Sample depth 14C age 95.4% age interval Sample composition

(cm) (BP)

GdA-1097 34.5 ± 0.5 200±30 1741–1857* Sphagnum spp. branches and opercula, Erica tetralix inflorescence

GdA-1088 36.5 ± 0.5 95±25 1683–1738 Sphagnum spp. branches and opercula, Calluna vulgaris branches,

Erica tetralix inflorescence, seeds

GdA-1098 43.5 ± 0.5 455±30 1416–1480 Sphagnum spp. branches and opercula, Calluna vulgaris branches and

leaves, Erica tetralix inflorescence, Andromeda polifolia leaves,

charcoal, seeds

GdA-1099 52.5 ± 0.5 875±40 1165–1261 Sphagnum spp. branches and opercula, Calluna vulgaris branches

and leaves, Erica tetralix inflorescence, charcoal

GdA-1100 57.5 ± 0.5 935±30 1084–1176 Sphagnum spp. branches and opercula, Calluna vulgaris branches and

leaves, charcoal

GdA-1089 68.5 ± 0.5 1055±30 974–1026 Sphagnum spp. stems

GdA-1090 79.5 ± 0.5 1130±30 862–956 Sphagnum spp. stems

GdA-1091 97.5 ± 0.5 1230±30 675–797 Sphagnum spp. stems

* Calibrated age range obtained as a result of summarizing distribution of probability of calibrated age and 210Pb-derived age, assuming Gaussian dis-

tribution for the Latter.



collected when other plants were not present in sufficient quantities

for 14CAMS. Before measurement, samples were pre-treated using

an acid-alkali-acid washing sequence in order to remove any car-

bonate, bacterial CO2 and humic/fulvic acids. The graphite targets

were produced according to a protocol used in the Gliwice

Radiocarbon Laboratory (Goslar and Czernik, 2000). 14C meas-

urements were performed at Poznan Radiocarbon Laboratory

(Poland) following the protocol described by Goslar et al. (2004).

X-ray fluorescence
Forty-one samples were selected along SL4 core for XRF analy-

sis. Samples were freeze-dried and then powdered in an automatic

agate mortar (400 rpm, 1 h). One gram of the resulting powder was

analysed for selected elements at the Institute of Environmental

Geochemistry (Heidelberg, Germany). Energy-dispersive Miniprobe

Multielement Analyzer EMMA (Cheburkin and Shotyk, 1996)

was used to analyse Br, Rb, Sr and Zr while energy dispersive

XRF spectrometer TITAN (Cheburkin and Shotyk, 2005) was

used to analyse minor elements Cl, K, Ca and Ti. The two analy-

sers are calibrated with various organic international standards:

coals (NIST1632b, NIST1635, SARM19 and SARM 20) and

plant material (NIST 1515, NIST 1547, NIST 1575, BCR60 and

BCR 62). The results, detection limits and uncertainties are given

in Table 3.

Plant macrofossils
Plant macrofossil samples from SL4 were boiled with 5% KOH

and sieved (mesh diameter 125 µm). Macrofossils were scanned

using a binocular microscope (×10–50), and identified using an

extensive reference collection of type material (Mauquoy and van

Geel, 2007). Volume percentages were estimated for all components

with the exception of seeds, Eriophorum vaginatum spindles,

Table 3 Elemental geochemistry on dry bulk samples

Mean Mean Mean Age Unc. Cl K Ca Ti Fe Br Rba Sr Zra

depth density acc. rate cal. cal. (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

(cm) (g/cm³) (cm/yr)

4.5 0.023 0.830 2002 3 611 2836 4316 36 851 12.8 5.44 8.77 D.L.

5.5 0.024 0.826 2001 2 408 1820 2628 32.36 490 13.1 4.22 6.47 D.L.

6.5 0.024 0.973 2000 2 390 1850 2539 27.3 622 13.7 3.78 6.51 D.L.

7.5 0.024 1.120 1999 2 452 1493 1657 34.9 574 12.1 3.37 5.34 D.L.

8.5 0.027 1.024 1998 2 380 1330 1472 35.1 677 16.1 3.06 5.51 D.L.

9.5 0.03 0.883 1997 2 421 1237 1065 38.7 718 17.3 3.71 5.89 D.L.

10.5 0.032 0.590 1996 2 487 1411 1113 69 1024 14.8 2.52 4.94 D.L.

13.5 0.057 0.369 1991 2 455 1084 802 31.6 1521 21.3 3.22 8.16 D.L.

16.5 0.056 0.429 1983 3 380 923 1209 62.8 6635 29.3 3.8 16 4.11

18.5 0.05 0.358 1978 3 301 766 1134 57.7 6949 27.9 3.73 15.4 D.L.

21.5 0.044 0.275 1970 3 328 659 1310 81 5382 28.92 2.71 17.5 3.58

23.5 0.047 0.176 1962 3 278 621 1207 95.3 5181 31.3 3.39 17.7 4.13

26.5 0.065 0.117 1945 3 262 770 1250 244 3901 33.5 4.46 21.4 13.7

29.5 0.066 0.095 1920 3 307 1148 1024 272 2840 59.3 5.41 18.1 21.4

32.5 0.065 0.029 1888 5 330 748 895 138 1996 42 1.88 12.3 9.32

34.5 0.058 0.020 1820 41 205 615 772 155 2021 23.1 2.86 11.7 12.9

36.5 0.071 0.022 1719 31 309 1171 943 376 2248 35.2 6.56 19.1 35.5

38.5 0.116 0.026 1627 29 405 980 807 353 1634 45.1 5.59 17 35.6

41.5 0.101 0.031 1512 31 645 511 696 206 1152 56.8 2.95 11.7 19.7

43.5 0.141 0.033 1447 32 802 423 656 180 1139 67.3 2.38 10.8 16.1

45.5 0.149 0.036 1387 35 881 258 708 148 1231 59 1.34 11.4 14.2

47.5 0.126 0.036 1331 39 884 223 795 138 1057 60.1 1.55 13.1 16.4

51.0 0.05 0.073 1234 46 625 130 853 56 1306 54.6 D.L. 11.2 D.L.

52.5 0.048 0.054 1214 47 477 96.4 901 34.3 1183 37.5 D.L. 11.1 D.L.

54.5 0.045 0.063 1177 47 362 92 855 42.5 1229 36.6 D.L. 12 D.L.

57.5 0.03 0.071 1129 45 294 84.1 801 23.6 1319 32 D.L. 11.5 D.L.

59.5 0.033 0.077 1101 42 413 109 1137 60.1 1318 38.9 D.L. 14.47 2.6

61.5 0.031 0.089 1075 39 439 97.6 1260 38.5 1635 39.2 D.L. 15.3 D.L.

66.5 0.035 0.103 1019 30 348 94.1 1007 23.3 1505 28.1 D.L. 12.6 D.L.

68.5 0.031 0.114 1000 27 285 92 885 18.9 1271 24.3 D.L. 10.8 D.L.

71.5 0.032 0.122 974 32 374 102 1087 20.2 1332 25.8 D.L. 12.1 D.L.

73.5 0.035 0.126 957 36 433 95.2 923 32.5 880 30.8 D.L. 11.1 D.L.

77.5 0.028 0.122 925 43 406 93.5 907 22.4 1336 34 D.L. 11.4 D.L.

79.5 0.028 0.116 909 46 406 98.9 772 25.5 1026 33.7 D.L. 8.51 D.L.

82.5 0.037 0.110 883 49 366 101 837 28.3 842 33.7 D.L. 8.02 D.L.

84.5 0.04 0.106 865 51 354 103 663 32.5 735 35.5 D.L. 8.08 D.L.

86.5 0.04 0.104 846 52 441 113 721 37.1 749 44.9 D.L. 8.52 D.L.

88.5 0.028 0.101 827 54 438 104 689 30.4 679 42.3 D.L. 7.87 D.L.

91.5 0.024 0.099 797 56 462 103 684 34.5 505 37.3 D.L. 8.08 D.L.

95.5 0.031 0.098 757 59 419 112 746 34.9 688 37.6 D.L. 8.32 D.L.

97.5 0.025 0.098 736 60 413 101 720 22.5 651 33.4 D.L. 6.97 D.L.

Uncertainty (%) 10 10 3 7 7 5 5 5 10

LLD 30 2.5 1.5 0.9 0.9 0.6 0.8 1 2.5

a D.L., measurements below detection limit.



Sphagnum spore capsules, Meliola ellisii (Type 14) fruit-bodies

and charcoal particles, which were counted and expressed as the

number (n) present in each subsample. Zonation of the macrofos-

sil diagrams was made using psimpoll 4.25 (optimal splitting by

information content).

Stable isotopes
Samples for isotopic investigations were taken at each centimetre

of the SL4 peat monolith. Each sample was washed in distilled

water. Then one Sphagnum stem was selected from each sample

using low-power microscopy. Loader et al. (2007) reported statis-

tically significant differences between the carbon isotopic compo-

sition of bulk organic material in pendant leaves, branch leaves

and stems of growing Sphagnum. Therefore all the leaves, if pres-

ent, were carefully removed. Then, stems were dried in an oven at

50°C. Because isotopic composition of carbon in bulk organic

material closely follows the isotopic pattern measured in α-cellu-

lose and nitrocellulose (Ménot-Combes et al., 2004; Skrzypek

et al., 2007), all the measurements were performed on bulk

organic material of Sphagnum stems. Fragments of stems weigh-

ing about 50 µg were used for each measurement. The samples

were packed in tin capsules and combusted in the EuroVector

EuroEA3000 elemental analyser at 1020°C. The resulting gases

were separated by the gas chromatography method and CO
2 was

transferred to a GV Instruments IsoPrime isotope ratio mass spec-

trometer. The δ13C values are expressed in ‰ VPDB with an

uncertainty equal or better than 0.22‰.

Results

Ombrotrophy
Low strontium values have already been used to indicate the

ombrotrophy of peat deposits (eg, Shotyk et al., 2002; De

Vleeschouwer et al., 2007), ie, bogs that are exclusively fed by

atmospheric inputs (eg, rain, snow, fog, dust). In Słowińskie Błota,

Sr values below 20 ppm (Table 3) indicate the ombrotrophic nature

of the entire 1 m peat profile. The plant macrofossils (see Figure 4)

also consistently indicate the presence of acidic, nutrient-poor con-

ditions characteristic of ombrotrophic peat bogs.

Age–depth relationship
Calibration of radiocarbon dates was undertaken using the

IntCal04 calibration curve (Reimer et al., 2004) and OxCal 4.0

software (Bronk Ramsey, 1995, 2001). A priori information

from the 210Pb-derived ages was used in a P-sequence model

(Bronk Ramsey, 2008). The results of calibration are summa-

rized in Table 2.

From the base of the core to 34.5 cm depth, 14C was used to

build an age–depth model. For the sample from depth 34.5 cm

the probability distribution of calendar ages obtained with both
210Pb and 14C methods were combined, resulting in the interval

AD 1741–1857. Above 34.5 cm the results of 210Pb dating were

used.

For building the age–depth model a non-linear approach (gen-

eralized additive model, GAM) was used, as described by

Heegaard et al. (2005). The calculations were performed within

each period on the middle-point of the 95.4% range of calibrated

age, while an uncertainty equal to the half of this range was

assumed. The results of 210Pb dating are described by Gaussian

distribution and in their case the 1-sigma range was used. On the

depth scale, the resulting age–depth relationship provides a mean

age and an age range for each slice of peat (Figure 2).

From the base (c. AD 675–800) of the core to 52.5 cm depth (c.

AD 1065–1260), the mean peat accumulation rate is rather high

(mean = 1 mm/yr). Then, the mean accumulation rate decreases

towards 0.3 mm/yr from 52.5 cm depth (c. AD 1065–1260) to 34.5

cm depth (AD 1740–1860). For the samples between 34.5 and 0 cm

depth, the mean accumulation rate is higher, and reflects the fresh,

uncompacted nature of the acrotelm peat deposits.

Bulk density, Ti concentration and

atmospheric soil dust flux
The bulk density and Ti profiles record small variations from the

base of the core to 50 cm depth (Figure 3). Then a sharp peak in bulk

density occurs between 50 and 35.5 cm depth. Peak values in the Ti

profile also occur in the same depth interval. From 30 to 20 cm

depth, the bulk density stabilises between 0.05 g/cm³ and 0.06

g/cm³. However, at this depth, the Ti profile displays a second peak.

Values of bulk density then decrease gradually towards the surface

of the profile. Titanium concentration fluctuations have been used to

indicate fluctuations in soil dust inputs to bogs (Görres, 1993;

Holynska et al., 1998; Shotyk et al., 1998). These changes in soil

dust inputs can be due to various causes, such as agricultural activ-

ities (Hölzer and Hölzer, 1998) or variation in natural atmospheric

soil dust fluxes (Shotyk et al., 1998).

Atmospherically derived Soil Dust (ASD) can be calculated

using geochemical elements such as Ti (Shotyk et al., 2002) or Sc

(Shotyk et al., 2001). Since these elements are conservative, it can

be assumed that their amount in ‘soil dust’ is similar to their

amount in the upper continental crust. Using the Ti concentration

in upper continental crust (0.40%, McLennan, 2001), the concen-

tration of ‘soil dust’ in a peat sample can be deduced (Shotyk et al.,

2001). Taking into account the bulk density and the mean accu-

mulation rate derived from 14C and 210Pb dates, ASD in a sample

can be calculated (Shotyk et al., 2002).

The ASD flux for the Słowińskie Błota profile can be divided

into five zones (Figure 3). From the base of the core to 50 cm

depth, ASD values are very low, with a mean averaging 22 µg/cm2

per yr. Given the 14C dates, this part of the core was deposited dur-

ing the early Middle Ages. This period is followed by a period of

increased ASD (mean = 156 µg/cm2 per yr) between 50 cm and 35

cm depth, spanning the eleventh to the beginning of the eighteenth

centuries (late Middle Ages and early Modern Era). Then ASD

reaches very high values (mean = 446 µg/cm2 per yr) between 30

and 25 cm depth, ie, during the first half of the twentieth century.

From 24 to 13 cm depth, ie, during from c. AD 1960 to 1990, values

Figure 2 Age–depth model constructed on the basis of 210Pb and 14C

dating (see text for details). Diamonds represent results of 210Pb

dating; cross represents midpoint of 95.4% age interval obtained as

a result of summarizing 210Pb and 14C calibrated age; circles represent

midpoints of 95.4% calibrated 14C age range (see Table 2). Error bars

and the grey-shaded area show 95.4% confidence interval of age for

dated horizons and the model respectively
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average 249 µg/cm2 per yr. Then the ASD decreases drastically

towards lower values (mean = 204 µg/cm2 per yr) at the surface.

Detecting sources using enrichment factors
Ti was used to calculate enrichment factors (EF) relative to the

upper continental crust (UCC). Ti has been used in other studies

as a conservative element to calculate EF (eg, Kempter, 1996;

Shotyk et al., 2002).

Given the location of Słowińskie Błota, the main particle

sources to the bog are rainwater, sea-salt sprays, ASD and anthro-

pogenic particles from various origins (coal burning, mining and

smelting). Table 4 summarizes the EF for each element in the five

main intervals encountered in the 1 m core.

K, Rb and Zr show very low enrichment factors. Most of these

elements are therefore fed by ASD. Conversely, the higher K EF

in the surface layers could be linked to plant recycling. Ca and

Sr also record low enrichment factors, the lowest one being

observed between 50 cm and 25 cm depth. In the basal (100–50

cm) and uppermost (25–0 cm) part of the core, these elements

record a moderate increase in enrichment factor (Ca EF and Sr

EF (100–50 cm) = 4; Ca EF and Sr EF (10–0 cm) = 9 and 2,

respectively). These values may be explained by sea-salt sprays

from the nearby Baltic Sea.

By contrast, Cl and Br display high enrichment factors (7 < Cl

EF < 84 and 445 < Br EF < 2906). These elements are strongly

enriched in seawater relative to the upper continental crust, mak-

ing sea-salt sprays the most likely source for Cl and Br. However,

Cl, Br, Ca and Sr cannot be used as quantitative indicators of

marine aerosols inputs, although partly fed by sea-salt sprays.

Indeed Shotyk (1997) showed that more than 90% of the elements

supplied to the bog by marine-influenced rainwater are not

retained by the peat.

Plant macrofossils
The results presented in Figure 4 and Table 5 record the main fea-

tures of the four macrofossils zones. Relationships between the

plant macrofossil components were explored using principal com-

ponents analysis (PCA) (Figure 5). The SL4 macrofossil stratigra-

phy registers relatively low local water-table depths in zone

SL4-1, given the abundance of Sphagnum section Acutifolia

leaves, whilst charcoal fragments are sporadic and not present in

significant numbers. Towards the top of the zone the samples from

Figure 3 Density (Ti), and atmospheric soil dust flux versus depth. 14C age intervals and some 210Pb reference points are also reported
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Table 4 Enrichment factors calculated in the five depth intervals of the core using values from the upper continental crust (McLennan, 2001)

and Ti as a conservative element

Concentrations Values/Ti 100 cm–50 cm 50 cm–35 cm 35 cm–25 cm 20 cm–10 cm 10 cm–0 cm

in UCC (µg/g) UCC E.F. (Ti) E.F. (Ti) E.F. (Ti) E.F. (Ti) E.F. (Ti)

Cl 640 0.16 84 20 7 41 82

K 28650 7.15 0 0 1 2 7

Ca 29450 7.34 4 1 1 2 9

Br 1.6 0.0004 2906 676 445 1054 1050

Rb 110 0.03 –a 1 1 2 4

Sr 316 0.08 4 1 1 3 2

Zr 237 0.06 0 2 1 0 –a

a Value missing as concentrations in these intervals are below detection limits.



mid-point depths 52.5–46.5 cm (c. AD 1210 to AD 1360), record

increased mire surface wetness, given the presence of Sphagnum

section Cuspidata and Sphagnum tenellum leaves. In zone SL4-2

high percentage values of Sphagnum section Cuspidata and peak

percentage values of Sphagnum cuspidatum (mid-point depths

between 36.5 and 34.5 cm, AD 1720 to AD 1820) alternate with high

values of Monocots undifferentiated, Eriophorum vaginatum epi-

dermis/spindles and the highest recorded values of charcoal frag-

ments. This zone therefore records the highest mire surface

wetness in the peat profile and additionally the greatest distur-

bance, given the abundant presence of macroscopic charcoal indi-

cating the occurrence of surface peat fires (charred leaves and

stems of Calluna vulgaris are present in the peat matrices in this

zone). Charcoal fragments decrease markedly in zone SL4-3,

whilst the disappearance of aquatic Sphagnum cuspidatum and the

increased representation of Calluna vulgaris stems indicate lower

local water-table depths. Local water-table depths appear to have

decreased further in zone SL4-4, as Sphagnum section Acutifolia

leaves return as the dominant component of the peat matrices. Fires

appear to have been very infrequent in the final zone, since char-

coal fragments are rare. The Eigen values of axis 1 (0.598) and axis

2 (0.209) represent 80.7% of the cumulative percentage variance of

the species data (Figure 5). Axis 1 seems to be determined by a

moisture/burning gradient, with hummock microform taxa on the

left (Sphagnum section Acutifolia leaves, Aulacomnium palustre

and Calluna vulgaris flowers/seeds). Two groups on the right of the

PCA ordination indicate hollow microform taxa (Sphagnum cuspi-

datum/section Cuspidata and Sphagnum tenellum) and plants

(Eriophorum vaginatum and Rhynchospora alba) associated with

the burning of the bog surface (Sillasoo et al., 2007).

Figure 4 Percentage of plant macrofossil in SL4. Zonations made

using information content in psimpoll 4.25
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Table 5 SL4 macrofossil zonation

Macrofossil zone Depth (cm) Main features

SL4–4 15.5–2 Very low presence of charcoal

fragments with abundant Sphagnum

section Acutifolia leaves. Leaves of

Aulacomnium palustre occur between

10.5 and 2.5 cm and form up to 5% of

the peat matrices

SL4–3 27.5–15.5 Strong reduction in the number of

charcoal fragments, with a large

increase in Sphagnum section

Cuspidata leaves, which record peak

values at 20.5 cm. Ericales rootlets

and Calluna vulgaris stems increase

between 18.5 and 16.5 cm

SL4–2 45.5–27.5 Abundant charcoal fragments are

present throughout the zone, with the

highest number recorded between

42.5 and 40.5 cm. The major components

of the peat matrices are Monocots

undifferentiated and Eriophorum

vaginatum epidermis and roots. High

values of Sphagnum section

Cuspidata leaves (up to 59%) were

recorded between 36.5 and 34.5 cm.

Seeds of Rhynchospora alba occur at

32.5 and 28.5 cm

SL4–1 91–45.5 Abundant Sphagnum section

Acutifolia leaves with some

Eriophorum vaginatum epidermis and

roots. Charcoal fragments are

infrequent, and where present do not

record high values. Towards the top

of the zone (52.5–46.5 cm) leaves of

Sphagnum section Cusidata and

Sphagnum tenellum appear and

increase in abundance (maximum

abundance values of 15 and 20%,

respectively)



Stable isotopes

The raw δ13C data are presented in Figure 6 and record a large

spread of individual points. This scatter is due to the differences of

carbon isotopic composition in different Sphagnum species

(Hornibrook et al., 2000). The raw data points were therefore

smoothed using a three-point running average filter. Mean values

for the raw δ13C data up to AD 1900 are equal to −27.39‰ VPDB.

The smoothed curve was zoned into four periods. The first period

(AD 800–1200) is characterized by rather large fluctuations of δ13C

oscillating below (AD 800–1000) and above (AD 1000–1200) the

mean value for the whole core. During the second period from c.

AD 1200 to c. AD 1580, the δ13C values first increase up to −25.6‰

VPDB at c. AD 1370, and then decrease down to the mean value

for the whole core. A similar pattern was observed for the third

period from c. AD 1580 to c. AD 1850 with the maximum of −

25.5‰ VPDB at c. AD 1700. During the fourth period (from c. AD

1850) human disturbance (exploitation of the peat) probably

caused large decreases of the δ13C signal. Indeed, the δ13C value in

Sphagnum organic matter depends on several factors, the most

important being the amount of water stored in the hyaline cells.

Models showed that a decreasing amount of water stored in the

hyaline cells will increase isotopic fractionation resulting in a

decrease of the δ13C value (Ménot-Combes et al., 2004). The suc-

cessive drainage of Słowińskie Błota caused a drop of local water-

table and lead to the decrease of water content in leaves,

explaining the drop in the δ13C during this period.

Discussion

Causes of LIA deterioration in Słowińskie Błota
The ASD flux profile versus depth (Figure 3) displays five peaks

around 46 cm (c. AD 1370), 38 cm (c. AD 1650), 28 cm (c. AD 1930),

16.5 cm (c. AD 1984) and 10.5 cm depth (c. AD 1996). Above 30 cm

depth, ASD can be explained by increasing industrial activities,

especially coal mining and burning, and lead smelting in Poland

(eg, Strzyszcz and Magiera, 2001). However, the lower part of the

ASD flux profile (100–30 cm) may be explained by natural

changes in ‘soil dust’ inputs, possibly related to climatic fluctua-

tions. When the ASD flux is plotted against time (Figure 6), the

interval between c. AD 1200 and AD 1800 records two ASD peaks.

These occur at 46 cm (around c. AD 1370) and 38 cm (c. AD 1650)

and may register LIA climatic deteriorations.

In peat bogs, LIA climatic deteriorations have been detected

by Barber et al. (2000) and Mauquoy et al. (2002b). In another

peat bog from North Poland, Lamentowicz et al. (2008) recorded

two periods of reduced peat accumulation between AD

1100–1500 and AD 1650–1900, respectively. These authors

linked the oldest period to the LIA, whereas they explained that

in their case, the youngest period is due to both LIA and human

activity (ie, peat exploitation). In their work, van der Linden and

van Geel (2006) also detected Wolf and Spörer minima in a

Sphagnum-bog from southernmost Sweden using combined

plant macrofossil, pollen and C/N analyses. Periods of reduced

Figure 5 Principal component analysis biplot of the SL4 plant macrofossil data. The ordination was performed using CANOCO for Windows

version 4.02, using the following options: focus scaling on interspecies correlations, species scores divided by standard deviation, centering/

standardization by species
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Figure 6 Atmospheric soil dust flux, mire surface wetness derived from testate amoebae and δ13C versus time in Słowińskie Błota. Raw data (dotted line), three-point average (solid line) and mean value (dashed

vertical line) are given for both mire surface wetness and δ13C. Comparison with aeolian sediment influx (ASI) found in two peat bog sequences (Store Mosse and Undarmosse) from south Sweden (de Jong et al.,

2007), ∆14C curve (Reimer et al., 2004), temperature anomalies curve (Korhola et al., 2002) and 50-year running precipitation data presented over Northern Europe (Pauling et al., 2005)
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peat accumulation during the LIA may have been due to lower

spring-summer temperatures slowing down the primary produc-

tivity of peat-forming vegetation, and cold winters causing

freezing of the bog surface (Mauquoy et al., 2004). Reductions

in the rate of peat accumulation have the immediate effect of

increasing the relative amount of ‘soil dust’ found in the peat

profile during the LIA. During this time span, evidence for

enhanced storminess and particle transport has also been demon-

strated by de Jong et al. (2007) in a raised bog from South

Sweden and by Meurisse et al. (2005) in peat-dune complexes

from Northern France. More specifically, Maasch et al. (2005)

also suggested that the LIA could be divided into two periods: a

first wet oceanic period from AD 1230 to AD 1620 followed by a

dry period from AD 1700 to AD 1950. During other cold events

such as the Younger Dryas stadial, it has also been demonstrated

that erosion rates were enhanced, causing more resistant miner-

als to be weathered and transported to a peat bog, drastically

increasing the ASD flux (Shotyk et al., 2002). However, during

the LIA, such changes are recorded when specific conditions are

encountered. For instance, de Jong et al. (2007) demonstrated

clearly that changes in storm regimes in Southern Sweden and

short-term changes in climatic conditions that occurred during

the LIA could be recorded thanks to nearby sand dune complexes

providing easily erodible material that can be transported by

wind up to the peat bogs. The same specific conditions can be

applied to Słowińskie Błota, which is also very near the seashore

and dune complexes. Moreover, the PCA ordination of the plant

macrofossil data shows a burning/disturbance gradient superim-

posed on to the mire surface wetness gradient. Surface fires on

peat bogs can cause increased mire surface wetness (Väliranta

et al., 2007), since hummock microforms can be destroyed,

causing a reduction of the local microrelief and therefore pro-

moting increased mire surface wetness (Sillasoo et al., 2007).

Given this, it is possible that the increases in mire surface wet-

ness detected with the plant macrofossil analysis are due to dis-

turbance by fires. Pollen data from the other high-resolution

study of Słowińskie Błota bog (SL2) showed the beginning of

deforestation at c. AD 1100 (Lamentowicz et al., 2009). Consequently,

increased landscape openness, surface fires and proximity to the

seashore will allow soil material to be available for erosion and

subsequent deposition as ASD in the mire. In other words, c. 150

years before the onset of the LIA soil was made available for

future erosion, providing an ideal source of particles to be trans-

ported by wind to the peat bog.

In Słowińskie Błota, the increase of ASD is also correlated with

a shift in DWT (Figure 6), reflecting that the onset of LIA is char-

acterized by increased storminess and dryness of the area.

Moreover, the lower Cl EF and Br EF values between 50 and 30 cm

depth (Table 4) may indicate a more continental climate over North

Poland during this period. These results do not correspond with the

initial wet shift observed by de Jong et al. (2007) at the beginning

of the LIA. However, de Jong et al. (2007) also pointed out that the

climatic anomalies associated with the LIA and MWP they have

evidenced in their record are reflected as periods with predomi-

nantly dry or wet conditions. They noticed that these aeolian activ-

ity peaks started during the recorded hydrological transitions,

regardless of the direction of these shifts. In North Poland,

Lamentowicz et al. (2008) explained that the development of peat

bogs in this area could be driven by westerlies during wet periods,

and by more continental influence during dry periods. No more pre-

cise explanation has been found so far to explain why LIA is

recorded by dry shifts in Baltic bog whereas it is recorded by wet

shifts in other areas such as in Southwest Sweden. Therefore, we

can conclude that in our record, the ASD peaks are found during

LIA, but that in some locations, they can be accompanied by wet

shifts whereas in other areas, they can be accompanied by dry shifts.

Timing of the LIA in NE Europe
The first dry shift recorded by the ASD flux in Słowińskie Błota

corresponds to the dry shift found by Lamentowicz et al. (2008) in

another Baltic bog between AD 1100 and AD 1500. These authors

also record a second zone of climatic disturbance between AD 1650

and AD 1700–1900. They explain that this second shift starts with

a transition to wetter conditions, followed by a dry period, reflect-

ing climatic instability. They claim a possible human influence

superimposed to climatic dry shifts. However, the lack of evidence

for human impact until AD 1800–1850 together with the strong

correlation between Słowińskie Błota bog and the peat bog stud-

ied by Lamentowicz et al. (2008) support a climate-driven envi-

ronmental change in both sites between AD 1650 and AD 1800. The

LIA timing found in our record fits also well with the period of

decreased temperature (c. AD 1400–1800) found by Jedrysek et al.

(2003) in a peat core from SW Poland, although this study is lower

in resolution than our work. Our results described here are also in

good agreement with the timescale found for this event in tree

rings from various locations in Poland (Pazdur et al., 2007), and

with results found by van der Linden and van Geel (2006), who

detected climatic deteriorations during the Wolf and Spörer min-

ima between AD 1300 and AD 1550 in a peat bog profile from

Southern Sweden. Moreover, as in the present study, they also

found a synchronous increase in bulk density during this time

interval. Their bulk density values vary between 0.05 and 0.15

g/cm³ during the LIA, whilst values lower than 0.05 g/cm³ in other

time intervals were recorded outside the LIA time interval.

In Słowińskie Błota, the ages of the high ASD peaks are highly

consistent with LIA intervals recorded in both southern Swedish

peat deposits (Figure 6) and lake sediments from Finland

(Weckström et al., 2006; Haltia-Hovi et al., 2007), which suggests

that LIA climatic deteriorations may have occurred synchroneously

in NE Europe. No dust peak is recorded before AD 1300 because the

early ‘Medieval Warm Period’ is characterized by relatively stable

conditions and low wind activity (de Jong et al., 2007). When com-

paring our data with results from de Jong et al. (2007) and other data

(Figure 6), slight age discrepancies occur between the various

phases of climatic fluctuations and are linked to the various sam-

pling resolutions and constraints associated with age–depth models

(Figure 6). The uppermost ASD peak found in Słowińskie Błota

may correspond to the Maunder minimum. However, because of

our sampling resolution, it is also possible that this ASD encom-

passes the Dalton minimum. The lowermost ASD peak may record

both the Wolf and Spörer minima, indifferently. Nevertheless

accepting a 70-year discrepancy for the base of this zone (AD 1300

in SL4 and AD 1230 found by de Jong et al., 2007), the time span for

this earlier stage of the LIA is in good agreement with results from

de Jong et al. (2007). It can therefore be concluded that the transition

between the various LIA minima will be approximately synchro-

neous in NE Europe regardless of the area.

Response to precipitation

and temperature changes
A three-point running average smoothing procedure was per-

formed on testate amoebae water-table reconstruction data

(DWTTA in Figure 6) from Lamentowicz et al. (2009) and these

were then compared with the isotopic data of SL4. δ13C in living

plant organic material is controlled by photosynthesis (Farquhar

et al., 1982). Carbon isotopic fractionation between atmospheric

CO2 and non-vascular plant cellulose was proposed by Figge and

White (1995). Climatic factors that should be considered when

analysing variations of carbon isotopic composition in non-vascu-

lar plants are: temperature, humidity and the partial pressure of

CO2 (Ménot-Combes et al., 2004). However, decomposition of

peat organic material may disturb the ‘original’ carbon isotopic

composition in peat (Kracht and Gleixner, 2000). To check if it



was possible to derive more than local climatic changes from

the δ13C signal, our δ13C results were compared with the recon-

structed European summer precipitation curve for the last 500

years (Pauling et al., 2005) and reconstructed temperature anom-

alies for Fennoscandia (Korhola et al., 2002). It seems that the

isotopic data are not synchronized to reconstructed mean summer

precipitation for Europe. In the present study, the factors driving

the δ13C remain difficult to identify. The δ13C curve is in good

agreement with the reconstructed temperature data for

Fennoscandia, although time-dependent discrepancies occur. Wolf

and Maunder minima are clearly recorded in the δ13C curve

although the Spörer minimum remains unclear as for both ASD

and DWTTA records. This slight delay between climatic events

recorded by ASD, DWTTA and δ13C in Słowińskie Błota and

Fennoscandia suggests that during last two millennia, the temper-

ature over the southern Baltic shore decreased a few decades later

than in Northern Europe during the LIA minima. Conversely, the

shift towards higher temperature during optima occurred a few

decades earlier than in Northern Europe.

Conclusions

The main natural sources of major elements recorded in the 1 m

Słowińskie Błota peat profile are ‘soil dust’ and sea-salt sprays,

which account for the main part of K, Ca, Zr, Ti, Fe, and Cl and

Br data variability.

‘Little Ice Age’ climatic deteriorations have rarely been identi-

fied using ASD fluxes in European peat bogs. LIA climatic dete-

riorations have only been detected in specific areas where peat

bogs are surrounded by easily eroded material (eg, de Jong et al.,

2007). In Słowińskie Błota, the particular fact that the surrounding

areas were deforested by human activities 150 years before the

LIA provides a unique opportunity for soils to be extensively

eroded and transported. As a result, LIA climatic changes can

therefore be successfully tracked using ASD in this bog. LIA cli-

matic deteriorations are recorded in the Słowińskie Błota bog pro-

file between c. AD 1200 and c. AD 1800 using the ASD, plant

macrofossils and δ13C. The results are in very good agreement

with other records, claiming synchroneity of the LIA over NE

Europe, regardless the causes and/or consequences of the LIA. In

our record, these cooler and drier periods are characterized by

increased soil dust fluxes possibly related to an increase in erosion

processes and an increased continentality of climate. Multiproxy

data (macrofossils, testate amoebae and δ13C) strongly support the

ASD flux record by showing changing humidity and temperature

conditions during this period.
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Pobrzez
.
a Bałtyckiego. Wydawnictwo Uniwersytetu Gdańskiego,
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Latałowa, M. and Pędziszewska, A. 2003: Zbiorowiska leśne z udzi-
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badań. In Gołębiewski, R., editor, Ewolucja pojezierzy i pobrzez
.
y

południowobałtyckich. Fundacja Rozwoju Uniwesytetu Gdańskiego,
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Szafrański, F. 1961: Polodowcowa historia lasów obszaru na północ

od Wysoczyzny Staniszewskiej. Badania Fizjograficzne nad Polskąą
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