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A frequency-limited H2 model approximation

method with application to a medium-scale

flexible aircraft

Pierre Vuillemin, Charles Poussot-Vassal and Daniel Alazard

Abstract In this paper, the problem of approximating a medium-scale MIMO LTI

dynamical system over a bounded frequency range is addressed. A new method

based on the SVD-Tangential model order reduction framework is proposed. Grounded

on the frequency-limited gramians defined in [5], the contribution of this paper

is to propose a frequency-limited iterative SVD-Tangential interpolation algorithm

(FL-ISTIA) to achieve frequency-limited model approximation without involving

weighting filters. The efficiency of the approach is addressed both on standard

benchmark and on an industrial flexible aircraft model.

1 Introduction

1.1 Motivation

Computer-based modeling software are often used in order to accurately capture the

mathematical model of physical systems or phenomena. They enable to handle com-

plex systems with an enhanced accuracy. These models allow time and cost saving

in the development process, but they often involve a large number of variables and

thus require a lot of resources when analysed or simulated. Some modern analysis

or synthesis tools may thereby become inefficient for such high dimensional models.
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A relevant approach to solve this issue is to approximate the model with a smaller

one.

The reduction process can be subject to several constraints which depend on the

purpose of the model. A commonly used constraint is the closeness between the

reduced-order model input/output behaviour and the full-order one over all frequen-

cies. Though it is a very interesting problem (see [9, 15, 17]), forcing models to

be close over all frequencies may be too binding. Indeed (i) some frequencies are

physically meaningless and can be viewed as uncertainties, (ii) in practice, actuators

and sensors bandwidth are limited which make some frequencies irrelevant for con-

trol purpose and (iii) when vibration control has to be performed, some frequencies

are more specifically of interest. Therefore considering the problem of reducing the

full-order model such that a good approximation is found over a bounded frequency

range can be more appropriate and appealing for engineers. This is the problem

treated in this paper.

1.2 Projection-based problem statement

The reduction problem which consists in approximating a large-scale model by pro-

jection is recalled in Problem 1.

Problem 1. Given a continuous, stable and strictly proper MIMO LTI dynamical

model Σ defined as

Σ :=

{

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t)

(1)

where A∈R
n×n, B∈R

n×nu and C∈R
ny×n. The projection-based model order reduc-

tion problem consists in finding V,W ∈ R
n×r with W TV = Ir such that the reduced-

order model Σ̂ of order r≪ n defined as

Σ̂ :=

{

˙̂x(t) = Âx̂(t)+ B̂u(t)

ŷ(t) = Ĉx̂(t)
(2)

where Â = W T AV , B̂ = W T B and Ĉ = CV , accurately reproduces the behaviour of

the full-order system Σ over the whole frequency domain.

The accuracy can be evaluated through the H2-norm of the error system Σ − Σ̂ .

This measure, called mismatch error, is a good indicator of the global error between

the models and is commonly used in many research papers [9, 15, 17].

1.3 Frequency-limited model approximation problem

In this paper, a similar formulation is addressed for the frequency-limited case (see

Problem 2).



Problem 2. Given a continuous, stable and strictly proper MIMO LTI dynamical

model Σ as in (1), the projection-based frequency limited approximation problem

consists in finding projectors V,W ∈ R
n×r in order to construct the reduced-order

model Σ̂ as in (2) such that Σ̂ well approximates Σ over a given bounded frequency

range.

In this paper, this problem will be tackled for the frequency range [0,ω] be-

cause low frequencies are particularly of interest for the intended applications. The

accuracy of the approximation over [0,ω] will be evaluated through the frequency-

limited H2-norm proposed in [11] and recalled later in Definition 2.

1.4 Paper structure

The paper is divided as follow. In Section 2 some preliminary results on the stan-

dard H2 model approximation are recalled. Then in Section 3, specific tools for

frequency-limited model approximation are presented. In Section 4, the proposed

frequency-limited approximation method is introduced. It is applied and compared

on standard benchmark models and on an industrial flexible aircraft model in Sec-

tion 5. Section 6 concludes this article.

2 Preliminary results on H2 model approximation

2.1 H2-Optimal model approximation

The model approximation problem formulated previously in Problem 1 can be

viewed as the minimization of the following entity

JH2

(

Â, B̂,Ĉ
)

= ‖Σ − Σ̂‖2
H2

(3)

which represents the mismatch error between the full-order and the reduced-order

models in terms of H2-norm, i.e. over the whole frequency range (see Definition 1).

Definition 1 The H2-norm of a stable and strictly proper system Σ whose transfer

function is H(s) =C(sIn−A)−1B, is given by

‖H‖2
H2

=
1

2π j

∫

∞

−∞

trace
(

H( jω)H(− jω)T
)

ds

= trace
(

BT QB
)

= trace
(

CPCT
)

(4)

where P and Q are the controllability and the observability gramians given in the

frequency domain by the following integrals:



P =
1

2π

∫

∞

−∞

T (ν)BBT T ∗(ν)dν (5a)

Q =
1

2π

∫

∞

−∞

T ∗(ν)CTCT (ν)dν (5b)

with T (ν) = ( jνI−A)−1
.

Minimizing JH2
is a non-convex problem, thus finding a global minimizer is

a complex task. Finding a local minimizer is a more tractable problem. The most

commonly used approach consists in derivating the first-order necessary optimality

conditions which have been first addressed by Wilson [17]. Based on the interpo-

latory framework of Grimme [6], the Iterative Rational Krylov Algorithm (IRKA)

proposed in [9] enables to fill these conditions and leads to a local minimizer. How-

ever due to numerical issues, it is rather dedicated to SISO systems. For MIMO

systems, the tangential interpolatory framework [4] seems to be more appropriate.

Equivalent first-order optimality conditions have also been derived for this case [15]

and are recalled in Theorem 1.

Theorem 1 If ∇ÂJH2
= 0,∇B̂JH2

= 0 and ∇ĈJH2
= 0, which are the gradi-

ents of JH2
with respect to Â, B̂ and Ĉ respectively, then the following tangential

interpolation conditions are satisfied for i = 1, . . . ,r :

[H(−λ̂i)− Ĥ(−λ̂i)]b̂i = 0

ĉ∗i [H(−λ̂i)− Ĥ(−λ̂i)] = 0

ĉ∗i
d
ds
[H(s)− Ĥ(s)]|

s=−λ̂i
b̂i = 0

(6)

where the λ̂i are the eigenvalues of Â, {b̂1, . . . , b̂r} = B̂T R and {ĉ1, . . . , ĉr} = ĈL

(where L and R are the left and right eigenvectors associated to λ̂i).

Theorem 1 expresses the necessary conditions to find a local minimum of JH2
.

Hence the optimal model approximation problem consists in finding
{

λ̂i, ĉi, b̂i

}

such that (6) is satisfied. Theorem 2 then makes the link with Problem 1 and shows

how the projectors V and W are constructed to fulfil these conditions.

Theorem 2 Let V ∈C
n×r and W ∈C

n×r be full rank matrices such that W TV = Ir.

Let σi ∈ C
r, b̂i ∈ C

nu and ĉi ∈ C
ny (for i = 1, . . . ,r) be given sets of interpolation

points and left and right tangential directions, respectively. Assume that points σi

are selected such that σiIn−A are invertible. If, for i = 1, . . . ,r,

(σiIn−A)−1Bb̂i ∈ span(V )

and (σiIn−AT )−1CT ĉ∗i ∈ span(W ),
(7)

then, the reduced-order system Ĥ(s) satisfies the tangential interpolation conditions

given in Theorem 1.



The Iterative Tangential Interpolation Algorithm (ITIA) suggested in [15] is a

very efficient way to achieve Theorem 2. The IRKA and ITIA are numerically ef-

ficient and lead to local minimizers of JH2
. Nevertheless they theoretically do not

preserve stability of the full-order model1 and can lead to poor approximant when

applied to ill-conditioned models. Moreover for approximating medium-scale dy-

namical systems, numerical efficiency is less crucial than it can be in (very)large-

scale cases. That is why it may be more adequate to use a method which is heavier

than IRKA or ITIA from a computational point of view but which offers more guar-

antees and more robustness to parameters selection. Such a method has first been

proposed by Gugercin in [7] and is called Iterative SVD-Rational Krylov Algorithm

(ISRKA). It requires to compute only one gramian and it is directly applicable to

SISO, MISO and SIMO systems. A similar algorithm for MIMO systems, called It-

erative SVD Tangential Interpolation Algorithm (ISTIA) has been proposed in [13].

It is the basis of this work and for sake of completeness, its main properties are

recalled there after.

2.2 ISTIA

This algorithm consists in using one single gramian to construct one of the two

projectors involved in the approximation by projection. Indeed one projector is de-

signed by solving one single Lyapunov equation while the second one is iteratively

constructed to achieve one sided tangential interpolation and thus fulfil a subset of

the optimality conditions presented in Theorem 1. For instance, V and W can be

constructed such that

span(V ) =
[

(σ1In−A)−1Bb̂1, . . . ,(σrIn−A)−1Bb̂r

]

(8)

where σi are the shift points and b̂i corresponding right tangential directions, and

W = QV (V T QV )−1 (9)

where Q is the observability gramian. See [7] and [13] for more details on the

selection of interpolation points and for the complete version of the algorithm.

This method is numerically more expensive than the IRKA but it offers also

more guarantees. Indeed, if the full-order model is stable, then the reduced-order

one will be stable as well. The proof can be found in [7]. It consists in considering

that Q = In. Hence, W =V and V TV = Ir. The Lyapunov equation becomes,

AT +A+CTC = 0 (10)

By left and right multiplying (10) by V T and V , it comes

1 Yet in practice it is often the case. Moreover algorithmic procedures such as restarting can be

used to avoid instability.



ÂT + Â+ĈTĈ = 0 (11)

which indicates, by inertia results [12], that Â is stable. For the same reasons as in

[7], Â is even asymptotically stable.

3 Preliminary results on frequency-limited model approximation

So far, only the H2 optimal model approximation has been considered but a lot of

studies concern the model approximation over a bounded frequency range. Useful

tools related to this issue are presented in this section.

3.1 The frequency-weighted approach

The most common approach to tackle the issue of reducing a model over a bounded

frequency interval consists in considering input and/or output filters Wi(s) and Wo(s)
so that the reduction is achieved on the filtered full-order system H̃(s) given by

H̃(s) =Wo(s)H(s)Wi(s) (12)

where H(s) = C(sIn − A)−1B. The weighted model reduction problem has often

been tackled by weighted versions of the balanced truncation, see for instance [8]

and references therein for an overview of these methods. More recently, this problem

has been tackled from an interpolatory point of view, see [3] and [2].

Despite interesting results, the use of weights is very limiting since their choose

is a time consuming and challenging task for engineers. For instance to achieve

frequency-weighted balanced truncation, weights have to be stable and minimum

phase filters. To alleviate this practical difficulty, a weight-free approach is preferred

in this paper.

3.2 Frequency-limited gramians and balanced truncation

In [5], the authors proposed to narrow the frequency range of the integrals in (5a)

and (5b) in order to get gramians in frequency interval [0,ω]:

Pω =
1

2π

∫

ω

−ω

T (ν)BBT T ∗(ν)dν (13a)

Qω =
1

2π

∫

ω

−ω

T ∗(ν)CTCT (ν)dν (13b)

with T (ν) = ( jνIn−A)−1
.



These gramians are solutions of the two following Lyapunov equations:

APω +Pω AT +Wc(ω) = 0 (14a)

AT Qω +Qω A+Wo(ω) = 0 (14b)

where

Wc(ω) = S(ω)BBT +BBT S∗(ω) (15a)

Wo(ω) = S∗(ω)CTC+CTCS(ω) (15b)

and

S(ω) =
1

2π

∫

ω

−ω

T (ν)dν

=
j

2π
log

(

(A+ jωIn)(A− jωIn)
−1
)

(16)

Remark 1

A direct application of the frequency-limited gramians in model order reduction

is the frequency-limited balanced truncation presented in [5]. It consists firstly in

balancing Pω and Qω , that is to say to find a basis so that both gramians are equals

and diagonals:

Pω = Qω = diag
(

σn1
In1

, . . . ,σnq Inq

)

(17)

where σi is a singular value with multiplicity ni. Then the model is classically trun-

cated to obtain the reduced-order model.

Since Wc(ω) and Wo(ω) are not positive semi-definite, the frequency-limited

gramians Pω and Qω are not guaranteed to be positive semi-definite (see [12]).

Hence the reduced-order model obtained this way might be unstable. To preserve

stability, [8] has proposed a modification to this method but it drastically impacts

the quality of the reduced-order model.

As it is mentioned in [8], using frequency-limited gramians for balanced trunca-

tion can be viewed as a frequency-weighted balanced truncation method with perfect

filters.

3.3 H2,ω -norm: frequency-limited H2-norm

The H2-norm is a convenient metric for measuring the quality of an approximant

over the whole frequency range, however it is less relevant if the approximant has to

be good only over a finite frequency interval [0,ω]. In this case, another metric has

to be considered.

A frequency-bounded H2-norm has been addressed in [1] and recalled more

recently in [11] as a restriction of the H2-norm over the frequency range [0,ω].
Its state-space representation directly comes from the definition of the frequency-

limited gramians given in Definition 2.



Definition 2 Given a stable and strictly proper MIMO linear dynamical system Σ

with H(s) =C(sIn−A)−1B, the H2,ω -norm is defined as follow

‖H‖2
H2,ω

=
1

2π

∫

ω

−ω

trace
(

H( jν)H(− jν)T
)

dν

= trace
(

CPωCT
)

= trace
(

BT Qω B
)

(18)

where Pω and Qω are the frequency-limited gramians defined by (13a) and (13b).

Remark 2 Frequency-limited gramians can also be expressed over the frequency

interval Ω = [ω1,ω2]. Indeed, PΩ = Pω2
−Pω1

and QΩ = Qω2
−Qω1

. Hence a

restriction of the H2-norm over the interval Ω can easily be expressed in a similar

way.

Property 1 If H(s) is a stable and strictly proper linear dynamical system, then its

frequency-bounded H2-norm tends towards its H2-norm when the frequency bound

tends towards infinity,

‖H‖H2,ω
−→
ω→∞

‖H‖H2
(19)

Proof. Applying the residue theorem in (18) leads to the result. Another proof can

be found in [16]. �

To illustrate how the H2,ω -norm behaves as a function of ω , the Los-Angeles

hospital model is used (see [10]). It has 48 states, 1 input and 1 output. Its frequency

response and its H2,ω -norm are computed for several values of ω on Figure 1. It

enables to illustrate Property 1 and the fact that the H2,ω -norm evolves by steps.

When ω crosses the abscissa of a peak of the frequency response, the H2,ω -norm of

H(s) crosses a step. This can be viewed as the contribution of the gain of the peak

in the global input/output energy represented by the H2-norm.

4 Frequency-limited Iterative SVD-Tangential Interpolation

Algorithm

The proposed algorithm, namely the Frequency-Limited Iterative SVD-Tangential

Interpolation Algorithm, or FL-ISTIA (see Algorithm 1) is very similar to the IS-

TIA. Indeed, one projector is built through tangential interpolation (step 1 and 9)

whereas the other is obtained through the computation of a gramian. The main

difference lies in the fact that the gramian used to build the second projector is a

frequency-limited gramian.
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Fig. 1 Evolution of the H2,ω -norm against the frequency (Los Angeles hospital model)

For numerical purpose, the right projector W is obtained by enforcing orthog-

onality, as in step 3. Then, from step 4 to 11, the construction of projectors is re-

peated by using as new interpolation points the mirror images of the eigenvalues of

the reduced-order model, and, as new interpolation directions, the right eigenvec-

tors associated with these eigenvalues (steps 6-8). The process is repeated until the

interpolation points variation is smaller than a user defined tolerance ε .

Some remarks about this algorithm can be addressed :

• Unlike the ISTIA, the stability of the reduced-order model cannot be guaran-

teed. Indeed, since Qω (step 2) is not guaranteed to be positive semi-definite, the

reasoning done previously with the ISTIA in Section 2.2 is no longer valid. Yet

in practice, instability has not been observed and numerical procedures such as

restarting can be used to alleviate this drawback.

• The initial shift points are selected so that their modulus is less than the frequency

bound ω , i.e. |σ
(0)
i | ≤ ω , i = 1, . . . ,r. It is done to favour the interpolation of the

full-order model under this bound. A similar constraint could be imposed on the

following interpolation points (step 8) but the selection of tangential directions

would then become an issue.

• The frequency-limited controllability gramian Pω can identically be used in-

stead of the observability one, Qω . In this case, the tangential subspace to be con-

structed is span(W ) =
[

(σ
(i)
1 In−AT )−1CT ĉ1, . . . ,(σ

(i)
r In−AT )−1CT ĉr

]

(where

{ĉ1, . . . , ĉr}= ĈX).



Algorithm 1 Frequency-Limited Iterative SVD-Tangential Interpolation Algorithm

(FL-ISTIA)

Require: A ∈R
n×n, B ∈R

n×nu , C ∈R
ny×n, R ∈R

+∗, {σ
(0)
1 , . . . ,σ

(0)
r } ∈C

n×r with |σ
(0)
i | ≤ R, i =

1, . . . ,r, {b̂1, . . . , b̂r} ∈ C
n×r , ε > 0

1: Construct,

span(V ) =
[

(σ
(0)
1 In−A)−1Bb̂1, . . . ,(σ

(0)
r In−A)−1Bb̂r

]

2: Solve Qω A+AT Qω +Wo(ω) = 0 in Qω

3: Compute W = QωV (V T QωV )−1

4: while |σ (i)−σ (i−1)|> ε do

5: i← i+1, Â =W T AV , B̂ =W T B

6: Compute ÂX = diag(λ (Â))X
7: Compute

[

b̂1, . . . , b̂r

]

= B̂T X−T

8: Set σ (i) =−λ (Â)
9: Construct,

span(V ) =
[

(σ
(i)
1 In−A)−1Bb̂1, . . . ,(σ

(i)
r In−A)−1Bb̂r

]

10: Compute W = QωV (V T QωV )−1

11: end while

12: Construct Σ̂ : (W T AV,W T B,CV )

Ensure: V,W ∈ R
n×r , W TV = Ir and Re

(

λ (Â)
)

< 0

• As in all Krylov-like procedures, to obtain real valued projection V and W ma-

trices and increase computation speed, the starting shift grid should be either

real or complex conjugate. Indeed, one can use the fact that, if, v2 = v∗1, then

span[v1,v2] = span[Re(v1),Im(v1)].
• Since this procedure requires to solve a n-th order Lyapunov equation, it is lim-

ited to medium-scale dynamical systems. It could be extended to larger systems

with the use of low rank approximations of the gramian.

• The FL-ISTIA is equivalent to the ISTIA as ω increases. Indeed, as ω increases,

the realisation given by the FL-ISTIA tends (element-wise) towards the one given

by the ISTIA. This comes from the fact that frequency-limited gramians tends

(element-wise) towards infinite gramians as ω tends towards infinity.

5 Applications

In this section, the Iterative SVD-Tangential Interpolation Algorithm (ISTIA), the

frequency-limited balanced truncation (FL-BT) and the Frequency-Limited Itera-

tive SVD-Tangential Interpolation Algorithm (FL-ISTIA) are compared through

two standard benchmarks and one industrial flexible aircraft model.

The quality of the approximation over [0,ω] is evaluated through the H2,ω -norm

(see Definition 2) of the relative error εω , i.e.:



εω =
‖Σ − Σ̂‖H2,ω

‖Σ‖H2,ω

(20)

5.1 Standard benchmark models case

As a first application of the Iterative Frequency-Limited SVD Tangential Interpo-

lation Algorithm (FL-ISTIA), the clamped beam model is used. It is a standard

benchmark model [10] with 348 states, 1 input and 1 output.

The clamped beam model is reduced to order r = 12 using the three reduction

methods. The upper bound ω of the frequency interval of reduction [0,ω] is gradu-

ally increased from 2rad/s to 20rad/s. Results are represented in Figure 2.
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On this example, the FL-BT and the FL-ISTIA are quite similar excepted from

4rad/s to 8rad/s where the first method fails to correctly reduce the model. This may

come from numerical issues related to the computation of frequency-limited grami-

ans or the balancing of the system. This suggests that the FL-ISTIA is numerically

more reliable.

Figure 2 also clearly illustrates the fact that the FL-ISTIA and the ISTIA be-

come equivalent as ω increases since they lead to the same reduced-order model.

The frequency-limited aspect of the approximation methods considered here is well
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illustrated by Figure 3 where the frequency responses of the error systems are plot-

ted. The upper bound of the frequency interval used in this case was ω = 2,5rad/s.

It appears that the error is very low from 0 to ω = 2,5rad/s and it rises after this

bound.

Similar results can be observed when the procedure is applied to the Los Angeles

hostpital model (see Figure 4).

5.2 Flexible aircraft model case

The second application is done in a similar way on a flexible aircraft model which

comes from the industry. It has 289 states, 4 outputs and 3 inputs.

The flexible behaviour of an aircraft leads to a model with poorly damped modes,

i.e. eigenvalues close to the imaginary axis and its rigid behaviour leads to real

eigenvalues very close to 0. All this make the model very ill-conditioned and thus

hard to reduce with classical approaches [13].

The full-order model is reduced to order r = 12 by the three reduction methods.

The upper bound R of the frequency interval goes from 1rad/s to 40rad/s and the

H2,ω -norm of the relative error is plotted with respect to ω on Figure 5.

Here the FL-BT leads to poor reduced-order models. The fact that the model

is ill-conditioned increases the numerical issues arising in the computation of the
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Fig. 6 H2,ω -norm of the error with respect to the upper frequency bound ω and the order r of the

reduced model (aircraft model)

frequency-limited gramians and in the balancing of the system. One example of

those numerical issues is illustrated by the 2-norm of the Lyapunov equation

rω = ‖AT Qω +Qω A+Wo(ω)‖2

which should be almost equal to zero. Yet, for ω = 14rad/s, rω > 103.

This error on the frequency-limited gramians directly impacts the FL-BT whereas

it has little consequences on the FL-ISTIA. Indeed, until 18rad/s, FL-ISTIA leads

to a better reduced-order model than the ISTIA and for larger ω they become equiv-

alent. This equivalence comes from the fact that most of the spectral information is

gathered in 0−20rad/s.

When using the FL-BT and the FL-ISTIA, two parameters can be adjusted for the

approximation: the upper bound ω of the frequency interval and the order r of the

reduced model. Figure 6 represents the best approximation in terms of H2,ω -norm

among those provided by the ISTIA (green squares), the FL-BT (blue crosses) and

the FL-ISTIA (red triangles) for several frequencies going from 1rad/s to 60rad/s

and approximation orders going from r = 4 to r = 20. It plots the lowest H2,ω error,



that is to say that when a method is better than the other, then its H2,ω error is

plotted.

For this model it is clear that the FL-ISTIA mostly leads to a better approximation

than the FL-BT independently of the frequency and order. Indeed, red triangles are

predominant excepted for small frequencies ω and large order r where the FL-BT

is the best method. This can be explained by the fact that a large number of inter-

polations cannot be achieved over a tight frequency range if there are not enough

different behaviours to catch.

6 Conclusion

In this paper, a new application of the frequency-limited gramians proposed in [5]

has been presented. Indeed they have been used in the Iterative SVD-Tangential

Interpolation Algorithm (ISTIA, [13]) instead of infinite gramians which leads to an

extended frequency-limited version of this algorithm called FL-ISTIA.

The relevance of the FL-ISTIA has been illustrated through two standards bench-

mark models and one flexible aircraft model. These tests have revealed that the

method is as efficient as the frequency-limited balanced truncation but also more

robust to numerical issues which makes it more tractable for ill-conditioned mod-

els.

Besides, the proposed algorithm will be soonly made available in the MORE

Toolbox [14].
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