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Abstract

This paper studies the use of POMDP-like techniques
to tackle an online multi-target detection and recogni-
tion mission by an autonomous rotorcraft UAV. Such
robotics missions are complex and too large to be solved
off-line, and acquiring information about the environ-
ment is as important as achieving some symbolic goals.
The POMDP model deals in a single framework with
both perception actions (controlling the camera’s view
angle), and mission actions (moving between zones and
flight levels, landing) needed to achieve the goal of the
mission, i.e. landing in a zone containing a car whose
model is recognized as a desired target model with suf-
ficient belief. We explain how we automatically learned
the probabilistic observation POMDP model from sta-
tistical analysis of the image processing algorithm used
on-board the UAV to analyze objects in the scene. We
also present our ”optimize-while-execute” framework,
which drives a POMDP sub-planner to optimize and ex-
ecute the POMDP policy in parallel under action dura-
tion constraints, reasoning about the future possible ex-
ecution states of the robotic system. Finally, we present
experimental results, which demonstrate that Artificial
Intelligence techniques like POMDP planning can be
successfully applied in order to automatically control
perception and mission actions hand-in-hand for com-
plex time-constrained UAV missions.

Introduction

Target detection and recognition by autonomous Unmanned
Aerial Vehicules (UAVs) is an active field of research (Wang
et al. 2012), due to the increasing deployment of UAV sys-
tems in civil and military missions. In such missions, the
high-level decision strategy of UAVs is usually given as a
hand-written rule (e.g. fly to a given zone, land, take image,
etc.), that depends on stochastic events (e.g. target detected
in a given zone, target recognized, etc.) that may arise when
executing the decision rule. Because of the high complexity
of automatically constructing decision rules, called policy,
under uncertainty (Littman, Cassandra, and Pack Kaelbling
1995; Sabbadin, Lang, and Ravoanjanahary 2007), few de-
ployed UAV systems rely on automatically-constructed and
optimized policies.

When uncertainties in the environment come from imper-
fect action execution or environment observation, high-level
policies can be automatically generated and optimized using
Partially Observable Markov Decision Processes (POMDPs)
(Smallwood and Sondik 1973). This model has been suc-
cessfully implemented in ground robotics (Candido and
Hutchinson 2011; Spaan 2008), and even in aerial robotics
(Miller, Harris, and Chong 2009; Schesvold et al. 2003;
Bai et al. 2011). Yet, in these applications, at least for the
UAV ones, the POMDP problem is assumed to be available
before the mission begins, allowing designers to have plenty
of time to optimize the UAV policy off-line.

However, in a target detection and recognition mission
(Wang et al. 2012), if viewed as an autonomous sequen-
tial decision problem under uncertainty, the problem is not
known before the flight. Indeed, the number of targets, zones
making up the environment, and positions of targets in these
zones, are usually unknown beforehand and must be auto-
matically extracted at the beginning of the mission (for in-
stance using image processing techniques), in order to define
the sequential decision problem to optimize. In this paper,
we study a target detection and recognition mission by an
autonomous UAV, modeled as a POMDP defined during the
flight after the number of zones and targets has been online
analyzed. We think that this work is challenging and original
for at least two reasons: (i) the target detection and recogni-
tion mission is viewed as a long-term sequential decision-
theoretic planning problem, with both perception actions
(changing view angle) and mission actions (moving between
zones, landing), for which we automatically construct an op-
timized policy ; (ii) the POMDP is solved online during the
flight, taking into account time constraints required by the
mission’s duration and possible future execution states of the
system.

Achieving such a fully automated mission from end to
end requires many technical and theoretical pieces, which
can not be all described with highest precision in this pa-
per due to the page limit. We focus attention on the POMDP
model, including a detailed discussion about how we statis-
tically learned the observation model from real data, and on
the “optimize-while-execute” framework that we developed
to solve complex POMDP problems online while executing
the currently available solution under mission duration con-
straints. The next section introduces the mathematical model



of POMDPs. In Section 3, we present the POMDP model
used for our target detection and recognition mission for an
autonomous rotorcraft UAV. Section 4 explains how we op-
timize and execute the POMDP policy in parallel, dealing
with constraints on action durations and probabilistic evo-
lution of the system. Finally, Section 5 presents and dis-
cusses many results obtained while experimenting with our
approach, showing that Artificial Intelligence techniques can
be applied to complex aerial robotics missions, whose de-
cision rules were previously not fully automated nor opti-
mized.

Formal baseline framework: POMDP

A POMDP is a tuple 〈S,A,Ω, T, O,R, b0〉 where S is a set
of states, A is a set of actions, Ω is a set of observations,
T : S × A × S → [0; 1] is a transition function such that
T (st+1, a, st) = p(st+1 | a, st), O : Ω × S → [0; 1] is
an observation function such that O(ot, st) = p(ot|st), R :
S × A → R is a reward function associated with a state-
action pair, and b0 is an initial probability distribution over
states. We note ∆ the set of probability distributions over
the states, called belief state space. At each time step t, the
agent updates its belief state defined as an element bt ∈ ∆
using Bayes’ rule (Smallwood and Sondik 1973).

Solving POMDPs consists in constructing a policy func-
tion π : ∆ → A, which maximizes some criterion generally
based on rewards averaged over belief states. In robotics,
where symbolic rewarded goals must be achieved, it is usu-
ally accepted to optimize the long-term average discounted
accumulated rewards from any initial belief state (Cassan-
dra, Kaelbling, and Kurien 1996; Spaan and Vlassis 2004):

V π(b) = Eπ

[

∞
∑

t=0

γtr(bt, π(bt))

∣

∣

∣

∣

∣

b0 = b

]

(1)

where γ is the actualization factor. The optimal value V ∗ of
an optimal policy π∗ is defined by the value function that
satisfies the bellman’s equation:

V
∗(b) = max

a∈A

[

∑

s∈S

r(s, a)b(s) + γ
∑

o∈O

p(o|a, b)V ∗(boa)

]

(2)

Following from optimality theorems, the optimal value of
belief states is piecewise linear and convex (Smallwood and
Sondik 1973), i.e, at a step n < ∞, the value function can
be represented by a set of hyperplanes over ∆, known as α-
vectors. An action a(αi

n) is associated with each α-vector,
that defines a region in the belief state space for which this
α-vector maximizes Vn. Thus, the value of a belief state can
be defined as Vn(b) = maxαi

n∈Vn
b · αi

n. And an optimal

policy in this step will be πn(b) = a(αb
n).

Recent offline solving algorithms, e.g. PBVI (Pineau,
Gordon, and Thrun 2003), HSVI2 (Smith and Simmons
2005), SARSOP (Kurniawati, Hsu, and Lee 2008) and sym-
bolic PERSEUS (Poupart 2005), and online algorithms as
RTDP-bel (Bonet and Geffner 2009) and AEMS (Ross and
Chaib-Draa 2007) approximate the value function with a
bounded set of belief states B, where B ⊂ ∆. These al-
gorithms implement different heuristics to explore the belief

state space, and update the value of V , which is represented
by a set of α-vectors (except in RTDP-bel), by a backup op-
erator for each b ∈ B explored or relevant. Therefore, V is
reduced and contains a limited number |B| of α-vectors.

Multi-target detection and recognition mission

Mission description

We consider an autonomous Unmanned Aerial Vehicle
(UAV) that must detect and recognize some targets under
real-world constraints. The mission consists in detecting and
identifying a car that has a particular model among several
cars in the scene, and land next to this car. Due to the na-
ture of the problem, especially partially observability due to
the probabilistic belief about cars’ models, it is modeled as
a POMDP. The UAV can perform both high-level mission
tasks (moving between zones, changing height level, land)
and perception actions (change view angle in order to ob-
serve the cars). Cars can be in any of many zones in the
environment, which are beforehand extracted by image pro-
cessing (no more than one car per zone).

The total number of states depends on many variables that
are all discretized: the number of zones (Nz), the height
levels (H), the view angles (NΦ), the number of targets
(Ntargets) and car models (Nmodels), and a terminal state
that characterizes the end of the mission. As cars (candidate
targets) can be in any of the zones and be of any possible
models a priori, the total number of states is:

|S| = Nz ·H ·NΦ · (Nz ·Nmodels)
Ntargets + Ts

where Ts represents the terminal states.
For this application case, we consider 4 possible obser-

vations, i.e. |Ω| = 4, in each state: {car not detected, car
detected but not identified, car identified as target, car iden-
tified as non-target}. These observations rely on the result
of image processing (described later).

As mentioned before, the high level mission tasks per-
formed by the autonomous UAV are: moving between zones,
changing height level, land. The number of actions for mov-
ing between zones depends on the number of zones con-
sidered. These actions are called go to(ẑ), where ẑ repre-
sents the zone to go to. Changing the height level also de-
pends on the number of different levels at which the au-

tonomous UAV can fly. These actions are called go to(ĥ),

where ĥ represents the desired height level. The land ac-
tion can be performed by the autonomous UAV at any mo-
ment and in any zone. Moreover, the land action finishes
the mission. We consider only one high level perception ac-
tion, called change view: change view angle when observ-
ing a given car, with two view angles Φ = {front, side}.
So, the total number of actions can be computed as: |A| =
Nz +H + (NΦ − 1) + 1.

Model dynamics

We now describe the transition and reward models. The ef-
fects of each action will be formalized with mathematical
equations, which rely on some variables and functions de-
scribed below, that help to understand the evolution of the
POMDP state.



State variables The world state is described by 7 discrete
state variables. We assume that we have some basic prior
knowledge about the environment:. there are two targets that
can be each of only two possible models, i.e. Nmodels =
{target, non− target}. The state variables are:

1. z with Nz possible values, which indicates the UAV’s po-
sition;

2. h with H possible values, which indicates its height lev-
els;

3. Φ = {front, side}, which indicates the view angle be-
tween the UAV and the observed car;

4. Idtarget1 (resp. Idtarget2 ) with Nmodels possible values,
which indicates the identity (car model) of target 1 (resp.
target 2);

5. ztarget1 (resp. ztarget2 ) with Nz possible values, which
indicates the position of target 1 (resp. target 2).

Transition and reward functions To define the model dy-
namics, let us characterize each action with:

• effects: textual description explaining how state variables
change after the action is applied;

• transition function T ;

• reward function R.

Concerning the notation used, the primed variables represent
the successor state variables, and the variable not primed
represent the current state. In addition, let us define the
indicative function : I{cond} equal to 1 if condition cond
holds, or to 0 otherwise; this notation is used to express
the Bayesian dependencies between state variables. Another
useful notation is δx(x

′) equal to 1 if x = x′, or to 0 other-
wise; this notation allows us to express the possible different
values taken by the successor state variable x′.

Based on previous missions with our UAV, we know that
moving and landing actions are sufficiently precise to be
considered deterministic: the effect of going to another zone,
or changing flight altitude, or landing, is always determinis-
tic. However, the problem is still a POMDP, because obser-
vations of cars’ models is probabilistic ; moreover, it has
been proved that the complexity of solving POMDPs essen-
tially comes from probabilistic observations rather than from
probabilistic action effects (Sabbadin, Lang, and Ravoan-
janahary 2007).

Moreover, in order to be compliant with the POMDP
model, which assumes that observations are available after
each action is executed, all actions of our model provide an
observation of cars’ models. The only possible observation
after the landing action is non detected, since this action does
not allow the UAV to take images of the environment. All
other actions described in the next automatically take im-
ages of the scene available in front of the UAV, giving rise to
image processing and classification of observation symbols
(see later). As the camera is fixed, it is important to control
the orientation of the UAV in order to observe different por-
tions of the environment.

action go to(ẑ) This action brings the UAV to the desired
zone. The dynamics is described next, but note that if the
UAV is in the terminal state (Ts), this action has no effects
and no cost (what is not formalized bellow).

• Effects: the UAV moves between zones.

• Transition function:

T (s′, go to(ẑ), s) = δẑ(z
′)δh(h

′)δΦ(Φ
′)

δIdtarget1
(Id′target1)δztarget1

(z′target1)

δIdtarget2
(Id′target2)δztarget2

(z′target2)

which, according to the definition of function δ previously
mentioned, is non-zero only for the transition where post-
action state variables s′ are all equal to pre-action state
variables s, but the target zone z′ that is equal to ẑ.

• Reward function: R(s, go to(ẑ)) = Cz,ẑ , where Cz,ẑ <
0 represents the cost of moving from z to ẑ. For this mo-
ment we chose to use a constant cost Cz , because actual
fuel consumption is difficult to measure with sufficient
precision on our UAV. And also, because the automatic
generation of the POMDP model does not take into ac-
count zone coordinates. Zone coordinates are needed for
computing the distance between zones in order to model
costs proportionaly to zones’ distances.

action go to(ĥ) This action leads the UAV to the desired
height level. Like action go to(ẑ), if the UAV is in the termi-
nal state (Ts), this action has no effects and no cost.

• Effects: the UAV changes to height level ĥ.

• Transition function:

T (s′, go to(ĥ), s) = δz(z
′)δ

ĥ
(h′)δΦ(Φ

′)

δIdtarget1
(Id′target1)δztarget1

(z′target1)

δIdtarget2
(Id′target2)δztarget2

(z′target2)

• Reward function: R(s, go to(ĥ)) = C
h,ĥ

, where C
h,ĥ

<

0 represents the cost of changing from height level h to

ĥ. This cost also models the fuel consumption depending
on the distance between altitudes. These costs are typi-
cally higher than costs for moving between zones. For the
same reason as the previous action, we also chose to use
a constant cost such that Cz < Ch.

action change view This action changes the view angle of
the UAV when observing cars. Due to environmental con-
straints, we assume that all cars have the same orientations
in all zones (as in parking lots for instance), so that each
view angle value has the same orientation for all zones. Like
the previous actions, if the UAV is in the terminal state (Ts),
this action has no effects and no cost.

• Effects: the UAV switches its view angle (front to side and
vice versa).



• Transition function:

T (s′, change view, s) = δz(z
′)δ

ĥ
(h′)

(I{Φ=front}δside(Φ
′) + I{Φ=side}δfront(Φ

′))

δIdtarget1
(Id′target1)δztarget1

(z′target1)

δIdtarget2
(Id′target2)δztarget2

(z′target2)

• Reward function: R(s, change view) = Cv , where
Cv < 0 represents the cost of changing the view angle. It
is represented by a constant cost that is higher than costs
of all other actions. Following our previous constant cost
assumptions: Cv ≥ Ch > Cz .

action land This action finalizes the UAV mission, leading
the autonomous UAV to the terminal state. If the UAV is in
the terminal state (Ts), this action has no effects and no cost.

• Effects: the UAV finishes the mission, and goes to the ter-
minal state.

• Transition function: T (s′, land, s) = δTs
(s′)

• Reward function:

R(s, land) = I{(z=ztarget1
)&(Idtarget1

=target)}Rl+

I{(z=ztarget2
)&(Idtarget2

=target)}Rl+

I{(z=ztarget1
)&(Idtarget1

=non−target)}Cl+

I{(z=ztarget2
)&(Idtarget2

=non−target)}Cl+

I{(z!=ztarget1
)&(z!=ztarget2

)}Cl

where Rl > 0 represents the reward associated with a
correctly achieved mission (the UAV is in the zone where
the correct target is located) and Cl < 0 represents the
cost of a failed mission. Note that: Rl ≫ Cv ≥ Ch >
Cz ≫ Cl.

Observation model

POMDP models require a proper probabilistic description of
actions’ effects and observations, which is difficult to obtain
in practice for real complex applications. For our target de-
tection and recognition missions, we automatically learned
from real data the observation model, which relies on im-
age processing. We recall that we consider 4 possible ob-
servations in each state: {no car detected, car detected but
not identified, car identified as target, car identified as non-
target}. The key issue is to assign a prior probability on the
possible semantic outputs of image processing given a par-
ticular scene.

Car observation is based on an object recognition al-
gorithm based on image processing (Saux and Sanfourche
2011), already embedded on-board in our autonomous UAV.
It takes as input one shot image (see Fig. 1(a)) that comes
from the UAV onboard camera. First, the image is filtered
(Fig. 1(b)) to automatically detect if the target is in the im-
age (Fig. 1(c)). If no target is detected, it directly returns
the label no detected. If a target is detected, the algorithm
takes the region of interest of the image (bounding rectan-
gle on Fig. 1(c)), then generates a local projection and com-
pares it with the 3D template silhouettes on a data base of

oi p(oi|s)

car not detected 0.045351
car detected but not identified 0.090703

car identified as target 0.723356
car identified as non-target 0.140590

Table 1: Probability observation table learned from statis-
tical analysis of the image processing algorithm answers
using real data, with s = {z = ztarget1 , Idtarget1 =
target, h = 30, ztarget2 6= z, Idtarget2 = non − target}.

car models (Fig. 1(d)). The local projection only depends on
the UAV height level, and camera focal length and azimuth
as viewing-condition parameters. The height level is known
at every time step, and the focal length and the camera az-
imuth are fixed parameters. Finally, the image processing al-
gorithm chooses the 3D template that maximizes the similar-
ity (for more details see (Saux and Sanfourche 2011)), and
returns the label that corresponds or not to the searched tar-
get: car identified as target or car identified as non-target. If
the level of similarity is less than a hand-tuned threshold, the
image processing algorithm returns the label car detected
but not identified.

In order to learn the POMDP observation model from real
data, we performed many outdoor test campaigns with our
UAV and some known cars. It led to an observation model
learned via a statistical analysis of the image processing al-
gorithm’s answers based on the images taken during these
tests. More precisely, to approximate the observation func-
tion O(ot, st), we count the number of times that one of the
four observations (labels) was an output answer of the im-
age processing algorithm in a given state s. So, we compute
O(oi, s) = p(oi|s), where oi is one of the 4 possible obser-
vations:

p(oi|s) ≃
1

Nexp

Nexp
∑

n=1

I{on=oi|s}, Nexp ≫ 1.

where Nexp represents the number of experiences, i.e. the
number of runs performed by the image processing algo-
rithm with respect to the different images, and on the label
obtained at experience n. Note that we have access to more
than 500 images for each state, so that Nexp ≫ 1 and the sta-
tistical approximations may be good enough. Table 1 shows
an example of observation probability obtained after learn-
ing in a given state.

Optimize-while-execute framework

Large and complex POMDP problems can rarely be op-
timized off-line, because of lack of sufficient computa-
tional means. Moreover, the problem to solve is not al-
ways known in advance, e.g. our target detection and recog-
nition missions where the POMDP problem is based on
zones that are automatically extracted from on-line im-
ages of the environment. Such applications require an ef-
ficient on-line framework for solving POMDPs and execut-
ing policies before the mission’s deadline. We worked on
extending the optimize-while-execute framework proposed



(a) Input image (b) Filtering (c) Car detection (d) Matching

Figure 1: Target detection and recognition image processing based on (Saux and Sanfourche 2011).

in (Teichteil-Konigsbuch, Lesire, and Infantes 2011), previ-
ously restricted to deterministic or MDP planning, to on-line
solve large POMDPs under time constraints. Our extension
is a meta planner that relies on standard POMDP planners
like PBVI, HSVI, PERSEUS, AEMS, etc., which are called
from possible future execution states while executing the
current optimized action in the current execution state, in
anticipation of the probabilistic evolution of the system and
its environment. One of the issues of our extension was to
adapt the mechanisms of (Teichteil-Konigsbuch, Lesire, and
Infantes 2011) based on completely observable states, to be-
lief states and point-based paradigms used by many state-of-
the-art POMDP planners (Pineau, Gordon, and Thrun 2003;
Ross and Chaib-Draa 2007). This framework is differ-
ent from real-time algorithms like RTDP-bel (Bonet and
Geffner 2009) that solve the POMDP only from the current
execution state, but not from future possible ones as we pro-
pose.

We implemented this meta planner with the anytime
POMDP algorithms PBVI (Pineau, Gordon, and Thrun
2003) and AEMS (Ross and Chaib-Draa 2007). AEMS is
particularly useful for our optimize-while-execute frame-
work with time constraints, since we can explicitly control
the time spent by AEMS to optimize an action in a given be-
lief state. The meta planner handles planning and execution
requests in parallel, as shown in Fig. 2. At a glance, it works
as described in the following:

1. Initially, the meta-planner plans for an initial belief state
b using PBVI or AEMS during a certain amount of time
(bootstrap).

2. Then, the meta-planner receives an action request, to
which it returns back the action optimized by PBVI or
AEMS for b.

3. The approximated execution time of the returned action is
estimated, for instance 8 seconds, so that the meta plan-
ner will plan from some next possible belief states using
PBVI or AEMS during a portion of this time (e.g. 2 sec-
onds each for 4 possible future belief states), while exe-
cuting the returned action.

4. After the current action is executed, an observation is re-
ceived and the belief state is updated to a new b′, for which
the current optimized action is sent by the meta-planner to
the execution engine.

This framework proposes a continuous planning algorithm

that fully takes care of probabilistic uncertainties: it con-
structs various policy chunks at different future probabilistic
execution states.

Furthermore, as illustrated in Fig. 2, planning requests and
action requests are the core information exchanged between
the main component and the planning component. Inter-
estingly, each component works on an independent thread.
More precisely, the main component, which is in charge
of policy execution, runs in the execution thread that inter-
acts with the system’s execution engine. It competes with
the planning component, which is in charge of policy opti-
mization. The planning component runs in the optimization
thread that drives the sub-POMDP planner.

Hence, due to thread concurrency, some data must be
protected against concurrent memory access with mutexes:
planning requests, and the optimized policy. Depending on
the actual data structures used by the sub-POMDP planner,
read and write access to the policy may be expensive. There-
fore, in order to reduce CPU time required by mutex pro-
tection and to improve the execution thread’s reactivity, we
backup the policy after each planning request is solved.

In addition, in real critical applications, end-users often
want the autonomous system to provide some basic guaran-
tees. For instance, in case of UAVs, operators require that
the executed policy never puts the UAV in danger, what may
happen in many situations like being out of fuel. Another
danger may come from the lack of optimized action in the
current system state, due to the on-line optimization process
that has not yet computed a feasible action in this state. For
that reason it is mandatory that the meta-planner provides
a relevant applicable action to execute when queried by the
system’s execution scheme according to the current execu-
tion state. It can be handled by means of an application-
dependent default policy, which can be generated before
optimization in two different ways: either a parametric off-
line expert policy whose parameters are on-line adapted to

main component

meta planner

AEMS (b)
or

PBVI (b)

b → a∗

planning request

action request

Figure 2: Meta planner planning / execution schema.



the actual problem; or a heuristic policy quickly computed
on-line before computing the optimal policy. Simple but
complete heuristic POMDP policies, for instance based on
the QMDP approximation proposed by (Littman, Cassandra,
and Pack Kaelbling 1995), can be quickly generated.

Experimental results
Up to now, we performed complete realistic “hardware in
the loop” simulations, i.e. using the exact functional archi-
tecture and algorithms used on-board our UAV, a Yamaha
Rmax adapted to autonomous flights, as well as real outdoor
images. Real flights are being tested at the time we write this
article. In this section, we present a deep analysis of results
obtained during our realistic simulations.

The instance of the problem considered has 2 height levels
(30 and 40 meters), 2 view angles (front and side), 2 targets
and 2 car models, and 3 zones, which leads to 433 states.
Recall that we have 4 observation variables. The aim is to
land next to the car whose model is presented in Fig. 1(d);
however, the models of the cars is unknown at the begin-
ning of the mission. The meta-planner on-line framework
presented in the previous section is a good option for this
problem because: (1) the number of zones is discovered in
flight, making it impossible to solve the problem before the
mission starts, and (2) the POMDP algorithms used – PBVI
or AEMS – do not converge within the mission duration
limit.

Note that PBVI and AEMS are point-based algorithms
that approximate the value function for a set of relevant be-
lief states. PBVI chooses the set of belief states by perform-
ing stochastic trials from the initial belief state. AEMS con-
structs a belief state tree beginning from the initial belief
state and expanding this belief tree according to heuristic
guidance means.

We consider two initial belief states that represent 2 dif-
ferent initial view angles and the fact that we do not know
about the positions and the models of cars: b10 (resp. b20) is
a uniform probability distribution over the 12 states {z =
1, h = 40, φ = front, ztarget1 6= ztarget2 , Idtarget1 6=
Idtarget2} (resp. {z = 1, h = 40, φ = side, ztarget1 6=
ztarget2 , Idtarget1 6= Idtarget2}), The reward function is
based on the following constants: Cz = −5, Ch = −1,
Cv = −1, Rl = 10, and Cl = −100. The duration
of an action is represented by a uniform distribution over
[T a

min, T
a
max], with T a

min = 4s and T a
max = 6s, which is

representative of durations observed during preliminary test
flights. We recall that we consider static targets.

The observations are characterized by the output of the
image processing algorithm (Saux and Sanfourche 2011),
which runs in parallel in a concurrent thread, and which is
launched as soon as an action is performed. The simulator,
which knows the real state of the world, takes an image from
the data base and sends it to the image processing algorithm,
which returns an observation to the execution component.

Figure 3 shows the timelines for the meta-planner exe-
cution process. It represents the periods of time where the
policy is optimized (optimization thread) or executed (exe-
cution thread) – both running in parallel –, as well as the
evolution of the Bellman error during the mission. After a
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(b) AEMS

Figure 3: Timelines for PBVI and AEMS implementations
of the optimize-while-execute framework starting from b10.

first bootstrap duration (where only the optimization thread
is active), we can notice that the optimization process contin-
ues for a short time period. Then, small optimization chunks
are still processed when new planning requests are sent to
the planner, because the policy was previously not fully op-
timized in the current belief state during previous optimiza-
tion chunks. The evolution of the Bellman error, reported
for each planning request during optimization, emphasizes
the evolution of the optimization process. In Fig. 3(a) the
value function does not converge for all belief states in the
relevant belief set, contrary to 3(b) where the optimization
process has converged for the current (sliding) belief state.
The reason is that AEMS is more efficient than PBVI, so
that it has enough time to optimize the future possible belief
states while executing actions. We can notice that the exe-
cution thread still goes on, but optimization chunks are very
short because the Bellman error is already very small when
beginning to optimize from each current belief state.

Figure 4 shows results for planning times and mission
success percentages, for the 2 underlying POMDP solvers
PBVI and AEMS driven by the optimize-while-execute
framework: the average mission total time (on-line) repre-
sents the time until the end of the mission (i.e. limit time
step); the average planning time represents the time taken
by the optimization thread, that is very close to the mission
total time for the PBVI algorithm, because it cannot con-
verges during the mission time. These average results were
computed over 50 test runs for each instance of the problem
with a limit horizon of 20 steps ; each test run was a com-
plete mission (optimization and execution in parallel from
scratch). To make a comparison, we drown an offline mission
time that would correspond to optimizing the problem off
line (still during the flight after the zones are extracted from
the environment in-flight), then executing the optimized pol-
icy.

Figure 4 also presents the percentage of default actions
and achieved goals. We aim at showing that, depending on
the underlying algorithm used (PBVI or AEMS), the plan-
ning thread does not react as fast as expected, and more de-
fault actions can be performed. We recall that default policy
used guarantee reactivity in case the optimized policy is not
available in the current execution state. The default policy
was quickly computed before computing the optimal policy.
We chose a heuristic policy based on the QMDP approxima-
tion proposed by (Littman, Cassandra, and Pack Kaelbling
1995).
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Figure 4: Averaged results for PBVI and AEMS implementations of the optimize-while-execute framework, starting either from
belief state b10 or from b20.

The average number of achieved goals (the UAV has
landed in the zone containing the car that has the correct tar-
get model) is close to 100%, what shows that our approach
allows the UAV to achieves its mission very well on aver-
age. But, for this kind of partial observable problem where
the real nature of the targets is not known, and where the
observation model is not exactly due to imprecision of the
observation model learned from the image processing algo-
rithm, we think that if targets positions are not static it may
be impossible to achieve the goal 100% of the time.

Figures 5(a) and 5(b) present the averaged return taken
over 50 real policy executions, statistically computed as:

V π(st) =
1

50

∑

50

[

t
∑

k=0

γkr(sk, π(bk))|b0, sk

]

(3)

Note that the simulator uses its knowledge about the envi-
ronent (i.e. the state st and all sk), to attibuate the rewards
while simulating. This equation allows us to show the ac-
cumulated rewards from the time step zero until time step
t.

For PBVI, regardless of the initial belief state, the aver-
age return gathered during policy execution tends to be less
important than for AEMS. We believe that this difference
comes from the fact that PBVI is less reactive (efficient) than
AEMS so that more default actions are performed, which are
not optimal for the belief in which they were applied.

Finally, we counted the number of times that a
change view action was chosen by the policy, in order to
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Figure 5: Average rewards for PBVI and AEMS implemen-
tations of the optimize-while-execute framework, starting ei-
ther from belief state b10 or from b20.

evaluate the impact of the “perception action”. For the ini-
tial belief state b10 (i.e. Φ = front), this action was chosen
2 times over 50 runs for PBVI, and also 2 times for AEMS.
And, for b20 (i.e. Φ = side): 50 times with PBVI and 50
times for AEMS too. We believe that this behavior comes
from the observation model, which is more discriminative
when Φ = front than when Φ = side: from an initial be-
lief with Φ = front, the policy optimization algorithm does
not find interesting to change the observation view angle.

Conclusion and future work

To the best of our knowledge, this paper presents one of the
first POMDP-based implementations of a target detection
and recognition mission by an autonomous rotorcraft UAV.
Our contribution is threefold: (i) we model perception and
mission actions in the same decision formalism using a sin-
gle POMDP model; (ii) we statistically learn a meaningful
probabilistic observation model of the outputs of an image
processing algorithm that feeds the POMDP model; (iii) we
provide practical algorithmic means to optimize and execute
POMDP policies in parallel under time constraints, what is
required because the POMDP problem is generated during
the flight. We analyzed experiments conducted with a real-
istic “hardware in the loop” simulation based on real data,
which demonstrate that POMDP planning techniques are
now mature enough to tackle complex aerial robotics mis-
sions, on condition of using some kind of “optimize-while-
execute” framework, as the one proposed in this paper.

At the time of writing this paper, we are embedding our
decision-making components on-board the real UAV and
beginning to conduct real outdoor flights. Many improve-
ments can be considered for future research: analyzing the
impact of different initial belief states on the optimized strat-
egy; taking into account safety constraints imposed by civil
aeronautical agencies when optimizing the strategy; build-
ing POMDP policies that are robust to imprecise observation
models.
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