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FRÉCHET MEANS OF CURVES FOR SIGNAL AVERAGING AND

APPLICATION TO ECG DATA ANALYSIS

By Jérémie Bigot

DMIA–ISAE

Signal averaging is the process that consists in computing a mean
shape from a set of noisy signals. In the presence of geometric vari-
ability in time in the data, the usual Euclidean mean of the raw data
yields a mean pattern that does not reflect the typical shape of the
observed signals. In this setting, it is necessary to use alignment tech-
niques for a precise synchronization of the signals, and then to average
the aligned data to obtain a consistent mean shape. In this paper, we
study the numerical performances of Fréchet means of curves which
are extensions of the usual Euclidean mean to spaces endowed with
non-Euclidean metrics. This yields a new algorithm for signal averag-
ing and for the estimation of the time variability of a set of signals. We
apply this approach to the analysis of heartbeats from ECG records.

1. Introduction. In many applications (biology, medicine, road traffic
data) one observes a set of signals that have a similar shape. This may lead
to the assumption that such observations are random elements which vary
around the same but unknown mean shape. Signal averaging is then the
process that consists in computing a mean curve which reflects the typical
shape of the observed signals. This procedure generally amounts to finding
an appropriate combination of the data to compute an average shape with a
better signal-to-noise ratio. In many situations, the observed signals exhibit
not only a classical source of random variation in amplitude, but also a less
standard source of variability in time. Due to this source of time variability,
the usual Euclidean mean of the raw data may yield a mean curve that does
not reflect the typical shape of the signals, as illustrated by the following
application.

1.1. Signal averaging in ECG data analysis. An important application
of signal averaging is the estimation of a mean heart cycle from electrocar-

Key words and phrases. Signal averaging, mean shape, Fréchet means, curve registra-
tion, geometric variability, deformable models, ECG data.



Fig. 1. ECG recording of a subject showing evidence of significant arrhythmia (30 first
seconds of patient Sel104 from the QT database).

diogram (ECG) records. An ECG signal corresponds to the recording of the
heart electrical activity. It is a signal, recorded over time, that is composed
of the succession of cycles of contraction and release of the heart muscle.
Each recorded cycle is a curve composed of a characteristic P-wave, reflect-
ing the atrial depolarization, that is followed by the so-called QRS complex
which corresponds to the depolarization of the ventricles and which ends
with a T-wave reflecting the repolarization of the heart. The QRS complex
refers to the succession of the Q wave (a downward deflection), the R wave
(an upward deflection) and the S wave (a downward deflection). The shape
of the combination of these three successive waves is useful for the diagnosis
of cardiac pathologies such as arrhythmia. For a more precise description
of an ECG recording we refer to Guyton and Hall (2006). In this paper
we present results on data sets from the QT database [Goldberger et al.
(2000)] (in ECG analysis, the QT interval corresponds to the time between
the beginning of the Q wave and the end of the T wave in a heart cycle). In
Figure 1, we display data from an ECG record of a subject showing evidence
of significant arrhythmia (note that, in all the figures showing ECG data,
units on the vertical axis are in millivolts).

In the analysis of ECG data, it is generally assumed that the heart electri-
cal activity repeats itself. Therefore, during an ECG record, one classically
considers that the heart cycle of interest remains approximately the same
with every beat and that it is embedded in a random noise with zero expec-
tation that is uncorrelated with the mean shape to be estimated. After an
appropriate segmentation of an ECG record, one observes a set of signals
of the same length such that each of them contains a single QRS complex.
The preliminary segmentation step is done by taking segments (of the same
length) in the ECG record that are centered around the easily detectable



maxima of the QRS complex of the beats. Identification of these maxima
can be done using statistical methods to identity local extrema in noisy
signals [Bigot (2006), Gasser and Kneip (1995)] or by applying appropri-
ate digital filters to identify typical parts of the QRS complex [Pan and
Tompkins (1985)]. In this paper we used the approach in Bigot (2006) to
identify local maxima and to segment an ECG record into signals of the
same length containing a single QRS complex. In this segmentation of the
long ECG record displayed in Figure 1, we have only extracted nonover-
lapping segments. Therefore, some parts of the original signal, that do not
contain significant peaks corresponding to the QRS complex, have been dis-
carded from the statistical analysis. After this preliminary segmentation,
one thus observes signals with approximately the same shape. For the pa-
tient Sel104 from the QT database, we obtained J = 285 signals (from a
4-minutes record) of length n= 128 time points. Four of these signals con-
taining a single QRS complex are displayed in Figure 2.

To estimate the typical shape of a heart cycle and to improve the signal-
to-noise ratio, one might use the Euclidean mean of these signals. In the
case of a normal ECG record from a healthy subject, this generally leads to
satisfactory results, as this average signal clearly reflects the typical shape
of the observed heartbeats. However, in the case of cardiac arrhythmia, the
electrical activity of the heart is more irregular. This can be seen in the
shape of the heartbeats displayed in Figure 2 which may vary significantly
from one pulse to another. Due to noise and time variability in the mea-
surements, a simple averaging step may cause a low-pass filtering effect that
leads to a mean cycle that does not reflect the typical shape of the heart-
beats in the ECG record; see, for example, Laciar, Jané and Brooks (2003),
Rompelman and Ros (1986a, 1986b). In Figure 2, we have superposed the
Euclidean mean (red dashed curve) on the four heartbeats. One can see that
averaging the raw data causes a low-pass filtering effect in the shape of the
QRS complex, as shown by the shape of the Euclidean mean displayed in
Figure 2. Indeed, around the time point t0 ≈ 0.45 (which corresponds to the
beginning of the QRS complex), in the shape of the observed heartbeats,
there is rapid transition between a flat region and the peak of the R wave.
The Euclidean mean clearly has a different shape around t0 ≈ 0.45 since this
transition is slower. More precisely, the Euclidean mean is a local convolu-
tion by a smooth kernel of the heartbeats around the time point t0 ≈ 0.45.
To interpret this local convolution, assume that one observes J signals de-
noted by f1, . . . , fJ obtained by random deformations around the time t of
a reference signal f , namely,

fj(t0) = f(t0 − θj), j = 1, . . . , J,

where the θj ’s are i.i.d. random variables sampled from a density g. These
random translations of f model a local source of time variability in the data
around t0. Under mild conditions, the Euclidean mean of the fj ’s is not a



Fig. 2. Patient Sel104—case of cardiac arrhythmia. Solid and blue curves: four signals
containing a single QRS complex out of J = 285 extracted from the ECG recording dis-
played in Figure 1. The length of the signals is n= 128 time points. Dashed and red curve:
Euclidean mean of the raw data. Units on the horizontal axis are arbitrary.

consistent estimator of f at time t0 since

f̄J(t0) =
1

J

J
∑

j=1

fj(t0)→
∫

f(t0 − θ)g(θ)dθ a.s. as J →+∞,

showing that f̄J rather converges to the convolution of f by the density g.
To obtain better results, it is necessary to use alignment techniques for

a precise synchronization of the heartbeats. In this paper, we develop an
algorithm that is composed of the following key steps:

(a) we initially smooth each observed curve in the data using standard
techniques from nonparametric regression (e.g., Fourier filtering or wavelet
thresholding),

(b) we consider deformation operators depending on finite-dimensional
parameters to model time variability in the data,



(c) we define a mean signal by minimizing an objective function that is
inspired by the notion of Fréchet mean, and which results in finding appro-
priate time deformations for an optimal synchronization of the smoothed
curves; see equation (1.2) below.

1.2. A deformable model. Assume for simplicity that the signals are ob-
served on the time interval [0,1] and that they can be extended outside
[0,1] (e.g., by periodicity). An alignment technique consists in finding a
time synchronization of a set of signals. To be more precise, define a defor-
mation operator φθ parametrized by θ ∈R

p as a smooth increasing function
φθ : [0,1]→R such that

φ−1
θ

(t) = φ−θ(t) for all t ∈ [0,1].

In the paper we shall consider the following families of deformation opera-
tors:

- Translation operators: φθ(t) = t−θ and φ−1
θ

(t) = φ−θ(t) = t+θ, for θ ∈R

(p= 1) and all t ∈ [0,1].
- Nonrigid operators: φθ : [0,1]→ [0,1] is a diffeomorphism of [0,1] parame-
trized by some θ ∈R

p, that is, a smooth increasing function with φθ(0) = 0
and φθ(1) = 1 (a general method for constructing nonrigid deformation
operators is described in Section 2.2).

Given f1, f2 : [0,1] → R and a family (φθ)θ∈Rp of deformation operators,
the problem of time synchronization of two signals is to find a θ ∈R

p such
f1(φθ(t))≈ f2(t) for all t ∈ [0,1]. In ECG data analysis, the most widely used
alignment technique is time synchronization using translation operators by
temporal or multiscale cross-correlation; see Laciar, Jané and Brooks (2003),
Trigano, Isserles and Ritov (2011) and the references therein.

In the presence of time variability in the data, it is reasonable to assume
that the signals at hand satisfy the following deformable (or perturbation)
model:

Y ℓ
j = f(φθ∗

j
(tℓ)) +wℓ

j , j = 1, . . . , J and ℓ= 1, . . . , n,(1.1)

where Y ℓ
j denotes the ℓth observation for the jth signal and tℓ =

ℓ
n are equi-

spaced design points in [0,1]. The function f : [0,1] → R in model (1.1) is
the unknown mean shape of the signals. The wℓ

j are supposed to be random
variables with zero expectation that represent additive noise in the measure-
ments. Finally, the θ∗

j ’s are assumed to be i.i.d. random variables in R
p with

zero expectation, and the random deformation operators φθ∗
j
represent time

variability in the data.
In the simplest case, where the wℓ

j ’s are i.i.d. normal variables with zero

expectation and variance σ2j , then (1.1) corresponds to the so-called shape



invariant model (SIM) that has received a lot of attention in the statistical
literature; see, for example, Bigot and Charlier (2011), Kneip and Gasser
(1988) and the references therein.

The deformable model (1.1) is well adapted to ECG data processing.
The main types of perturbations related to the analysis of ECG data [see,
e.g., Laciar, Jané and Brooks (2003), Trigano, Isserles and Ritov (2011)] are
the baseline wandering effect (a low-frequency signal), electromyographic
(EMG) noise and power-line interference which is an amplitude and fre-
quency varying sinusoid. This source of additive noise can be modeled in
(1.1) by the random variables wℓ

j which represent (possibly smooth) varia-
tions in the data around the mean shape f . The physiological nature of the
electrocardiographic signal also alters the recording from heartbeat to heart-
beat in lag and duration. In the ECG signal, there are therefore variations
in time of the heart cycle from one beat to another. This makes the heart-
beats look shorter or longer in duration. After the segmentation of an ECG
record into signals containing a single QRS complex, this local variability in
time is modeled in (1.1) by the nonrigid deformation operators φθ∗

j
. Align-

ing heartbeats using nonrigid deformation operators is an alternative to the
cross-correlation method which is classically used in ECG data analysis.

1.3. Fréchet means of curves. The problem of estimating f and the de-
formation parameters θ∗

j in the deformable model (1.1) has been studied in
Bigot and Charlier (2011), Bigot and Gendre (2013) using the following pro-
cedure. First, for each j = 1, . . . , J , smooth the data (Y ℓ

j )
n
ℓ=1 to construct an

estimator f̂j : [0,1]→R of f ◦φθ∗
j
. In this paper, this smoothing step is done

either by low-pass Fourier filtering or by wavelet thresholding. In a second
step, estimate simultaneously the deformation parameters θ∗

j , j = 1, . . . , J by
minimizing the following criterion:

(θ̂1, . . . , θ̂J) = argmin
(θ1,...,θJ )∈Θ0

M(θ1, . . . ,θJ),(1.2)

where

M(θ1, . . . ,θJ) =
1

J

J
∑

j=1

1

n

n
∑

ℓ=1

(

f̂j(φ−θj
(tℓ))−

1

J

J
∑

j′=1

f̂j′(φ−θj′
(tℓ))

)2

(1.3)

and

Θ0 = {(θ1, . . . ,θJ) ∈ (Rp)J ,θ1 + · · ·+ θJ = 0}.
Finally, in a third step take

f̂(t) =
1

J

J
∑

j=1

f̂j(φ−θ̂j
(t))(1.4)

as an estimator of the mean shape f .



As explained in Bigot and Charlier (2011), Bigot and Gendre (2013), the

estimator f̂ can be interpreted as a smoothed Fréchet mean of the observed
signals. The Fréchet mean [Fréchet (1948)] is an extension of the usual Eu-
clidean mean to spaces endowed with non-Euclidean metrics. We refer to
Afsari (2011) and Huckemann (2011) for recent overviews of this notion and
its application to the analysis of random variables taking their values in
nonlinear manifolds.

The constrained set Θ0 [onto which the minimization of M(θ1, . . . ,θJ) is
done] reflects the assumption that the deformation parameters θ∗

j in model
(1.1) have zero expectation. The choice of this constraint is also related to
identifiability issues in model (1.1), and we refer to Bigot and Charlier (2011)
for a detailed discussion on that point.

In Bigot and Charlier (2011), Bigot and Gendre (2013), the statistical

properties of f̂ and the θ̂j ’s in deformable models such as (1.1) have been
studied in detail in the asymptotic setting n→+∞ and/or J →+∞. How-
ever, in these papers, the benefits of Fréchet means for the analysis of real
data such as ECG records has not been considered.

1.4. Previous work on signal averaging. In statistics the problem of esti-
mating the mean shape of a set of curves that differ by a time transformation
is usually referred to as the curve registration problem. It has received a lot
of attention in the statistical literature over the last two decades, and for
further details we refer to Bigot (2006), Ramsay and Li (2001), Wang and
Gasser (1997), Liu and Müller (2004), Kneip and Gasser (1988) and Trigano,
Isserles and Ritov (2011).

Our approach also shares various similarities with Procrustes methods
that were originally developed for the analysis of planar shapes. In particular,
the full Procrustes mean of shapes described by landmarks in R

2 is defined
through a Fréchet-type objective function such as (1.3); see, for example,
Goodall (1991). In the case of curve registration, the term Procrustes has
also been attached to methods of time warping, although the settings of
curve alignment and planar shape analysis are clearly different.

In the statistical literature the criterion (1.2) was first proposed by Gam-
boa, Loubes and Maza (2007) in the case of translation operators and then
was further studied by Vimond (2010), Bigot and Gadat (2010). Its gener-
alization to other deformation operators and the connection between min-
imizing (1.3) and the computation of Fréchet means of curves has been
investigated in Bigot and Charlier (2011), Bigot and Gendre (2013). Note
that various theoretical arguments are given in Bigot and Gadat (2010),
Bigot and Charlier (2011), Bigot and Gendre (2013) to show that, without
a pre-smoothing step, the Fréchet mean cannot be consistent. Note that in
curve registration or Procrustes methods, one generally registers the raw
data without any preliminary smoothing. One of the purposes of this paper
is thus to show that it is preferable to first smooth the data before alignment.



The method that we propose is not the only shape averaging algorithm in
the literature. In particular, for the statistical analysis of images or surfaces,
there exist several methods based on different alignment techniques through
the use of deformations operators; see, for example, Allassonnière, Amit and
Trouvé (2007) and Ma et al. (2008) for a Bayesian approach to compute a
mean pattern from two-dimensional images, and Klassen et al. (2004) and
Fletcher et al. (2004) for the statistical analysis of shapes using geodesic
paths and Riemannian geometry.

1.5. Organization of the paper. In Section 2 we describe more precisely
the smoothed Fréchet mean in the case of translation and nonrigid operators.
We also use some numerical experiments to illustrate the advantages of a
pre-smoothing step before alignment. The usefulness of the Fréchet mean
for signal averaging and for the estimation of time variability in ECG data
analysis is presented in Section 3. We conclude the paper by a brief discussion
on these results and the benefits of our approach.

2. Methodology for mean pattern estimation.

2.1. Choice of the regularization parameter in the smoothing step. For
the smoothing step, we present numerical results for the following:

- low-pass Fourier filtering : for t ∈ [0,1]

f̂j(t) =
∑

|k|≤λ̂j

c
(j)
k ei2πkt,

with c
(j)
k = 1

n

∑n
ℓ=1Yj,ℓe

−i2πk(ℓ/n), and where λ̂j ∈ N is a regularization

parameter (cutoff frequency). A possible data-based choice for λ̂j is to use
generalized cross-validation (GCV); see, for example, Craven and Wahba
(1978/79).

- wavelet smoothing by hard thresholding : for t ∈ [0,1]

f̂j(t) =
2m0
∑

k=0

α
(j)
m0,k

φm0,k(t) +

m1
∑

m=m0

2m
∑

k=0

β
(j)
m,k1{|β

(j)
m,k

|≥σ̂j

√
2 log(n)}

ψm,k(t),

where φm0,k(t) = 2m0/2φ(2m0t− k) and ψm,k(t) = 2m/2ψ(2mt− k) are the
usual scaling and wavelet basis functions at resolution levels 0 ≤ m0 ≤
m ≤m1 and location k, α

(j)
m0,k

, β
(j)
m,k are, respectively, the empirical scal-

ing and wavelet coefficients computed from the data (Y ℓ
j )

n
ℓ=1 [for further

details on wavelet thresholding see, e.g., Antoniadis, Bigot and Sapatinas
(2001)]. The universal threshold σ̂j

√

2 log(n) depends on the estimation
σ̂j of the level of noise in the jth signal. It is given by the median absolute
deviation (MAD) of the empirical wavelet coefficients at the highest level
of resolution m1 [see, e.g., Antoniadis, Bigot and Sapatinas (2001)].



2.2. The case of nonrigid operators. To build a family (φθ)θ∈Rp of para-
metric diffeomorphisms of [0,1], we adapt to one-dimensional curves the ap-
proach proposed in Bigot, Gadat and Loubes (2009) to compute the mean
pattern of a set of two-dimensional images. Let v : [0,1] → R be a smooth
parametric vector field given by a linear combination of p basis functions
{hk : [0,1]→R, k = 1, . . . , p}, such that

v(t) =

p
∑

k=1

θkhk(t) for t ∈ [0,1],

where θ = (θ1, . . . , θp) ∈R
p is a set of real coefficients. The function v is thus

parametrized by the set of coefficients θ, and we write v = vθ to stress this
dependency. In what follows, it will be assumed that the basis functions
are continuously differentiable on [0,1] and such that hk and ∂

∂thk vanish
at t= 0 and t= 1. For the hk’s we took in our numerical experiments a set
of B-spline functions of degree 3 using equally-spaced knots on [0,1]. The
choice of the number p of B-spline functions is a difficult model selection
problem that is discussed in Section 3.

Then, let t ∈ [0,1] and for u ∈ [0,1] consider the following ordinary differ-
ential equation (ODE):

∂

∂u
ψ(u, t) = vθ(ψ(u, t))(2.1)

with initial condition ψ(0, t) = t. Then, it can be shown [see, e.g., Younes
(2010)] that for any u ∈ [0,1] the solution of the above ODE is unique and
such that

t 7→ ψθ(u, t) = t+

∫ u

0
vθ(ψθ(s, t))ds

is a diffeomorphism of [0,1], that is, a smooth increasing function with
ψθ(u,0) = 0 and ψθ(u,1) = 0. Then, we denote by

φθ(t) = ψθ(1, t)

the solution at u = 1 of the ODE (2.1). In this way, we finally obtain a
diffeomorphism φθ that is parametrized by the set of coefficients θ ∈R

p and
that is such that φ−1

θ
(t) = φ−θ(t).

2.3. Numerical implementation. To compute the smoothed Fréchet
mean (1.4), one needs to minimize the criterion (1.3). For this purpose,
we use a gradient descent algorithm with an adaptive step to compute si-
multaneously J vectors θ̂1, . . . , θ̂J in R

p minimizing (1.3). Note that in the
case of nonrigid operators, it can be shown that the mapping θ 7→ φθ is dif-
ferentiable, and an explicit formula of its gradient is given by Lemma 2.1 in
Beg et al. (2005).



An alternative approach to register the raw data is to use the following
algorithm that has been originally developed for the computation of a full
Procrustean mean in planar shape analysis. This algorithm is based on an
alternative scheme between estimation of deformation operators and aver-
aging of back-transformed curves given estimated values of the deformation
parameters. In what follows, it will be referred to as the two-step algorithm.
To be more precise, assume that Yj : [0,1]→R denotes a linear interpolation
of the data (Y ℓ

j )
n
ℓ=1. Using our notation, this algorithm consists in an ini-

tialization step f̂ (0) = 1
J

∑J
j=1Yj that is the Euclidean mean of the raw data

taken as a first reference template. Then, at iteration 1≤ i≤ imax, it com-
putes for all 1≤ j ≤ J the estimators θ̂j,i of the jth deformation parameter
as

θ̂j,i = argmin
θ∈Rp

1

n

n
∑

ℓ=1

(Yj(φ−θj
(tℓ))− f̂ (i−1)(tℓ))

2

and then takes f̂ (i)(t) = 1
J

∑J
j=1Yj(φ−θ̂j,i

(t)) as a new reference template.

This procedure is repeated until the estimated reference template does not
change. Usually the algorithm converges in a few steps. In what follows, the
resulting reference template after the two-step algorithm will be referred to
as the Iterated mean.

2.4. Numerical experiments to illustrate the advantages of the smoothing

step. We propose to use simulated data to compare the performances of
signal averaging using either the smoothed Fréchet mean (1.4) (via a gradient

descent algorithm to simultaneously compute all the θ̂j ’s) or the Iterated
mean obtained via the two-step algorithm described in Section 2.3. For this
purpose, let us consider a set of J = 30 signals generated from the following
deformable model using translation operators:

Y ℓ
j = f(tℓ − θ

∗
j) +wℓ

j, j = 1, . . . , J and ℓ= 1, . . . , n,(2.2)

with additive error terms satisfying the model

wℓ
j = Zj(tℓ − θ

∗
j) + σεℓj , j = 1, . . . , J and ℓ= 1, . . . , n,

where n= 128, the θ
∗
j ’s are i.i.d. normal variables with zero mean and vari-

ance µ2 = 0.004, the εℓj ’s are i.i.d. normal variables with zero mean and
variance 1, f is one of the signals displayed in Figure 3(a) and Figure 3(c),
and the Zj ’s are i.i.d. copies of a Gaussian process Z : [0,1] → R with zero
expectation. The covariance function of Z has an exponential decay such
that R(tℓ, tℓ′) = EZ(tℓ)Z(tℓ′) = σ2φ|ℓ−ℓ′| with φ= 0.9. To simulate indepen-
dent sample paths of Z, we use the standard circulant embedding technique;



see, for example, Wood and Chan (1994). The signal-to-noise ratio (SNR)
is the measurement defined as

SNR =

√

∫ 1
0 (f(t)− f̄)2

σ
with f̄ =

∫ 1

0
f(t)dt.

To estimate f , we compare three different estimators:

- a smoothed Fréchet mean using low-pass Fourier filtering with λ̂j chosen
by GCV for each j = 1, . . . , J ,

- the Iterated mean computed from the raw data (without smoothing) via
the two-step algorithm,

- the Iterated mean computed from smoothed data, that is, via the two-
step algorithm using as inputs the estimates f̂j (that have been used for
the computation of the smoothed Fréchet mean) instead of the linear
interpolation Yj of the raw data. This third estimator will be referred to
as the smoothed Iterated mean.

To illustrate the benefits of the smoothed Fréchet mean, we usedM = 100
replications of model (2.2) with J = 30, for the two signals f displayed
in Figure 3 and for various values of the SNR. For each replication m =
1, . . . ,M , we compute the empirical mean squared error (MSE) at the design
points of the three estimators described above. In Figure 3 we display the
average value of the empirical MSE (AvMSE) over M = 100 repetitions as a
function of the SNR. The AvMSE of the smoothed Fréchet mean is always
lower than the AvMSE of the two other estimators. The smoothed Iterated
mean also has a slightly lower AvMSE than the Iterated mean of the raw data
without smoothing, which confirms the benefits of a preliminary smoothing
step before an alignment procedure.

3. Application to ECG data analysis. We now return to the analysis of
the ECG record displayed in Figure 1. A smoothing of the J = 285 signals
obtained after segmentation of the ECG record of patient Sel104 (over 4
minutes) is done by wavelet thresholding with a data-based choice of the
regularization parameters σ̂j as explained in Section 2.1. The computation
of an average shape using a smoothed Fréchet mean with translation opera-
tors does not give a result that is very different from the one obtained by the
Euclidean mean of the raw data. Since the activity of the heart can be very
irregular in the case of cardiac arrhythmia, modeling time variability using
only translation operators is not flexible enough. A more precise alignment
to take into account a local variability in lag and duration of the heartbeats
is thus needed. Therefore, we propose to compute a smoothed Fréchet mean
of these signals using the nonrigid operators given by a family of paramet-
ric diffeomorphisms parametrized by p B-spline functions, as described in
Section 2.2.



Fig. 3. (a) and (c) two different test functions f ; (b) and (d) average empirical MSE
(AvMSE) as a function of the SNR (ranging from 2 to 5) for each estimator: smoothed
Fréchet mean (blue curve), smoothed Iterated mean (red curve) and Iterated mean without
smoothing (green curve).

Obviously, the choice of the number p of B-spline functions used to param-
etrize the nonrigid deformations is very important. For a given integer p≥ 1,
let us introduce the following quantity:

ℓp =
1

J

J
∑

j=1

1

n

n
∑

ℓ=1

(

f̂j(φ−θ̂j
(tℓ))−

1

J

J
∑

j′=1

f̂j′(φ−θ̂j′
(tℓ))

)2

,

which corresponds to the minimal value of the objective function (1.3) when
using nonrigid operators parametrized by a family of p B-spline functions.
It is clear that one can interpret ℓp as a measure of misalignment of the
data after registration. Hence, a first idea to choose an optimal value of p
would be to try to minimize the value ℓp as a function of p to obtain the



Fig. 4. Patient Sel104—(a) misalignment cost nJℓp and (c) penalized misalignment cost
ĉp = nJℓp + β̂p as functions of the dimension p ranging from 1 to 20. (b) misalignment
cost nJℓp for 7 ≤ p ≤ 20 (blue curve) and its approximation by an affine function (red
and dashed line). The misalignment cost nJℓp is minimal at p = 20, while the penalized
misalignment cost ĉp = nJℓp + β̂p is minimal at p(β̂) = 5.

best possible alignment. In Figure 4(a) we display the curve p 7→ nJℓp (for
1≤ p≤ 20), which is a globally decreasing function that reaches its minimal
value at p= 20. Therefore, trying to minimize ℓp simply results in choosing
the largest possible p.

To interpret this fact, one may remark that the quantity nJℓp is related
to the minimal value of the negative log-likelihood of the data in the de-
formable model (1.1) in the case where the wℓ

j ’s are i.i.d. normal variables

with zero expectation and variance σ2 (conditionally to the θ∗
j ’s). It is widely

known that increasing the number of parameters in a statistical model leads
to a decay of the minimal value of the negative log-likelihood of the ob-
served data, which explains why we observe a decay of ℓp as p increases in



Figure 4(a). As classically done in model selection in statistics, it is thus
necessary to penalize the negative log-likelihood to select an appropriate
dimension of the parameters to be estimated. In Gaussian linear regression,
the well-known Mallows’s Cp rule [Mallows (1973)] suggests to penalize the
negative log-likelihood by a term that is proportional to the dimension of the
linear model. In our deformation model, the number of B-spline coefficients
to be estimated grows linearly with p. Therefore, we propose to minimize
the following penalized misalignment cost:

cp = nJℓp + βp,(3.1)

where β > 0 is a regularization parameter. The choice of an appropriate value
for β is then motivated from general ideas in model selection proposed by
Birgé and Massart (2007). Our method to find an optimal value for β [and
then the corresponding optimal dimension p= p(β)] is based on the “slope
heuristic” principle suggested in Birgé and Massart (2007). This heuristic
consists in considering that the penalized cost cp (3.1) is the sum of the
negative log-likelihood that represents a data-fidelity term and the penalty
term representing the complexity of the model which is related to a variance
term that is generally unknown. The idea of the “slope heuristic” is that
when a model is high dimensional, then the associated bias is close to zero,
and so the log-likelihood is essentially an estimate of the variance of the
model (which we assume to be proportional to the dimension p). Hence, for
large p, the negative log-likelihood should become a linear function of p. The
choice of the dimension p beyond which the negative log-likelihood becomes
linear is left to the user. Based on visual inspection of the curve p 7→ nJℓp
that is displayed in Figure 4(a), we consider that, for p ≥ 7, the negative
likelihood ceases to decrease significantly and becomes approximately linear
as shown by Figure 4(b). Once we have chosen the appropriate dimension
(here p = 7) beyond which the negative log-likelihood becomes linear, the
basic principle of the “slope heuristic” is to fit a linear regression of nJℓp with
respect to p for 7≤ p≤ 20; see Figure 4(b). If we denote by α̂≈−2946 · 105
the estimated regression coefficient, then, as suggested by Birgé and Massart
(2007), an appropriate estimator for β is β̂ =−2α̂≈ 5893·105. In Figure 4(c),

we display the curve p 7→ ĉp = nJℓp + β̂p (for 1 ≤ p ≤ 20). The penalized

misalignment cost ĉp is minimal at p= p(β̂) = 5, which is therefore the value
that we finally choose for the statistical analysis of these ECG data.

In Figure 5 we display the smoothed Fréchet mean using the nonrigid op-
erators parametrized by p= 5 B-spline functions, as described in Section 2.2.
The resulting mean heart cycle in Figure 5 better reflects the typical shape
of the signals than the one obtained using the Euclidean mean of the raw
data that is displayed in Figure 2. In particular, there is no low-pass filtering
effect around the time point t≈ 0.45 in the shape of this smoothed Fréchet
mean.



Fig. 5. Patient Sel104—case of cardiac arrhythmia. Solid and blue curves: four signals
containing a single QRS complex out of J = 285 extracted from the ECG recording dis-
played in Figure 1. The length of the signals is n= 128 time points. Dashed and red curve:
Fréchet mean using nonrigid operators. Units on the horizontal axis are arbitrary.

Beyond the calculation of an average heart cycle, the computation of a
Fréchet mean is also a way to separate the variability of a data set into a
source of variability in time and another source of variability in amplitude
(or intensity). To illustrate this point, let us first remark that the ECG record
of patient Sel104 is composed of two major types of beats whose typical
shapes are displayed in Figure 6(a) and in Figure 6(b). This classification of
the heartbeats from this ECG record in two clusters is discussed in detail in
Zhou and Sedransk (2009).

In Figure 6(c) we give a two-dimensional representation of these two clus-
ters by projecting the data on the first and second principal components
(PC) of the principal components analysis (PCA) of the J = 285 raw signals
considered as random vectors of length n= 128. In this representation, the
sources of variability in time and in amplitude of the data are completely



Fig. 6. Patient Sel104—case of cardiac arrhythmia. Two types of beats (a) Type I (red
curve) and (b) Type II (blue curve); (c) PCA of the raw data; (d) Variability in time via
PCA of the coefficients of the B-splines encoding the nonrigid operators used to compute
the Fréchet mean; (e) Variability in amplitude via PCA of the aligned and smoothed data.
To visualize the results of the various PCA, the data are projected on the first and second
principal components and they are labeled as type I (red circles) and type II (blue stars).

mixed. In particular, one cannot see if there exists more variability in lag
and duration of the heartbeats in one of the two clusters.

After computing the Fréchet mean of the heartbeats, one can associate to
each signal a set of p= 5 coefficients θ = (θ1, . . . , θp) ∈R

p that parametrize a
nonrigid operator φθ ; see Section 2.2. These p dimensional vectors represent
the variability in time of the data. In Figure 6(d) we display the projec-
tion of the data on the first and second PC of the PCA of these random
vectors. This graphical representation of the data highlights two different
behaviors of the signals in each cluster. The variability in time of the data
of type I (red circles) is relatively low and homogeneous, contrary to the
time variability of the data of type II (blue stars) that is much stronger and
heterogeneous. One can also perform a PCA of the aligned and smoothed
data (using these nonrigid operators). A graphical display of such a PCA is



given in Figure 6(e). This further step allows to analyze the variability in
amplitude in the data that is not due to a misalignment. It gives a different
interpretation of the variability in intensity of the signals within each cluster
than the one displayed in Figure 6(c) when doing a PCA of the raw data.

4. Discussion and conclusion. We have presented a new algorithm for
aligning heartbeats extracted from an ECG record. Our approach is based on
the notion of smoothed Fréchet means of curves using deformation operators.
When using nonrigid operators to align heartbeats having a high variability,
with peaks showing an important variability in lag and duration from one
pulse to another, our approach may be used to decompose the data into
two separate sources of variation in time and in amplitude. The benefits of
our procedure have been demonstrated for an ECG recording of a subject
showing evidence of significant arrhythmia. Using simulated data, we have
also shown the advantages of a preliminary smoothing step before applying
an alignment procedure. We hope that the methods presented in this paper
will stimulate further investigation into the development of better alignment
procedures that take into account time variability in heartbeats extracted
from ECG records.
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