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Abstract

We propose to use the observer-based algorithm of

Ramdani, Tucsnak and Weiss [29] for the initial state

recovery of the wave equation involved in thermoacous-

tic tomography. We proved the rate of convergence of

the iterative algorithm to the observable part of the ini-

tial state. We performed 3D numerical test in the rel-

evant case where the measurement is performed on a

grid of transducers on a half-sphere.

1. Introduction

In medical imaging, we mostly need to recover the

initial (or final) state of a physical system from partial

observation over some finite time interval. In general,

measurements are performed outside the body. This

constraint leads to incomplete data. For instance in

breast or kidney imaging, we cannot expect a measure-

ment all around the object of interest. In this paper we

investigate the problem of data recovery with this lack

of information. In other words, we investigate systems

which are not exactly observable (more than one initial

state lead to the same observation).

In the last decade, new algorithms based on time

reversal (see Fink [9, 10]) have been proposed for data

recovery. We can mention, for instance, the Back and

Forth Nudging proposed by Auroux and Blum [2], the

Time Reversal Focusing by Phung and Zhang [27], the

algorithm proposed by Ito, Ramdani and Tucsnak [18]

and finally, the one we will consider in this paper, the

algorithm studied in [29].

In thermoacoustic tomography, the problem is to

recover the initial state of a wave equation from sur-

face measurements (see Gebauer and Scherzer [12]).

For mathematical issues related to this medical imag-

ing technique, see for instance the survey of Kuchment

and Kunyansky [19].

Various methods have been used to tackle the prob-

lem of thermoacoustic tomography, such as inverse

source concepts in Fourier domain [1], Fourier series

[20, 21, 22] and time reversal method [17]. A new

method has been proposed in [30], based on time rever-

sal and leading to a Neumann series. It has been studied

in recent works [28, 26]. Finally, observer-based algo-

rithm for data assimilation [2] has been successfully ap-

plied to thermoacoustic tomography [3].

We propose the use of the iterative observer-based

algorithm of [29], which also leads to a Neumann

series as it is proven in Proposition 2.2. However, it

involves only the resolution of direct wave equations

in practice. Our main result, Theorem 2.1, shows that

the algorithm converges at least polynomially to the

initial state. Moreover, in the case of incomplete data,

we prove that it converges to the observable part of the

initial state.

Let us state our mathematical inverse problem. We

consider the wave equation in the whole domain R
3,

with initial position compactly supported in a bounded

open set Ω ⊂ R
3. More precisely, let w0 ∈ H1

0 (Ω), and

consider the following system





∂ 2

∂ t2
w(x, t) = ∆w(x, t), ∀x ∈ R

3, t ≥ 0,

w(x,0) = w0(x), ∀x ∈ Ω,

w(x,0) = 0, ∀x ∈ R
3 \Ω,

∂

∂ t
w(x,0) = 0, ∀x ∈ R

3.

(1)

The observation is performed on a surface surrounded

the initial state. We then suppose that we observe

the state w on ∂Ω, during a time interval [0,τ], with

τ ≥ diam(Ω), where diam(Ω) is the supremum of the

path rays from boundary to boundary Ω (see typical

configuration on Fig. 1). This last assumption will lead

to a well-posed inverse problem. However, our method

allows to consider ill-posed cases. For instance, we

could observe only on a part of the boundary, as it is

done in the numerical tests.



Figure 1: Cut in the plane containing diam(Ω) of an

example of configuration.

The paper is organized as follows. In Section 2,

we described the algorithm of [29] and state Theorem

2.1. In Section 3, we prove that thermoacoustic tomog-

raphy fits into our framework, and leads to a well-posed

inverse problem when we observe on a closed surface

surrounding the body. In Section 4, we test the accuracy

of this method, with both complete and partial observa-

tion, in presence of white noise.

2. The observer-based algorithm

Let X be Hilbert spaces and A be a skew-adjoint

operator on X . We investigate the initial state recovery

of {
ż(t) = Az(t), ∀t ≥ 0,

z(0) = z0 ∈ X .
(2)

Such systems are often used to model vibrating sys-

tems (acoustic or elastic waves) or quantum systems

(Schrödinger equations).

Let Y be another Hilbert space and C ∈ L (X ,Y ).
We suppose that we have access to z through the opera-

tor C, during a time interval [0,τ], τ > 0, leading to

y(t) =Cz(t), ∀t ∈ [0,τ]. (3)

We call C the observation operator.

For systems described by evolution partial differ-

ential equations (i.e. when A is a differential operator

in the space variables on a domain Ω), C ∈ L (X ,Y )
generally correspond to measurement on a subdomain

O ⊂ Ω, as unbounded observation operator correspond

mostly to measurement on the boundary of Ω. We will

see that the observation operator corresponding to ther-

moacoustic tomography is bounded, i.e. C ∈ L (X ,Y ).

Let Ψτ be the operator which maps z0 on y. The in-

verse problem is well-posed when Ψτ is left-invertible,

with continuous inverse. This will be the case if and

only if Ψτ is bounded from below

∃kτ > 0, ‖Ψτ z0‖ ≥ kτ‖z0‖, ∀z0 ∈ X . (4)

The pair (A,C) is said to be exactly observable in time

τ when relation (4) holds.

Let us introduce the algorithm proposed by Ram-

dani, Tucsnak and Weiss [29] in the particular case of a

skew-adjoint generator and bounded observation opera-

tor, when (A,C) is exactly observable in time τ > 0. Let

T
+ (respectively T

−) be the exponentially stable C0-

semigroup generated by A+ = A− γC∗C (respectively

A− = −A− γC∗C), for some γ > 0 (see Liu [23]). For

all n ∈ N
∗, we define the following systems (called re-

spectively the forward and backward observers)





ż+n (t) = A+z+n (t)+ γC∗y(t), ∀t ∈ [0,τ],
z+1 (0) = z+0 ∈ X ,

z+n (0) = z−n−1(0), ∀n ≥ 2,

(5)

{
ż−n (t) =−A−z−n (t)− γC∗y(t), ∀t ∈ [0,τ],
z−n (τ) = z+n (τ), ∀n ≥ 1.

(6)

The forward error e+n (t) = z+n (t)− z(t) verifies





ė+n (t) = (A− γC∗C)e+n (t), ∀t ∈ [0,τ],
e+1 (0) = z+0 − z0 ∈ X ,

e+n (0) = e−n−1(0), ∀n ≥ 2,

and the backward error e−n (t) = z−n (t)− z(t) verifies

{
ė−n (t) = (A+ γC∗C)e−n (t), ∀t ∈ [0,τ],
e−n (τ) = e+n (τ), ∀n ≥ 1.

So, we have

∥∥z−n (0)− z0

∥∥≤
∥∥T−

τ T
+
τ

∥∥n∥∥z+0 − z0

∥∥ . (7)

According to Ito, Ramdani and Tucsnak [18,

Lemma 2.2] we have α = ‖T−
τ T

+
τ ‖L (X) < 1 and thus

‖z−n (0)− z0‖ ≤ αn‖z+0 − z0‖ −→
n→∞

0.

In the case of exactly observable systems, we call sys-

tems (5)–(6) forward and backward observers as it is a

generalization to infinite dimensional systems of the so-

called Luenberger’s observer [24], well-known in con-

trol theory.

If we drop the exact observability assumption, we

get the following result.

Theorem 2.1 Let X and Y be Hilbert spaces. As-

sume that A is a skew-adjoint operator on X and C ∈
L (X ,Y ). Denote by A+ = A− γC∗C and A− = −A−
γC∗C for some γ > 0 and z+n and z−n the solutions of (5)

and (6) respectively, and let Ψτ ∈ L (X ,L2([0,τ),Y ))
be the operator which maps z0 on y (via (3)). Fur-

thermore, we denote by Π the orthogonal projector

from X onto (Ker Ψτ)
⊥

, then we have for all z0 ∈ X,

z+0 ∈ (Ker Ψτ)
⊥

:
2



1. z−n (0) ∈ (Ker Ψτ)
⊥

for all n ≥ 1 and

∥∥(I −Π)
(
z−n (0)− z0

)∥∥= ‖(I −Π)z0‖ .

2. The sequence (‖z−n (0)−Πz0‖)n≥1 verifies

∥∥z−n (0)−Πz0

∥∥= o

(
1

n

)
.

3. The convergence is exponential, i.e. there exists a

constant α ∈ (0,1), independent of z0 and z+0 , such

that

∥∥z−n (0)−Πz0

∥∥≤ αn
∥∥z+0 −Πz0

∥∥ , ∀n ≥ 1,

if and only if Ψτ is bounded from below on

(Ker Ψτ)
⊥

.

Remark 2.1 In practice, it is not easy to characterize

the kernel Ker Ψτ . However, it is often possible to char-

acterize a subspace of this kernel, and from this a class

of initial data z0 the algorithm can reconstruct. Fur-

thermore, the first guess z+0 can be taken equal to zero,

ensuring the assumption z+0 ∈ (Ker Ψτ)
⊥

. Then, start-

ing from zero and identifying a class of available initial

data, we do not need to know Π anymore.

The only part of the theorem that is not proved in

[14] is the polynomial rate of convergence.

Let L=T
−
τ T

+
τ |(Ker Ψτ)

⊥ . From [14], we know that

L ∈ L

(
(Ker Ψτ)

⊥
)

is a positive self-adjoint operator,

satisfying ‖Lz‖ < ‖z‖ for all z ∈ (Ker Ψτ)
⊥ \{0}. Fur-

thermore, we have

∥∥z−n (0)−Πz0

∥∥= ‖Ln
(
z+0 −Πz0

)
‖.

Let z ∈ (Ker Ψτ)
⊥

, ‖z‖ = 1. Since ‖Ln+1z‖ <

‖Lnz‖ we have

‖Ln+1z‖< ‖Lnz‖

⇒
1

n+1
ln‖Ln+1z‖<

1

n
ln‖Lnz‖

⇔ ‖Ln+1z‖
1

n+1 < ‖Lnz‖
1
n .

So that the sequence defined by u0 = 1 and un =
∥∥∥∥Ln z

‖z‖

∥∥∥∥

1
n

for n ≥ 1 is strictly decreasing and thus con-

verges in [0,1), for all z ∈ (Ker Ψτ)
⊥

. From Cauchy’s

rule, ∑
∞
n=0 Lnz = ‖z‖∑

∞
n=0 Ln z

‖z‖
is absolutely con-

vergent. In particular ‖Lnz‖ = o

(
1

n

)
, for all z ∈

(Ker Ψτ)
⊥

.

Proposition 2.2 Under the assumptions and notation

of Theorem 2.1, suppose that z+0 = 0. Denote by z−(0)
the first approximation of z0 obtain after one forward-

backward cycle of (5)–(6). Then we have

Πz0 =
∞

∑
n=0

Lnz−1 (0). (8)

Remark 2.2 Thus, at least theoretically, the recon-

struction of the observable part of the initial state is

given by (8). Note that the computation of the first

term in the above sum requires to solve the two non-

homogeneous systems (5) and (6), while the terms for

n ≥ 1 involve the resolution of the two homogeneous

systems associated with (5) and (6) (i.e. for y ≡ 0). In

practice, this leads to a gain in computation time.

Let z+0 = 0. After one forward–backward cycle of

(5)–(6), we have

T
−
τ T

+
τ z0 = z0 − z−(0).

Taking the projection on (Ker Ψτ)
⊥

and using [14,

Corollary 3.7], we get

(I −L)Πz0 = z−(0).

So that if we can invert the operator (I −L), we obtain

Πz0 = (I −L)−1z−(0).

If ‖L‖ < 1, the result is trivial, but it can be equal to 1.

However, in the proof of Theorem 2.1, we saw that

∞

∑
n=0

Lnz, ∀z ∈ (Ker Ψτ)
⊥
,

is absolutely convergent. An easy computation shows

that this is the inverse of (I −L).

3. Application to Thermoacoustic Tomog-

raphy

The main difficulty is that the problem is set on the

whole space, and thus we cannot expect to obtain exact

observability (because of geometric optic conditions of

Bardos, Lebeau and Rauch [4]).

Let us start by the addition of boundary conditions

on a sufficiently large bounded domain. Thus we will be

able to rewrite the problem in the suitable abstract form

(2)–(3).

When w0 ∈ C∞(R3), the solution of (1) is given

by the well-known Poisson-Kirchhoff formula [8, p. 72

equation (21)]

w(x, t) =
∂

∂ t
(tSw0(x)) , ∀x ∈ R

3
, t ≥ 0, (9)
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where S f (x, t) =
∫

|v|=1
f (x+ tv)dσ(v) is the spherical

mean operator. In particular, this formula implies that

the solution is supported in Ωt = {y ∈ R
3 | |x − y| ≤

t,x ∈ Ω}, for all t ≥ 0. This phenomena is known as

Huygens’ principle [8, p. 80]. We can thus add an arti-

ficial condition (for instance Dirichlet condition) on the

boundary of

Ωτ+ = {y ∈ R
3 | |x− y| ≤ τ + ε,x ∈ Ω},

for some fixed ε > 0, and get that the solution of (1) is

also the solution of (until time τ + ε)





∂ 2

∂ t2
w(x, t) = ∆w(x, t), ∀x ∈ Ωτ+ , t ∈ [0,τ],

w(x, t) = 0, ∀x ∈ ∂Ωτ+ , t ∈ [0,τ],
w(x,0) = w0(x), ∀x ∈ Ω,

w(x,0) = 0, ∀x ∈ Ωτ+ \Ω,

∂

∂ t
w(x,0) = 0, ∀x ∈ Ωτ+ .

(10)

Of course, for t ≤ τ , the Poisson-Kirchhoff formula re-

mains true. In the sequel, we denote by w both the so-

lutions of (1) and (10).

Let γ0 ∈ L

(
H1

0 (Ωτ+),H
1
2 (∂Ω)

)
be the Dirichlet

trace operator. We define

D (A0) = H2(Ωτ+)∩H1
0 (Ωτ+), H = L2(Ωτ+),

A0 =−∆ : D (A0)−→ H,

and

D

(
A

1
2
0

)
= H1

0 (Ωτ+)→ H
1
2 (∂Ω), Y = L2(∂Ω),

C0 = γ0 : D

(
A

1
2
0

)
→ H

1
2 (∂Ω) →֒ Y.

We can rewrite (10) (we forget the assumption on the

support of w0 here)





ẅ(t)+A0w(t) = 0, ∀t ∈ [0,τ],

w(0) = w0 ∈ D

(
A

1
2
0

)
,

ẇ(0) = w1 ∈ H.

As our algorithm (5)–(6) is written for first-order sys-

tems, we also introduce the following definitions

z(t) =

[
w(t)
ẇ(t)

]
, X = D

(
A

1
2
0

)
×H,

A =

(
0 I

−A0 0

)
, D (A) = D (A0)×D

(
A

1
2
0

)
,

C ∈ L (X ,Y ), C =
[
C0 0

]
,

to obtain
{

ż(t) = Az(t), ∀t ∈ [0,τ],
z(0) = z0 ∈ X ,

and

y(t) =Cz(t), ∀t ∈ [0,τ].

It is clear that A is skew-adjoint, C is bounded, but

(A,C) is not exactly observable in time τ in general.

Indeed, there exists configurations where the geometric

optic condition of Bardos, Lebeau and Rauch [4] fails,

as on Fig. 2. We define the observers z+n and z−n by (5)-

Figure 2: Cut in the plane containing diam(Ω) of an

example of configuration, with artificial boundary con-

dition, without exact observability: the dashed ray is

trapped.

(6), for some gain parameter γ > 0, using the operators

A+ =

(
−γC∗

0C0 I

−A0 0

)
, A− =

(
−γC∗

0C0 −I

A0 0

)
.

On second order form, i.e. with

z+n (t) =

[
w+

n (t)
w̃+

n (t)

]
, z−n (t) =

[
w−

n (t)
w̃−

n (t)

]
,

the observers (5)–(6) take the following form





ẇ+
n (t) =−γC∗

0C0w+
n (t)

+w̃+
n (t)+ γC∗

0y(t), ∀t ∈ [0,τ],
˙̃w
+
n (t) =−A0w+

n (t), ∀t ∈ [0,τ],
w+

1 (0) = 0,

w̃+
1 (0) = 0,

w+
n (0) = w−

n−1(0), ∀n ≥ 2,

w̃+
n (0) = w̃−

n−1(0), ∀n ≥ 2,

(11)





ẇ−
n (t) = γC∗

0C0w−
n (t)

+w̃−
n (t)− γC∗

0y(t), ∀t ∈ [0,τ],
˙̃w
−
n (t) =−A0w−

n (t)(t), ∀t ∈ [0,τ],
w−

n (τ) = w+
n (τ), ∀n ≥ 1,

w̃−
n (τ) = w̃+

n (τ), ∀n ≥ 1.

(12)

4



Note that ẇ±
n (t) = w̃±

n (t) correspond to the case when

γ → ∞ (see Chapelle, Cı̂ndea, De Buhan and Moireau

[5] for more details on this type of observers). How-

ever, it is well-known (see for instance [16, 25]) that

there exists an optimal value for γ , with an overdamp-

ing phenomena for larger choice. Of course, this opti-

mal value depends on the observation surface, and we

expect it to be different for the three cases we will test

in the following section.

It remains to show that the compactly supported

initial state considered in thermoacoustic tomography

belongs to (Ker Ψτ)
⊥

to apply Theorem 2.1.

Suppose that w0 ∈ C∞
0 (Ωτ+) is compactly sup-

ported in Ω (which can be supposed connected without

loss of generality) and leads to an output y ≡ 0, i.e. that

(w0,0)∈ (C∞
0 (Ωτ+)×{0})∩Ker Ψτ . Then the solution

of (1) verifies

w(x, t) = 0, ∀x ∈ ∂Ω, t ∈ [0,τ].

From Poisson-Kirchhoff formula (9), we easily show

that

w(x, t) = 0, ∀x ∈ ∂Ω, t ∈ [0,τ]

=⇒ Sw0(x)(t) = 0, ∀x ∈ ∂Ω, t ≥ 0,

where S is the spherical mean operator. Then we apply

[19, Corollary 2] to prove injectivity

Sw0(x)(t) = 0, ∀x ∈ ∂Ω, t ≥ 0 =⇒ w0 ≡ 0.

We conclude by the density of C∞
0 (Ωτ+) in H1

0 (Ωτ+).

4. Numerical simulations

We implement the algorithm on GMSH [13] and

GetDP [6] to test the accuracy of our approach. To

speed up the time resolution, we use the formula (8)

(GetDP is optimized for the resolution of homogeneous

linear problems). The optimal value for the gain param-

eter is a difficult issue (see [16] for the string equation

case), we then perform different simulations in each

case and select the best for the corresponding observa-

tion (we tested γ = 1, 5, 15 and 30).

In these first tests performed on a coarse mesh, we

observe on a sphere of radius 0.5 surrounding the sup-

port of the initial data to recover, with gain parameter

γ = 5. We add Gaussian noise to the observation, with

0.25 of deviation.

We see that this algorithm is quite efficient on

Fig. 3, even with the white noise that is not taken into

account in the theoretical framework. After 10 itera-

tions, we reached less than 5% of relative error in L2.

In practice, it is not relevant to measure on a surface

surrounding the initial state. We know from Theorem

Figure 3: Initial state (left) and the reconstructed state

(right) from complete data after 10 iterations. This pic-

tures are obtained from the three planes XY, YZ and

XZ, passing by (−0.125,−0.125,−0.125). The color

scale are the same for all pictures.

2.1 that the observer-based algorithm will converge to

the observable part of the initial data in any case. Sup-

pose now that we observe only on a half-sphere, since

the initial velocity is null, the information spread out

in all directions, and we can hope, intuitively, to re-

construct some non null part of the initial data. This

is what we tested in the next simulation. We use the

same mesh and the same observation, but truncated on

a half-sphere, and the same gain parameter γ = 5. We

see on Fig. 4 that the initial state, despite the lack of ob-

servation, is quite well reconstructed. We reached near

to 20% of relative error in L2. Of course, we cannot

expect a full reconstruction. A further investigation has

to be done to know exactly what is loss in this case. In

other words, (Ker Ψτ)
⊥

has to be explicitly constructed.

5



Figure 4: Initial state (left) and the reconstructed state

(right) from measurement on the half sphere after 10

iterations.

As far as we know, in practice, it is not possible to

measure on a surface. But line detector exists1, so we

can measure the pressure on lines, distributed on a half-

sphere. As a first test, we use a very coarse grid of 10

lines detector as shown on Fig. 5, with γ = 1 (we again

use the same noisy observation than for the previous

tests, truncated on the grid). In spite of this, we see on

Fig. 6 that the reconstructed initial position is sufficient

to localize the default of pressure, used to identify sick

cells in thermoacoustic tomography.

Figure 5: View of the grid used to perform the observa-

tion.

1See for instance http://www.recendt.at/528 ENG HTML.php for

the recent developments to construct such devices.

Figure 6: Initial state (left) and the reconstructed state

(right) from measurement on a coarse grid along the

half sphere after 10 iterations.

Remark that if we do more iterations, we could ex-

pect a better reconstruction. However, the relative error

will start to increase after some numbers of back and

forth cycle of observers. This phenomena is not due to

the specific case we simulated here. In fact, it has been

shown by Haine and Ramdani [15] that, numerically,

there exists an optimal number of iterations, depending

on the mesh parameters in time and space. Using a nu-

merical viscosity method, as in the paper of Ervedoza

and Zuazua [7], we can remove this limitation of the

approach by the algorithm of [29]. It has been done suc-

cessfully in a recent work of Garcı̀a and Takahashi [11].
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Figure 7: Comparison of the evolution of the relative

errors in the three cases, in function of the iterations,

with different gain parameter γ (1, 5 and 15).

5. Conclusion

We proposed an alternative and original way to

solve thermoacoustic tomography, close to the algo-

rithm of [30] based on Neumann series. However, our

method only needs direct wave solver in practice.

Numerical aspects of this approach have to be in-

vestigate in future works, especially to improve the

computation time, quite expensive for the moment, es-

pecially in comparison with the results obtained by

Kunyansky in [21]. Furthermore, while the algorithm

seems to be robust to Gaussian noise in the numeri-

cal tests, theoretical works are needed to add it in the

model.

In this work, we add artificial Dirichlet boundary

conditions sufficiently far away from the support of the

initial state. One could ask if these conditions have an

influence on the algorithm, especially on the numerical

aspects, and if other kind of boundary conditions could

lead to a better rate of convergence.
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[25] A. MÜNCH, P. PEDREGAL, AND F. PERIAGO, Opti-

mal design of the damping set for the stabilization of

the wave equation, J. Differential Equations, 231 (2006),

pp. 331–358.

[26] L. OKSANEN AND G. UHLMANN, Photoacoustic and

thermoacoustic tomography with an uncertain wave

speed, preprint, (2013).

[27] K. D. PHUNG AND X. ZHANG, Time reversal focus-

ing of the initial state for kirchhoff plate, SIAM J. Appl.

Math., 68 (2008), pp. 1535–1556.

[28] J. QIAN, P. STEFANOV, G. UHLMANN, AND H. ZHAO,

An efficient Neumann series-based algorithm for ther-

moacoustic and photoacoustic tomography with vari-

able sound speed, SIAM J. Imaging Sci., 4 (2011),

pp. 850–883.

[29] K. RAMDANI, M. TUCSNAK, AND G. WEISS, Recov-

ering the initial state of an infinite-dimensional system

using observers, Automatica, 46 (2010), pp. 1616–1625.

[30] P. STEFANOV AND G. UHLMANN, Thermoacoustic to-

mography with variable sound speed, Inverse Problems,

25 (2009), p. 075011.

8


