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ABSTRACT

In this paper, we present the implementation of the acquisi-

tion algorithm of a versatile Global Navigation Satellite Sys-

tem (GNSS) receiver for satellite applications. For versatil-

ity purpose, the choice of the receiver algorithms has been

motivated by 1) their capability to fulfill the application re-

quirements with a moderate complexity, 2) their capability of

being factorized in a small set of elementary modules that can

be configured and combined in various ways in order to pro-

cess both GPS and Galileo current and future signals. These

algorithms have been specified using SystemC, a modeling

language that can be common to hardware and software flow.

The use of a virtual platform for simulation allows us to iden-

tify bottleneck of the architecture and to propose algorithm

modification to solve them.

Index Terms— GNSS algorithm, Co-design, Versatility,

SystemC.

1. INTRODUCTION

This paper presents the current status of a project aiming

to construct a flexible Global Navigation Satellite System

(GNSS) receiver to be placed on board in a satellite. This

receiver should be flexible in order to cope several types of

GNSS signals (GPS, Galileo as well as future signal). It

should also be able to give a position solution for different

type of satellite mission (Low, Medium, Geostationary Earth

Orbiter), each mission having different characteristics in term

of Doppler excursion, range of SNR, mean duration of visi-

bility of a GNSS satellite.

This project has been divided in 5 different phases: 1) def-

inition of the system requirement for the different types of

mission based on existing GNSS system [1], 2) selection and

validation of acquisition algorithm using criteria of flexibil-

ity, performance and low complexity [2], 3) selection of the

architecture model and the associated design methodology,

4) design of the decoder, 5) chip conception and validation

before first lift-off on a satellite. At the moment, the project

is in the middle of its fourth phase.

The objectives of this paper are double. First, it presents

a design experience based on a hardware/software coherent

developing environment allowing algorithm refinement from

specification validation down to implementation. Second, it

discuss the interaction between the selected architecture and

the algorithm partition and configuration. Preliminary result

are also given.

After a brief recall on GNSS signals, the second section de-

scribes the acquisition process and the algorithm that will

be implemented in order to acquire GNSS signals. This

description shows the different stages involved in the acqui-

sition process. The third section shows the necessary steps

toward an effective implementation of the receiver. The de-

sign methodology and tools used during this project are also

presented. The fourth section presents the design and imple-

mentation of the receiver acquisition algorithm. An example

of early performance analysis and optimization shows the

benefits of this design process. Finally, section five draws the

conclusions and the perspectives.

2. ACQUISITION ALGORITHM

2.1. The GNSS L1 signals

The algorithm is adapted to process the GPS-L1 Coarse Ac-

quisition (C/A) signal as well as the Galileo-E1 Open Ser-

vice (OS) signal which are CDMA signals. Data are therefore

modulated by a spreading code. For both signals, the expres-

sion of the sampled complex signal at the input of the receiver

can be defined by:

sn =
√

CD(n − τ)Se(n − τ)ej(ϕ0+2πfdnTs) + nn (1)

Where τ is the unknown code phase, C is the power of the

signal, D ∈ [±1] is the data signal, Se ∈ [±1] is the spread-

ing signal, ϕ0 is the carrier phase, fd is the unknown resid-

ual frequency after carrier wipe-off, Ts is the sampling pe-

riod and nn is an additive Gaussian white noise. The Doppler



frequency fd and the code delay τ are considered constant

over the coherent integration time. The GPS-L1 carrier fre-

quency is fL1 = 1575.42 MHz. The L1 C/A signal is mod-

ulated by a 1023-chip spreading code at a chip rate fCA =
1.023 MHz, the pseudo-period is then 1 ms [4]. This signal

is also named BPSK(1), taking fCA as reference frequency.

The data rate is 50 b.s−1, one bit is therefore modulated by

20 spreading code sequences.

The Galileo-E1 signal is emitted at the same carrier frequency

than GPS-L1. To accomplish the spectral separation from

GPS C/A signal, the Galileo OS spreading code is modu-

lated by a squarewave subcarrier scs(n). The signal modu-

lated by this sub-carrier is called BOC(n,m) (Binary Offset

Carrier) with n = fsc/fCA and m = fc/fCA, where fsc

is the frequency of the sub-carrier and fc is the frequency of

the spreading code. The sharper auto-correlation peak (fig-

ure 1) enables more accurate code tracking than with GPS

C/A, and good multipath resolution. In order to further en-

hance the tracking performances in the presence of multipath,

Galileo OS signal is composed of 2 BOC signals: BOC(1,1)

and BOC(6,1). Multipath is not a critical problem for space

applications, we will therefore demodulate Galileo OS signal

as a BOC(1,1). The correlation loss is then LC = 0.84 dB [7]

but the number of computations will be be much smaller. The

spreading code length is 4092 chips and the pseudo-period is

then 4 ms. The data rate is 250 b.s−1; thus each data value

multiplies a single pseudo-period of the spreading sequence.

Moreover, a pilot channel is provided. This dataless chan-

nel allows to increase the coherent integration time during the

correlation process.

2.2. Signal acquisition

The purpose of the acquisition is to find a coarse estimation

{f̂d, τ̂} of the unknown value {fd, τ}. The acquisition pro-

cess is then a two-dimensional (code delay and frequency)

search for the correlation peak over an uncertainty region.

The search along the code delay axis is performed for each

Fig. 1. ACF for BOC(1,1) and BPSK(1) signals

sample of the spreading code. The sampling frequency is

determined from the signal bandwidth and the receiver dy-

namic. In order to reduce the transition phase, used for PLL

convergence, before tracking phase, the search precision has

been fixed to 1/4 chip for Low Earth Orbit (LEO) applica-

tion. The sampling frequency is then Fs = 4.096 MHz for

GPS C/A and Fs = 8.192 MHz for Galileo OS (twice the

spectrum bandwidth). Thus, the number of search bins along

the time axis for GPS C/A and Galileo OS is respectively

4096 and 32768. The search precision has been fixed to 1/2
chip for GEO application. Thus, the sampling frequency can

be chosen equal to the spectrum bandwidth.

Along the frequency axis, the search is related to the receiver

application. The Doppler frequency range is 84 KHz for a

LEO mission, whereas it is 16 KHz for a Geostationary Earth

Orbit (GEO) mission [1]. For both signal the coherent inte-

gration time (Tcoh) is 8 ms and the frequency step is chosen

as [2]: ∆f = 1/Tcoh = 125 Hz.

The search over the frequency axis (fd) is then performed

over 84000/125 = 672 bins in case of LEO mission and 128

bins in case of GEO mission.

The threshold of the correlation decision is fixed to obtain

a false probability equal to 10−3. The value of the miss-

detection probability depends on the C/N0 ratio. In the

frame of this study, the miss-detection probability must re-

main smaller than 10−1. This value can be easily reached in

the frame of LEO mission (see [2]). For GEO mission the

integration process must be performed in two stages: 1) a

coherent integration over a duration of 8 ms which is adapted

to the frequency step and 2) a non-coherent integration in

order to provide a miss-detection probability equal to 10−1.

The correlation process is shown figure 2. A non-coherent

square-law detector is added in order to eliminate the carrier

signal after the coherent integration. The coherent integration

time is obtained from N1 × N2 samples where N1 is the

number of samples over the spreading code sequence and

N2 is the number of spreading sequences over the coherent

integration time. The total integration time is N1×N2×N3
where N3 is the number of non-coherent integrations. For

GEO mission, N3 = 7 in order to acquire satellite with a

C/N0 = 30 dBHz [2].

Fig. 2. Acquisition process

Unlike GPS ACF, the BOC ACF has multiple peaks and the

risk of wrong peak selection should be considered (see figure

1). The Sub-Carrier Phase Cancellation technique (SCPC)

[6] has been implemented here in order to cope with this

problem. To summarize this section, the main parameters of

the acquisition module are shown in the table 1.



GPS/LEO GPS/GEO Galileo/LEO Galileo/GEO

N1 4096 2048 32768 16384

N2 8 8 2 2

N3 1 7 1 7

Table 1. Search Array size

2.3. Acquisition algorithm

The previous section shows how complex is the acquisition

process. Fast acquisition approaches, based on the correla-

tion by Fast Fourier Transform (FFT), could be used in order

to reduce the delay of the acquisition processing. These meth-

ods lead to reduce the number of arithmetic operations for the

computation of the autocorrelation function. Thus, many de-

signs use a one-dimensional FFT to explore the code delay

axis (τ ) whereas the frequency axis (fd) is swept by frequency

translation.

We propose here a technique, based on a size scalable FFT in

order to explore both dimensions (code delay and frequency)

at once. The algorithm is described in [3], it leads to a re-

duction of 50% of the number of computations for the search

of 1 satellite, compared to the classic FFT method. Once the

Fig. 3. Correlator unit

N1 × N2 × N3 samples have been collected over the inte-

gration time, the following process is applied (see figure 3):

1. A FFT, stored in buffer X1, is performed on the N1 ×
N2 samples.

2. The buffer X2 is organized to provide N2 columns

of N1 samples. Each column corresponding to one

pseudo-sequence period. Let r2 be the index of the

columns with r2 = 0..N2 − 1 and r1 = 0..N1 − 1.

X2(r2, r1) = X1(r2 + N2 × r1)

3. The correlation is performed in the frequency domain

on the N2 columns for N2 values of the Doppler fre-

quency.

4. N2 inverse FFT of N1 points are performed in order

to explore the frequency domain over a range equal to

N2 × 125 Hz (1KHz for GPS, 250Hz for Galileo).

These two last stages must be iterated several times while

shifting the local replica in order to cover the whole frequency

domain. And the whole process is iterated N3 times for non-

coherent integration.

Figure 4 presents the result of the algorithm applied on real

signal. The signal detected is from GPS Satellite Vehicle

Number (SVN) 36. It has been acquired with N1 = 4096,

N2 = 8, N3 = 1 (LEO configuration) and the estimates

{f̂d, τ̂n} are {−3.625 KHz, 3024}.

The next section presents the design methodology that has

Fig. 4. Acquisition of GPS SVN36

been implemented in order to prototype this algorithm in a

FPGA.

3. METHODOLOGY

3.1. Context

Core electronic components for satellite payloads are mainly

ASICs and OTP (One Time Programmable) FPGA due to

the constraints of space environment. One of the main draw-

backs of these components is that they are not reconfigurable.

Therefore, applications can’t be upgraded during the life

span of the satellite, up to 20 years. Embedded proces-

sors can provide reconfigurability and allow the designer to

achieve high component integration. Although environments

nowadays permit to perform transactional level modeling of

hardware/software systems, none of them offers the possibil-

ity to easily modify the architecture and migrate tasks from

hardware to software (and vice versa) without recoding (due

to the different languages) and to completely refine up to a

hardware-software embedded product.

3.2. Versatility

The algorithms have been studied in order to find commonal-

ities that could be factorized. Thus, we have reduced the nav-

igation algorithms into a set of basic processing algorithms

that can be configured and combined in various ways to build

a signal processing chain for signal acquisition and tracking.

Each of these processing modules can be configured with a

small set of parameters, such as the length of the correlation.

The idea is to implement a pool of modules that can be con-

figured in order to form a processing chain. The real-time

flexibility of the receiver will be ensured by on-the-fly config-

uration of signal processing chains during mission. A config-



uration arbiter will select and configure available modules in

order to build a chain for a specific signal.

3.3. design methodology and tools

In order to avoid tedious language conversions and time con-

suming validation phases, the design language should be

common to hardware and software flow. The higher level

of abstraction would also lead to a reduction of design time.

We have chosen SystemC, a set of C++ classes and macros,

which is an emerging standard for the description of hard-

ware models. High level synthesis tools, supporting C-based

languages, are now available from EDA providers.

Fig. 5. Y approach

We have adopted the well-known ’Y’ approach which sepa-

rates the application from the architecture (see figure 5). First,

the receiver algorithms have been specified with SystemC on

a software development tool : Microsoft VisualC++ Express.

For architectural exploration down to prototyping, we have

used Space Studio, a tool from Space Codesign Systems.

This tool allows the designer to partition the algorithm into

modules and to map these modules onto an architecture [8].

This architecture, also named virtual platform, consists of a

set of IPs modeled at the transactional level. The aim of the

methodology is to delay the choice of a partition as late as

possible in the design flow. Simulation and implementation

analysis are then available in order to help the designer to

choose an architecture.

Once validated, the user modules have been synthesized with

Catapult, a high-level synthesizer from Mentor Graphics.

Space Studio generates a Catapult project for each module

and Catapult offers then the possibility to analyze and explore

the micro-architecture of hardware modules. Thanks to the

flow, several architectures can be easily generated and com-

pared.

The receiver has been prototyped on a Xilinx FPGA. Space

Studio generates the Xilinx EDK project, which is then used

to place/route and to program the component.

This design flow can be followed top-down for implemen-

tation refinement or bottom-up for detailed simulations and

design space exploration. The next section presents the de-

tails of the implementation of the acquisition algorithm.

4. IMPLEMENTATION OF THE ALGORITHM

4.1. Algorithm modeling

Due to the C++ syntax and the templates provided, Sys-

temC allows the designer to achieve fast implementation

of the algorithms. The purpose of this untimed functional

(UTF) model, also named Programmer view (PV) model,

is to validate the algorithms as well as to analyze the data

flow between the various tasks. SystemC provides also data

types, such as fixed point, the effects of the quantization on

the computations can then be easily studied. The time can

also been modeled with SystemC, as in VHDL or Verilog.

Thus, time-dependent effects, such as the Doppler, can be

precisely modeled. The algorithms has been validated using

real GNSS signals captured by our L1 wide band radiofre-

quency front-end. We have also used signals generated with

Matlab and with a Spirent generator belonging to the CNES

(French space agency) in order to simulate the specifities of

space applications, such as the International Space Station

(ISS) or the satellite Spot5. Once validated, the algorithms

has been divided into modules, with Space Studio, in order to

be mapped on an architecture.

The most difficult task was then to decompose the sequential

application into modules in order to exhibit enough paral-

lelism to exploit the concurrency offered by the architecture.

The modules can be untimed (PV) or approximately timed,

Programmer View Timed (PVT), for more realistic assess-

ment of performances. The granularity of the partition should

not be too small because each module will be implemented

with at least one communication interface, to the bus or to

another module. Then, many modules lead to many interfaces

and a larger physical implementation. The aim was then to

decompose the algorithm into large coherent modules with

common configuration parameters. The micro-architecture

of the modules would be optimized later with the high-level

synthesis tool.



of standard busses, such as ARM AMBA or IBM CoreCon-

nect. The communication is provided by simple functions

that are independent of the channel or the implementation,

software or hardware.

The acquisition algorithm is relatively straightforward, the

3 main modules are the variable-size FFT, the Correlator

and the non-coherent Integrator (see figure 6). Due to the

large number of data to process, the FFT has no local mem-

ory. The samples have a dynamic of 4 bits and, due to the

dynamic of the FFT, the internal computations are stored on

16 bits for real and imaginary parts. The local replicas of

the spreading code are stored in an external ROM memory.

The non-coherent Integrator module is able to process di-

rectly GPS signals or to integrate In-Phase and Quadrature

Galileo signals for SCPC technique (see section 2.2). The

Acquisition module controls the iterations of the acquisition

algorithm for the search on the whole Doppler excursion and

GNSS satellite constellation. The modules are scheduled by

using blocking or non-blocking transactions. Finally, a con-

trol module configures the computation modules for a given

application.

The same sets of signals, used in the previous design phase,

have been used to validate the partitioned algorithm. This

model is bit-true and cycle-approximate (BTCA), and the

purpose is to validate the partition, the communication and

the synchronization between the modules.

Thanks to the debug and analysis tools, bus traffic can be

analyzed early in this phase in order to find possible conges-

tions. The early performance assessment allows the designer

to modify the function or the architecture long before im-

plementation phase, thus reducing the costs and the design

time. One module was particularly time consuming: a de-

tailed analysis of the transactions on the bus shows that the

FFT module spent much more time on transactions than on

computations, unlike other modules such as the Integrator.

As the FFT is versatile, it has no internal memory. It has to

process Ns = N1 × N2 × log2(N1 × N2) samples, that

means 2 × Ns bus transactions (read and write).

We have then adopted a multi-level FFT architecture in order

to reduce the number of accesses to the external memory.

The FFT can be decomposed into successively smaller FFTs

and multiplications with phase factors [9]: a K-point FFT

(K = k1× k2) can be decomposed into successively k2 FFT

of k1 points and k1 FFT of k2 points. The optimized FFT is

based on one flexible FFT module, able to process up to 512

(29) points stored in a local memory, with a phase rotator, and

one configuration module for the scheduling of the levels. For

example, a 32768 (215) points FFT can then be decomposed

into a first level of 64 FFT512 (29), followed by a phase

rotation and a last level of 512 FFT64 (26). The number of

bus accesses performed by the FFT module is then reduced

to 4×N1×N2. The computation time of the FFT is divided

by 3 in the case of a 32768 points FFT. The scheduling of a

GPS C/A acquisition over 1 KHz is shown figure 7.

Fig. 7. Bus traffic analysis

The next phase was to define a virtual platform and to map

the modules onto it.

4.2. Architecture definition and mapping

Due to the constraints of the space environment, the receiver

will have to be implemented in an ASIC. However, in order

to completely validate the design flow, the receiver will be

prototyped in a FPGA. Space Studio propose an IP library for

Xilinx FPGAs. Thus, the MicroBlaze and the OPB bus have

been used for this implementation.

The most computationally intensive blocks, FFT, Correlator

Fig. 8. Virtual Platform mapping

and Integrator, should be implemented on hardware and opti-

mized with the high level synthesis tool. As shown on figure

8, the low level modules, Trigo and SQRT, are not connected

to the bus, but directly to the modules with bi-directional FI-

FOs. They don’t interact with the memories and the direct

links are faster than the bus transactions. Control modules

(Acquisition and Configuration) that could evolve during the



life of the satellite are implemented on processor and sched-

uled by real time OS: µC/OS-II. The design flow facilitates

mapping exploration. We have opted for the platform shown

figure 8.

The next section presents the results of the implementation on

a FPGA.

4.3. Implementation and FPGA prototyping

The acquisition modules have been prototyped on Xilinx Vir-

tex2Pro FPGA : 2VP30. Space Studio generates the Cata-

pult project files in order to synthesize the hardware mod-

ules. The implementation of each module can be then pre-

cisely controlled and analyzed. Once the modules synthe-

sized, the latency of each modules can be interpreted from

Catapult schedule view and then back-annotated in the Space

Studio SystemC model. After this design phase, the simula-

tions are cycle accurate, even for the hardware modules.

Slices DFF Multipliers BlockRAM

Available 13696 27392 136 136

User modules 4744 4723 14 9

Interfaces 2780 2644 0 8

Platform IPs 3313 3592 3 80

Total 10837 10959 17 97

Table 2. Used ressources

The acquisition system occupies 79% of the slices of a 2VP30

FPGA. As shown on table 2, the interfaces between user mod-

ule and busses occupies 25% of the FPGA. This is mainly

due to the 4 interfaces to the OPB bus of the main modules :

Storage, FFT, Correlator and Integrator. As exposed in sec-

tion 4.1, the granularity of user modules should not be too

small in order to implement as few bus interfaces as possi-

ble. Instead, the micro-architecture of the modules should be

optimized with the high level synthesis tool. The platform oc-

cupies 30% of the area. It is composed by a lot of small mod-

ules, such as an UART, and the bigger µBlaze (1407 slices) or

OPB bus (507 slices) and it can’t be optimized a lot further.

On the other hand, user modules use 44% of the slices. These

modules are clearly not optimized, more than 1200 slices are

used for the Correlator module. The micro-architecture has

not been studied yet, this is the on-going phase of the project.

As an example, multipliers have been implemented on DFF

whereas a lot of hardware multipliers are still available. The

coding style is also important, a slight recoding of the FFT

module has led to a reduction of the used resources from 2000

to 800 slices.

With a receiver clock frequency of 100 MHz, the duration of

the search, for LEO application (84 KHz Doppler) with the

GPS constellation (32 satellites), is 2 min 15 sec. As an ex-

ample, the duration for ground application would be 13 sec

with our receiver.

5. CONCLUSION

This study presents a technique to acquire GNSS-L1 signals

in a receiver designed for space environment. Acquisition

algorithm is proposed in order to process GPS and Galileo

signals. The architecture of an acquisition system, based on

1 scalable FFT core, is described. A coherent co-design flow

has been presented and the acquisition algorithm has been

modeled on a virtual platform and implemented in a FPGA

using this tool flow.

The high level language, common to hardware and software,

allows the designer to easily modify the architecture and

to adapt it to the functionality and the requirements. Com-

pared to a conventional approach, the design time has been

reduced to approximately 3 months, from SystemC specifica-

tion down to implementation, without prior knowledge of the

tools. However, efforts should be made on coding style for

hardware implementation in order to optimize the chip area.

The on-going step of the implementation is the optimization

of the micro-architecture with the high level synthesis tool,

Catapult. Several architectures and module implementations

will also be compared in term power consumption, latency

and area.
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