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Abstract

In automated planning, action preconditions are boolean-
valued formulas, which check whether a given action is
feasible in a given state. While crucial for realistic appli-
cations where dangerous actions in some states must be
discarded, preconditions have never been formally con-
sidered in POMDPs. One reason is that preconditions are
defined over states whereas decisions depend on the cur-
rent belief of the agent. Simply defining preconditions
over beliefs is not sufficient because, as each belief is
possibly defined over many states, there is no guarantee
to prevent the agent from applying an infeasible damag-
ing action. Augmenting the observation space with fea-
sible actions does not help more, since the optimization
process still maximizes the value of the current belief
over all existing actions in the model. Thus, we pro-
pose an extension of the traditional POMDP model that,
by means of an additional information step semantically
different from standard observations, allows the agent to
know the set of feasible actions before deciding the best
action to apply. Without requiring a full knowledge of the
current state, this extended model leads to a significant
modification of the decision process, for which we pro-
vide a proved optimization scheme. We also compare the
value and the execution paths of policies optimized either
with the standard model or with our extended one, and
show that our policies are always safe and gather more
rewards at execution.

1 Introduction

In automated planning, preconditions are widely used to
model environment properties required to perform an action.
Preconditions are boolean-valued formulas that represent the
definition domain of an action, i.e. the set of states on which
this action can be applied [Ghallab et al., 2004]. In real-world
applications, securing this kind of guarantee is mandatory in
order to protect a robotic agent against physical damage.

For example, consider an autonomous cost guard robot
navigating along a cliff with abysses, as shown on Figure 1(a).
This example is a slight variation of the Hallway problem,
where surrounding walls are replaced by cliffs from which
the robot can fall down. The agent can be in any square, and
can apply 4 actions: north, south, east, west: Figure 1(b). The
goal is to get to the star while being certain not to fall down
a cliff: in the states near abysses, actions that might make the
robot fall down have to be prohibited.
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Figure 1: Coast guard POMDP problem.

In Markov Decision Processes (MDPs), recent efficient
planners also rely on boolean-valued preconditions in or-
der to produce policies that contain only feasible or desir-
able actions [Younes and Littman, 2003]. Former approaches
used try to associate a high hand-tuned penalty to undesir-
able actions to discard them. This trick remain hazardous to
tune and offer no guarantee that an infeasible action will not
be inserted in the optimized policy. Furthermore, these ap-
proaches have been largely superseded by efficient algorithms
that directly evaluate boolean-valued preconditions [Younes
and Littman, 2003].

To our knowledge, the proper use of preconditions has
never been adapted for Partially Observable Markov Deci-
sion processes (POMDPs), despite identical theoretical and
practical needs. Research in POMDPs may still be more fo-
cused on improving the efficiency of general algorithms tack-
ling the complexity of general POMDP models, rather than
on real world applications. Technically speaking, the check-
ing of preconditions is not straightforward when working in
probabilistic partially observable domains, because the cur-
rent state is not known precisely and replaced by a probability
distribution over a set of states.

In this paper we first present the general POMDP frame-
work in section 2 and discuss three workarounds used in order
to discard undesirable actions, showing their weaknesses and
drawbacks. In section 2.1 we show that the trick of tweaking
costs of unsafe state-actions pairs is dependent on the chosen
optimization algorithm and offers no guaranty that the actions
will effectively be discarded. In section 2.2, we discuss the



option of defining preconditions over the beliefs: we show
that linking preconditions to beliefs may lead to incoherent
policies. In section 2.3, we present a third option that would
consist in augmenting the observations with the preconditions
directly, which leads to potential tricky misfits in the seman-
tics of observations and is still offering no guarantee.

The contribution of this paper is presented in section 3 and
can be stated as follows: we propose a model, an adapted op-
timization scheme, compatible with many general POMDP
algorithms, to properly take into account boolean-valued,
state-based precondition formulas in POMDPs, which we
claim is the right way to model and guarantee to ban unde-
sired or unfeasible actions. In section 4, we show and exper-
iment that this new model is fully compatible with different
POMDP algorithms. We then present and discuss preliminary
comparative results.

2 Background and workarounds

POMDP overview. Formally, a POMDP is a tuple
〈S,A,Ω, T,O,R, b0〉 where S is the set of states; A the set of
actions; Ω the set of observations; T : S × A × S → [0, 1]
the transition function: T (st, a, st+1) = p(st+1|a, st); O :
Ω× S → [0, 1] the observation function: O(ot, st) = p(ot|st) ;
R : S×A×S → R the reward function (associated with tran-
sitions), and b0 the initial probability distribution over states.
We denote ∆ the (continuous) set of probability distributions
over the states, named belief space.

At each time step t (assuming t discrete), the agent selects
an action given the belief bt ∈ ∆, leading stochastically to
a new state, then gets a noisy observation. The agent belief
update, which is done using Bayes rule, depends on the ac-
tion done and the observation gathered, and is a function of
previous belief (s′ follows state s):

b
o
a(s

′) =
p(o|s′)

∑
s∈S p(s′|s, a)b(s)∑

s∈S

∑
s′′∈S p(o|s′′)p(s′′|s, a)b(s)

(1)

Abusing notation, we denote the belief bt(s) = Pr(st = s).
Solving a POMDP consists in finding a policy function

π : ∆ → A that maximizes a performance criterion. The
expected discounted reward from any initial belief V π(b) =
Eπ

[∑∞
t=0 γ

tr(bt, π(bt)) | b0 = b
]
is usually optimized. The

value of an optimal policy π∗ is defined by the optimal value
function V ∗ that satisfies the Bellman optimality equation:

V
∗(b) = max

a∈A

[
∑

s∈S

r(s, a)b(s) + γ
∑

o∈O

p(o|a, b)V ∗(boa)

]
(2)

This value function is piecewise linear and convex over the
belief space [Sondik, 1971], so that at nth optimization stage,
the value function Vn can be parametrized as a set of hyper-
planes over ∆ named α-vectors. An α-vector and the associ-
ated action a(αi

n) define a region of the belief space for which
this vector maximizes Vn. Thus, the value of a belief b can be
defined as Vn(b) = maxαi

n∈Vn
b · αi

n . And the optimal policy

at this step (b is the belief) is πn(b) = a(αb
n).

2.1 Tweaking costs in order to discard actions

Suppose the agent’s belief is non zero only over three states
1, 2 and 3 of Figure 1(a). In these states, we must prevent
the agent from moving towards cliffs. A simple, widely-used
workaround consists in associating a high cost (ideally −∞)

for the infeasible actions: north, west and south in state 1,
north and south in state 2, and north in state 3. As infinite
values are not commonly modeled by computer libraries, one
has to set a very low finite value in place of −∞. Yet, the
threshold of this value that ensures discarding infeasible ac-
tions from the optimized policy, actually depends on the un-
known optimal value of states, and thus on problem’s “reg-
ular” rewards and on the optimization criterion considered.
In other words, for a given optimization criterion, we have to
solve the problem before knowing the correct threshold of the
high penalty associated to infeasible actions. For example, if
reaching star gives the agent a reward of 1, and all safe actions
have no cost; for γ = 0.9, even with a cost of 50, infeasible
actions were executed 139 times over 500 simulations. An-
other workaround would consist in redefining low-level com-
putational operations to deal with special values as infinity,
but this is error-prone in complex optimization computations.

2.2 Belief-based preconditions

One might argue that a proper modeling of infeasible actions
can be done by defining preconditions over a belief. But as
actions are forbidden for real states, one has to define the ban-
ning of actions based on current belief.

On one hand, it is possible to have a pessimistic approach,
consisting in forbidding an action as soon as there is a non-
zero probability that it leads to a damage, but this may forbid
useful actions: in our example, if the belief is non zero over
states 1, 2 and 3 of Figure 1(a), the only safe action (i.e. does
not move towards a cliff for certain) is east that, by chance,
leads to the goal. Indeed, east would be the only action even
if the star was on a, so we discard completely this approach.

On the other hand, we can try to prune minimally. For do-
ing so, a simple strategy consists in computing a set of feasi-
ble actions based on the support-states of the belief (states
where the probability b(s) 6= 0). Such a definition would
not prevent for certain the robot to apply damaging actions.
If we consider again the coast guard problem (Fig.1(a)) for
a belief state over the states corresponding to numbers 1, 2
and 3. Following this definition, the set of feasible action
is {west,east,south}, which is problematic with the state 1
where the agent should only perform east. The optimal action
choice for this belief could lead to a wrong decision. More
generally, if the belief is non zero on states where feasible ac-
tions are mutually exclusive (case of incoherent belief, for in-
stance due to a wrong prior), this simple strategy will produce
incoherent policies that apply infeasible actions at execution.

2.3 Augmenting observations with preconditions

In order to cope with such policy execution issue, another
intuitive workaround consists in augmenting the observation
space with the set of feasible actions, modeled as an addi-
tional observation variable, see Figure 1(c). Such extra in-
formation should make the robot choose only safe actions at
execution; but we need to take a closer look here.

First, consider the initial belief b0: if it is uniform, as usu-
ally done, then there is no way to forbid an unsafe action
at first step; which means that there is a need for an initial
observation, not linked to a transition, or that the initial be-
lief has to be consistent with safe actions, and thus given by



hand, which is always error-prone (especially, if b0 gives a
zero probability to too many states then belief updates might
lead to inconsistencies when observations arrive).

Second, let us consider a belief that is non zero only over
states 1, 2 and 3. The expected observations are , ,

a and . Looking at the actions contained in these obser-
vations, Eq. 2 will be optimized over all actions (maxa∈A).
Therefore, even if observation is received, the optimized
action, which was defined based on the four possible observa-
tions, might still be south, maybe making the robot fall down
the abyss. Indeed, action information must be provided be-
fore decision and not after. Thus, the aggregation operator
(here maxA) needs to be changed; especially we want to fil-
ter out some actions from A set.

More precisely, the set of feasible actions has to be built in
a clever way, by adding an additional information step, a pri-
ori quite similar to the standard observation step but seman-
tically different from it, that informs the agent of the current
feasible actions whatever its belief is. Indeed, the observa-
tions depend on the feasible actions so that both information
must be clearly separated.

3 Planning in POMDPs with Preconditions

As discussed above, the only way to directly take into account
boolean-valued preconditions in POMDPs (as opposed to in-
direct, unsafe tricks) is to add an additional information step,
in order to restrict the belief to states where the set of current
feasible actions is the same and thus, redefine the aggrega-
tion operator and optimize a policy with only feasible actions.
This leads to a significant adaptation of both belief estima-
tion and optimization processes of POMDPs, as detailed in
this section. Before detailing such changes, we introduce the
ideas and corresponding definitions and notations.

3.1 Action feasibility information

A precondition is a boolean-valued formula (or literal) that
has to be true for sure if and only if an action is applicable in
a given state. We note Af (s) the set of feasible actions in a
state s. The state-based preconditions are defined by means
of a feasibility relation I saying that in a state s, an action a
is allowed to be applied: I(a, s) = 1a∈Af (s) where 1cond is 1 if
the condition cond is true, or 0 otherwise. I(a, s) can also be
seen as the probability 1 or 0 of the applicability of an action
conditioned to a state s, i.e. I(a, s) = Pr(a ∈ Af (s)|st = s).

Additional Information Step. Here, we suppose that the
agent receives an additional information from the environ-
ment during policy execution, between the standard observa-
tion step and the execution step, that consists in the current set
of feasible actions. This procedure is often performed in au-
tonomous systems by special functionalities decoupled from
planning, like execution control in [Ingrand et al., 2007], in
order to prevent the robot from damaging. Generally, the pol-
icy execution has to be controlled to insure that a safety plan
will be conducted.

To take into account safety constraints on policy optimiza-
tion and execution, POMDP models need to be extended. As
we do not know in advance the set of feasible actions re-
ceived from the environment, we need to plan for all possi-

ble feasible action sets {Ãf
1, · · · , Ãf

j} , independently from

the belief, with j = 2|A| − 1 different sets of action com-
binations, where |A| is the total number of actions. For the
coast guard problem (Fig.1(a)), some possible sets would be:
{west, east}, {west, south, east}, {east} and {west}.

The key point is: if we have an action set information, the
joint indicative function should be used in an extra belief up-
date step before action execution. It allows us to optimize
the value function only over feasible actions and correspond-
ing observations. In other words, since observations depend
on feasible actions, the observation step and the action fea-
sibility one have to be separated, meaning that we need two
different information steps. As we need to evaluate many sets
of actions, we define the joint indicative function of a set of
actions U ⊂ A over a state s as:

I(U , s) =
∏

ai∈U I(ai, s)
∏

aj /∈U (1− I(aj , s)) (3)

We have directly I(Af (s), s)=1. Moreover, it is interesting
to note that I(U , s) = Pr(Af (s) = U|s), the 1 or 0 probability
that a set of actions conditioned to a state s is equal to the
actual set of feasible actions Af (s). This simple equation al-
lows to update the belief knowing the current set of feasible
actions received. For instance, considering the coast guard
problem of Fig. 1(a) with an initial uniformly distributed be-
lief b, the agent receives Af = {west, east} as action feasi-
bility information, and projects the belief conditioned on Af ,
obtaining b̃Af

. Thus, the uncertainty will now be over the
states in gray color of Fig. 1(a), where the set of feasible ac-
tions is the same. Thus, action optimization is constrained to
feasible actions only. Note that the belief is not generally re-
duced to a single state after this additional information step,
still keeping the agent’s observability partial.

Using support-states information. It is possible to include
in our approach the minimal pruning described in section 2.2.
It will reduce the support of the belief, that should converge
faster towards the hidden state. Yet, this approach can lead to
an empty action choice if the belief is initially equal to zero
on the hidden state (discussed below). The set of feasible
actions knowing belief b is:

Af (b) = {a ∈ A|∃s ∈ S, b(s) 6= 0 ∧ I(a, s) = 1} (4)
Now, suppose the robot receives the set of feasible actions

Ãf
i at a given time t. With this definition, we can restrain

the set of feasible actions to Ai
f = Af (b) ∩ Ãf

i. The cor-
responding optimization scheme means that we optimize the
value over all such set intersections, where many of them are
hopefully empty or give rise to smaller sets compared to the
approach that does not use the support-states information. We
note {A1

f , · · · ,A
n
f } the set of possible sets of feasible actions,

i.e. all combinations of actions intersected with Af (b). We

have n = 2|Af (b)| − 1. Without loss of generality, if the
additional action feasibility information is not available, the

intersection Af (b) ∩ Ãf
i is not defined and Ai

f = Af (b).
Three cases can give an empty intersection. The first one,

Af (b) = ∅ , is impossible, because
∑

s b(s) = 1 . The second

one, Ãf
i = ∅ , is also impossible, because it exists at least

one action per set when combinations are generated. Thirdly,

if Af (b) and Ãf
i are mutually exclusive, then there is an in-

consistency between the belief and the external information;
we will not take into account this case.



3.2 Belief update w.r.t. action feasibility

This new information available to the agent, leads to two be-
lief update stages:

1. A projection of a b is made for each possible set of
feasible actions Ai

f , resulting in b̃Ai
f

.

b̃t(s)Ai
f

= Pr(st = s|Ai
f ) =

Pr(Ai
f |st = s)Pr(st = s)

Pr(Ai
f )

b̃t(s)Ai
f

=
I(Af |st = s)bt(s)∑

s′′ I(Af |st = s′′)bt(s′′)
(5)

If the belief is incoherent with the set of feasible actions
the denominator becomes zero, what invalidates Bayes’ rule.

This can happens if Ai
f = Ãf

i , i.e. when ∀a ∈ Ãf
i, a /∈

Af (b). In such cases, we can discard the current belief infor-
mation and simply reset the belief.

2. An action a ∈ Ai
f is chosen, and observation o is re-

ceived, bringing the agent to a belief boa. The rest of the update

of b̃ is identical to the standard model given that the chosen

action belongs to Af , and b is substituted by b̃ in Eq. 1:

b
o
a∈Af

(s′) =
p(o|s′)

∑
s∈S p(s′|s, a)b̃(s)

∑
s∈S

∑
s′′∈S p(o|s′′)p(s′′|s, a)b̃(s)

(6)

The additional action feasibility step does not invalidate the
assumption that the belief probability distribution is a com-
plete state information, because it still is a markovian process.
Furthermore, at execution time, the agent has to make deci-
sions based on b̃; for example at steps k and k + 1 of Fig. 2,
after the feasibility information step. Thus, the optimization
algorithm has to implement backups over b̃. In cases where
action feasibility information is unavailable, the scheme is re-
duced to the standard belief update provided that a ∈ Af (b).

t t + 1

k k + 1

b

b̃
A1

f

b
ai
o1

b
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o2ai ∈ A1
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b
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Figure 2: New belief update scheme.

3.3 Optimization: extending backup operator

As an information step is added to the belief update, one has
to adapt Bellman’s equation in order to average the expected

value of a belief b̃ over the intermediate beliefs boa∈Af
:

Vk+1(b̃Af
) = maxa∈Af

{r(b̃, a)+
∑

o p(o|a, b̃)Vn(b
o
a∈Af

)} (7)

where Af represents the set of feasible actions associated

with the belief b̃. Note that the value Vk+1(b̃Af
) is linear in

b̃, but also depends on the value of the future belief boa∈Af
.

Computing Vn(b
o
a∈Af

) is not trivial, because it depends on

next b̃A′
f

. We compute Vn(b
o
a∈Af

) as an average:

Vn(b) =
∑|C(b)|

i=1 Pr(Ai
f )Vk(b̃Ai

f
(b)) (8)

This leads to a non-linear dependence, since the number
of successors of b, denoted |C(b)|, depends on the number of
possible sets of feasible actions. The average value of suc-
cessors of b holds only locally, in other words, we know the
number |C(b)| of successors for a given b only. Thus, we can
locally approximate the value function with α-vectors: using

the fact that Eq. 7 is linear in b̃, we redefine the backup oper-
ator presented in [Pineau et al., 2003]. So, ∀a ∈ Af , ∀o ∈ Ω
and ∀ᾱi ∈ Vn , with Vn of Eq. 8:

Γa,∗ ← α
a,∗(s) = R(s, a)I(a, s)

Γa,o ← α
a,o(s) = γ

∑
s′∈S p(s′|s, a)I(a, s)p(o|s′)ᾱi(s

′)

The α-vector associated with a ∈ Af is constructed as:

Γa
b̃ = Γa,∗ +

∑
o∈Ω argmaxα∈Γa,o(α · b̃) (9)

We use the α-vector maximizing b̃ to compute Vk+1:

Vk+1 ← argmax
Γa

b̃
,∀a∈Af

(Γa
b̃ · b̃) (10)

As Vk can be represented by α-vectors, Eq. 8 becomes:

Vn(b) =
∑|C(b)|

i=1 Pr(Ai
f ) argmaxα̃∈Vk

α̃ · b̃(b) (11)

and the relationship between b̃ and b is given by Eq. 5, which

is denoted in a vector form as b̃ =
II(Af )b

Pr(Af )
, where II(Af ) is a

diagonal matrix S × S with terms IIii = I(Af , si). So:

Vn(b) =
∑|C(b)|

i=1 Pr(Ai
f ) argmaxα̃∈Vk

α̃ ·
II(Ai

f )b

Pr(Ai
f
)

(12)

Vn(b) =
∑|C(b)|

i=1 argmaxα̃∈Vk
α̃ · II(Ai

f )b (13)

and finally, Vn is constructed as:

Vn ←
∑|C(b)|

i=1 argmaxα̃∈Vk
α̃ · II(Ai

f ) (14)

II(Ai
f ) works as a mask over b, in order to construct an α-

vector with values defined only for states where Ai
f holds.

The value of b is locally approximated by averaging the α-
vectors of its successors. If action feasibility information is
available, the backup operator boils down to the standard one
[Pineau et al., 2003], but α-vector projections and value cal-
culations are restrained to actions a such that a ∈ Af (b) .

Some advantages of this new backup operator are: (1) We
take into account the actions that belong to a set of feasible ac-

tions for each belief b̃, evaluations for all action of the model
are no more made. (2) The new α-vectors are sparse, which
is exploited in computations. This sparsity is due to the (un-
)feasibility of an action over states; α-vectors are hyperplanes
defined on the belief simplex. So, if for a state s an action is
forbidden, the value associated with this action is not defined.

Theorem: Contraction of the new backup operator. Let
γ < 1. The new backup operator defined as:

LV (b̃) = max
a∈Af

r(b̃, a) + γ
∑

o∈Ω

p(o|a, b̃)

C(boa)∑

i=1

Pr(Ai
f )V (b̃a,o

Ai
f

)

is a contraction over V , the value function space.



Proof. Let V ∈ V , U ∈ V , and b̃ ∈ ∆, where ||b̃|| =∑
s∈S |b̃(s)| = 1. We suppose LV (b̃) ≥ LU(b̃), and

a
∗ = argmax

a∈Af

{r(b̃, a) + γ
∑

o∈Ω

p(o|a, b̃)

C(boa)∑

i=1

Pr(Ai
f )V (b̃a,o

Ai
f

)}

we have: |LV (b̃)− LU(b̃)| = LV (b̃)− LU(b̃)

≤ γ
∑

o∈Ω

p(o|a∗
, b̃)

C(bo
a∗ )∑

i=1

Pr(Ai
f )||V − U || ≤ γ||V − U ||

so: ||LV − LU || = max||b̃||=1 |LV (b̃)− LU(b̃)| ≤ γ||V − U ||
As our new backup operator satisfies the contraction prop-

erty, value iteration scheme converges.

On the complexity. In our extended POMDP model, all
possible subsets of actions must be assessed at each time
step in planning, so that, in the worst case, the complexity
of POMDP algorithms is multiplied by 2|A| − 1, where ‘−1’
represents the empty action set. According to us, this is the
computational price to guarantee that no infeasible actions
are applied at execution in a POMDP context. But this is
only the worst case, since in practice as highlighted by our
experiments (see next section), the belief state is more pruned
before each decision step, what reduces the number of alpha-
vectors generated in most cases.

4 Experiments

Recent POMDP algorithms, like PBVI [Pineau et al., 2003],
Perseus [Spaan and Vlassis, 2004], HSVI2 [Smith and Sim-
mons, 2005], SARSOP [Kurniawati et al., 2008] approxi-
mate the value function using a finite set B of beliefs, where
B ⊂ ∆. These algorithms implement various heuristics for
exploring the belief space, and update the value function V ,
defined as a set of α-vectors, for each b explored. So, V is
constrained to contain at most |B| α-vector components. The
main difference between them is the way they explore the be-
lief space and/or maintain the upper and lower bounds.

4.1 Experimental setup

In order to validate our approach, we implemented PCVI –
PreCondition Value Iteration, a point-based POMDP algo-
rithm based on PBVI. PCVI works on a finite set of beliefs
B̃ = b̃0, ...b̃k and uses the new belief update step and the new
backup operator allowing to handle actions preconditions, ei-
ther conditioned on external information or not. PCVI, as
PBVI and Perseus, explores the belief state space by stochas-
tic simulations, and this exploration depends on availability of
external information. Both approaches presented on section
3 can be chosen. Without loss of generality, if no external in-
formation is available, Af is defined as the minimal pruning
described on support-states approach (section 2.2 and Eq. 4).
Note that any POMDP algorithm for the standard model can
be generalized to this decision scheme in the same way.

Here, we compare policies optimized with the standard
POMDP model to policies optimized with our additional ac-
tion feasibility information step, in terms of mission achieve-
ment and safety. Any mission where a forbidden action is
chosen is considered as failed. Even if we are not interested
in comparing algorithm performances but models, we high-
light that our additional information step does not increase
computation times nor decreases rewards gathered.

We conducted experiments on 8 well-known POMDP
problems: maze4x3, maze4x5x2, Hallway, Hallway2, aircraft
and iff [Cassandra, 1998], tiger-grid and RockSample4x4
[Smith and Simmons, 2005], with PBVI, HSVI2, and PCVI
algorithms. In navigation problems, the agent is forbidden to
move towards a wall. In rockSample it is forbidden to get
rocks where there is no. On aircraft problems it is forbidden
to use the active radar when a target is close from the base.

In usual algorithms, like PBVI and HSVI2, action feasibil-
ity is not formally taken into account: instead, we associate a
high penalty to state-actions pairs (s, a) so that choosing ac-
tion a in state s is discouraged. Even if we add an additional
observation variable representing feasible actions, standard
algorithms cannot deal with them correctly (see section 2.3).

4.2 Comparative results

Table 1 summarizes performances averaged over 500 policy
simulations. We can see that, for most problems, rewards
gathered are higher for PCVI with or without the support-
states information. This is because our algorithm does not use
infeasible actions at all and so is not “punished” with a bad
reward (we directly compute a policy that guarantees that an
infeasible action is never chosen). Moreover, the number of
α-vectors is generally lower with our approach.

Fig. 3 shows more results for maze4x3 and hallway[1,2]
problems. It compares our model with the standard one for
three criteria: (1) number of times that infeasible actions are
chosen; (2) percentage of goal achievement; (3) number of
steps to reach the goal. These criteria are measured over 500
policy executions. Criterion (1) is the main one for our study.
Criteria (2) and (3) are presented to highlight that our ex-
tended POMDP model is competitive with, if not better than,
the standard model for optimization-related criteria. For the
maze4x3 problem, even with the highest penalty of 50, infea-
sible actions are applied with the standard model. On hallway
problems, the use of infeasible actions decreases when penal-
ties increase. Yet, the penalty threshold that makes the agent
avoid infeasible actions is not known in advance.

Our approach ensures that no infeasible action is chosen
independently from any hand-tuned penalty. Looking at cri-
terion (2), one can see that for large penalties, the number of
successful simulations decreases for PBVI policies, that pri-
oritizes the non use of infeasible actions, contrary to HSVI2
that prefers to relax actions to reach the goal.

Our approach reaches the goal almost 100% of the time,
even if this criterion is not targeted by our model. Regard-
ing criterion (3), in the maze4x3 problem, our new belief up-
date step significantly reduces the support of agent’s belief,
so that the average number of steps to reach the goal also is
reduced. In hallway problems, the average number of steps
is slightly higher than the average of the others, but this av-
erage is based on successfully simulations, and this explains
the fact that PBVI policy has a good steps average and a bad
success percentage compared to HSVI2 and PCVI policies.

5 Conclusion and Future Work

In this paper, we propose a new POMDP framework using
boolean-valued preconditions to guarantee that the optimized
policy contains only feasible actions. This requires to adapt
the decision scheme, and so the optimization criterion and



maze4x3 (11s/4a/6o) p.1 h.50 maze4x5x2 (39s/4a/4o) p.1 h.100 hallway (60s/5a/21o) p.1 h.250 hallway2 (92s/5a/17o) p.1 h.250

Reward Time(s) |Γ| Reward Time(s) |Γ| Reward Time(s) |Γ| Reward Time(s) |Γ|
PBVI 0.089 5.913 25 0.061 191.86 166 0.470 1747 251 0.204 4489 491

HSVI2 0.015 65.25 260 -0.077 14.29 1132 0.480 2729 935 0.258 313.3 2047

PCVI- 0.072 8.344 27 -0.064 373.4 201 0.482 3140 273 0.202 6236 482

PCVI 0.540 0.880 3 0.634 43.60 24 0.516 1305 259 0.310 973.7 278

PCVI+ 0.552 2.757 7 0.470 53.77 23 0.541 1670 262 0.344 977.5 291

aircraft (12s/6a/5o) p.1 h.50 iff (104s/4a/22o) p.30 h.100 tiger-grid (36s/5a/17o) p.10 rockSample4x4 (257s/9a/2o) p.100

Reward Time(s) |Γ| Reward Time(s) |Γ| Reward Time(s) |Γ| Reward Time(s) |Γ|
PBVI 12.84 114.2 26 7.262 5839 420 0.579 2343 418 16.29 15893 65

HSVI2 13.26 0.065 3 -7.163 2839 13983 0.532 5432 14168 18.15 1.059 287

PCVI- 12.13 142.8 23 7.746 10322 421 0.617 2295 399 16.77 5683 111

PCVI 14.30 129.4 35 7.257 4093 244 0.625 1046 286 16.36 8423 94

PCVI+ 15.02 120.3 22 8.425 7480 344 0.632 841.6 220 15.81 26922 76

p. = penalty, h. = horizon, |Γ| = number of α-vectors, PCVI- = support-states, PCVI = additional information, PCVI+ = mixed

Table 1: Multi-algorithm performance comparison.
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Figure 3: Navigation problems performance ; PCVI- = support-states, PCVI = additional information, PCVI+ = mixed

corresponding value update equation, for which we demon-
strate the contraction property.

The implementation results, with a modified version of
PBVI named PCVI, confirm that our approach guarantees
to never apply forbidden actions at execution, independently
from any tricky hand-tuning of penalties. Furthermore, this
approach shows competitive results in terms of performances:
useful pruning on constrained problems, good rate of goal
achievement, higher rewards and value.

We intend to extend the approach and study other aggrega-
tion operators for the value function of a belief b as a function

of the value of its successor b̃. We also intend to extend the
approach with efficient state-of-the-art heuristic search algo-
rithms : modified HSVI2 or SARSOP for instance, which will
require to adapt the belief update scheme, backup operator
and heuristics for the boolean-valued precondition functions.

References

[Cassandra, 1998] A.R. Cassandra. Exact and approximate algo-
rithms for partially observable Markov decision processes. PhD
thesis, Brown University Providence, RI, USA, 1998.

[Ghallab et al., 2004] M. Ghallab, D.S. Nau, and P. Traverso. Auto-
mated Planning: theory and practice. Morgan Kaufmann, 2004.

[Ingrand et al., 2007] F. Ingrand, S. Lacroix, S. Lemai-Chenevier,
and F. Py. Decisional autonomy of planetary rovers. Journal of
Field Robotics, 24(7):559–580, 2007.

[Kurniawati et al., 2008] H. Kurniawati, D. Hsu, and W.S. Lee.
SARSOP: Efficient point-based POMDP planning by approxi-
mating optimally reachable belief spaces. In Proc. RSS, 2008.

[Pineau et al., 2003] J. Pineau, G. Gordon, and S. Thrun. Point-
based value iteration: An anytime algorithm for POMDPs. In
Proc. of IJCAI, 2003.

[Smith and Simmons, 2005] Trey Smith and Reid G. Simmons.
Point-based POMDP algorithms: Improved analysis and imple-
mentation. In Proc. UAI, 2005.

[Sondik, 1971] E.J. Sondik. The optimal control of partially ob-
servable Markov processes, 1971.

[Spaan and Vlassis, 2004] M.T.J. Spaan and N. Vlassis. A point-
based POMDP algorithm for robot planning. In ICRA, 2004.

[Younes and Littman, 2003] H.L.S. Younes and M.L. Littman.
PPDDL1.0: An extension to PDDL for expressing planning do-
mains with probabilistic effects. In In Proc. of ICAPS, 2003.


