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ABSTRACT. Multiaxial high cycle fatigue modeling of materials is an issue that concerns 

many industrial domains (automotive, aerospace, nuclear, etc) and in wich many progress still 

remains to be achieved. Several approaches exist in the litterature: invariants, energy, integral 

and critical plane approaches all of there having their advantages and their drawbacks. These 

different formulations are usually based on mechanical quantities at the micro or meso scales 

using localization schemes and strong assumptions to propose simple analytical forms. This 

study aims to revisit these formulations using a numerical approach based on crystal plasticity 

modelling coupled with explicit description of microstructure (morphology and texture). This 

work has three steps: First, 2D periodic digital microstructures based on a random grain sizes 

distribution are generated. Multiaxial cyclic load conditions corresponding to the fatigue 

strength at 10
7
 cycles are applied to these microstructures. Then, the mesoscopic Fatigue 

Indicator Parameters (FIPs), formulated from the different criteria existing in the literature, are 

identified using the FE calculations of the mechanical fields. These mesoscopic FIP show the 

limits of the original criteria when it comes to applying them at the grain scale. Finally, a 

statistical method based on extreme value probability is used to redefine the parameters of these 

criteria. These new criteria contain the sensitivity of the microstructure variability.

ABBREVIATION AND DESIGNATION 

HCF: High Cycle Fatigue 

FIP: Fatigue Indicator Parameter 

RVE: Representative Volume Element 

SVE: Statistical Volume Element 

GEV: Generalized Extreme Value distribution 

Microscopic length scale: corresponding to the integration points 

Mesoscopic length scale: Corresponding to the average density in a grain 

Macroscopic length scale: Corresponding to the elementary volume average 

INTRODUCTION  

In literature, methods for determining the fatigue behavior based on multiscale modeling 

estimate that the fatigue strength depends on the extreme value  statistics of a single 



microstructure attribute [1] (for example inclusion size). This is only valid when the considered 

element of microstructure is a representative volume element (RVE). A RVE is the smallest 

volume element whose averaged mechanical behaviour converges towards the macroscopic 

behaviour of the material. Although the definition of the RVE is possible for some deterministic 

behaviour aspects (such as elastoplastic behaviour), it is difficult to evaluate a RVE for the HCF 

strength which is macroscopically highly dispersed. Therefore the use of a single microstructure 

(with a smaller volume than the RVE with regards to the fatigue behaviour but equal to the RVE 

size with regards to the elastoplastic behaviour) does not make it possible to take into account 

the contribution of the microstructural dispersion in the HCF response. To solve this issue, Liao 

[2] used the Monte Carlo method to build statistical volume element (SVE) of a microstructure 

with a random distribution of grain sizes and orientations. Despite considering elastic behaviour 

of crystal only, Liao showed a good correlation between the results obtained by modeling the 

extreme value probability with a Fréchet distribution and experimental results. Recently, 

Przybyla et al. [3, 4] introduced a new framework taking into account the effects of 

neighborhood through the extreme values of the marked correlation functions to quantify the 

influence of microstructure on the fatigue limit and the contribution of interactions in the 

microstructure in the case of uniaxial loading. Przybyla used Gumbel distribution function to 

describe the extreme value  probability of the studied parameters. 

The purpose of this work is, first, to analyze the microstructure sensitivity (morphology and 

orientation) of the FIP corresponding to the adaptation of multiaxial fatigue criteria at the 

mesoscopic length scale. Then a statistical study will be used to define new mesoscopic 

thresholds for these FIPs, different from the original thresholds of the macroscopic criteria. 

Finally, the capability of the macroscopic criteria determination to take into account the 

microstructure sensitivity will be discussed through a comparison between the thresholds 

determined by the statistical study of the microstructure modeling (called mesoscopic) and the 

original macroscopic thresholds. 

NUMERICAL MODEL 

Constitutive relations 
The material parameters considered in this work are those of pure copper. This material has a 

face-centered cubic crystal structure with the reduced number of slip systems (12 <111> {110} 

slip systems). The behaviour is modeled by cubic elasticity and crystal plasticity constitutive 

law. The crystal plasticity model used in this work is the one introduced by Meric and 

Cailletaud [5]. The cubic elasticity constants, the material parameters and the interaction matrix 

components have been identified on a high purity copper by Gérard et al. [6].  

Grain morphology and crystallographic texture 
The simulations performed in this work were done using 2D periodic microstructures [7, 8]. The 

method used to create the topology of the aggregates was based on random distributions in size 

and shape of ellipses. The CAD model was discretized by 32000 linear triangular finite 

elements (figure 1-(b)) with the generalized plane strain assumption. Computed microstructure 

contains 200 equiaxed grains (figure 1-(a)), with an average of 160 finite elements per grain to 

ensure reasonable computation time. Finally, the random selection of 200 crystal orientations 

was carried out in the Euler space defined by the three angles ( 21 ,, ϕφϕ ) assuming cubic crystal 

symmetry and triclinic sample symmetry. Figure 1-(c) shows the {100} and {110} pole figures 

of these 200 orientations. Given the low number of orientations, this crystallographic aggregate 

can be considered as having no preferential orientations. 



Figure 1. (a) Grain morphology, (b) Mesh and (c) {100} and {110} pole figures showing the 

selected crystallographic orientations. 

Fatigue loading conditions 
Different loading conditions are investigated in this section: uniaxial loadings, and tension 

/torsion loadings with different biaxiality ratios aak τσ=  and different phase shifts. The 

selected loading ratio is 1max,min, −==� aaR σσ . The combined loading levels equivalent to 

the fatigue limit at 10
7
 cycles are determined using Crossland criterion [9]. These load levels are 

given in Table 3. 

Table 3. Tension and torsion stress amplitude aa τσ  (MPa) used for different load conditions. 

 loading Tension Torsion Combined loading tension/torsion 

P
h

a
se

 s
h

if
t biaxiality 0=k ∞=k 25.0=k 5.0=k 75.0=k 1=k 2=k

°= 0ϕ 56/0 0/36 52/13 43.5/22 36/27 30/30 17/34 

°= 45ϕ 54/13.5 47/23 38/29 31/31 17/34.5

°= 90ϕ 56/14 56/28 44/33 34/34 17.5/35

MESOSCOPIC FATIGUE INDICATOR PARAMETERS 

The studied fatigue indicator parameters (FIPs) were selected from stress criteria widely used in 

the literature. The multiaxial HCF criteria considered here are Crossland [9], Matake [10] and 

Dang Van [11]. These fatigue criteria are generally defined in the context of continuum 

mechanics. In order to evaluate the fatigue criterion on each computed microstructures, the 

usual HCF criterion are projected on the slip systems of the crystals. This procedure is repeated 

for each crystal considering its local orientation ( 21 ,, ϕφϕ ) and stress state computed by FE for 

each loading case. For instance, the shear stress vector in a given plane is transformed into a 

resolved shear stress vector over a slip system. The rotation of the crystal in space (defined by 

the Euler angles ( 21 ,, ϕφϕ )) covers all the planes and directions of space, which enables to find 

the same critical planes and directions (planes and directions maximizing criterion) than those 



obtained by the original criterion (with continuous formulation). Table 4 displays the 

expressions of FIPs adapted to the crystal scale. 

Finally, the parameters iα  and iβ  describing the median macroscopic threshold of the 

considered criteria are identified from two median fatigue limits for 10
7
 cycles of the considered 

material smooth specimens under fully reversed loadings: tension ( MPas 561 =− ) and torsion 

( MPat 361 =− ) taken from the work of Lukas and Kunz [12]. The parameter iβ  is identical for 

the three criteria ( 1−=== tdvmc βββ ). The expression of iα  are also given in Table 4.  

Table 4. Expression of Fatigue Indicator Parameters (FIPs) of the studied criteria. 
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A comparison between the mesoscopic FIPs predictions and the macroscopic (original) criteria 

is shown in Figure 2. This comparison shows the existence of grains from which the FIP 

exceeded the macroscopic threshold. The macroscopic threshold is not applicable at the grain 

scale. This is especially true for Crossland criterion where most grains are above the threshold. 

For other criteria, only a small number of grains exceeded the macroscopic threshold. A new 

mesoscopic threshold can be defined, which corresponds to the line linking the most critical 

grains (ploted in red in the graphs of figure 2). However, this determination method of the new 

mesoscopic threshold means that the unique studied elementary volume is representative with 

regards to fatigue. This hypothesis is not acceptable in the case of a non-deterministic behaviour 

such as HCF strength. The RVE hypothesis can be replaced by a statistical analysis of the 

microstructure-sensitivity of the different FIPs. This will be discussed in the next section. 

Figure 2. Locus of the 200 FIPs at the grain length scale (red dots), and comparison with the 

each macroscopic criterion (black dot) in the case of tension loading. The black straight line is 

the experimental macroscopic threshold and the red straight line corresponds to an effective 

threshold upper bound for all mesoscopic FIPs determined from a single microstructure. 

(a) Crossland FIP (b) Matake FIP (c) Dang Van FIP 



MICROSTRUCTURE SENSITIVITY 

The HCF strength is related to the critical grain whose response leads to the maximum value of 

the FIP. These extreme values are located at the tails of the density functions of mesoscopic 

responses and are highly sensitive to the microstructure attributes. To study these critical grains, 

several statistical approaches are possible. The method selected for this work was based on the 

extreme value probability. 

The extreme value database was constructed by identifying the maximum value of FIP for each 

statistical colume element (SVE). The number of SVEs was 64: they were obtained by the 

combination of 8 random morphologies (equiaxed grains) and 8 isotropic textures.   

In order to highlight the microstructure sensitivity to the FIPs, a comparison between the 

mesoscopic predictions corresponding to 64 SVEs and the two thresholds defined above (black 

and red lines in Figure 3) was performed for tension loading. The black line corresponds to the 

macroscopic threshold while the red line passing through the critical grain (with the maximum 

FIP) in the volume element studied previously corresponds to the effective threshold (Figure 2). 

Figure 3 illustrates this comparison in the case of Crossland FIP. For this criterion the 

scatterplot (gray dots) exceeded the two thresholds. This observation has motivated the 

statistical analysis adopted in this work. 

Figure 3. Crossland criterion predictions at the macroscopic length scale (black line) and the 

mesoscopic length scale (gray dots) for the 64 SVEs and for symmetrical alternated tension 

loading. The black line is an experimental macroscopic threshold and the red line corresponds to 

an upper bound effective threshold for all mesoscopic FIPs. This effective threshold correspond 

to a single VE studied previously (Figure 3). 

GENERALIZED EXTREME VALUES PROBABILITY 

Let us consider a random variable x  with the distribution function ( )xFX . The n  extreme 

realizations in n  samples of the random variable can be defined as: 

( )nn XXXY ,...,,max 21=             (1) 

The distribution function of nY  is defined as: 

( ) ( ) ( )yXyXyXPyYPyF nnYn
≤≤≤=≤≡ ,...,, 21               (2) 



According to the Fisher-Tippet theorem, if there exist two real normalizing sequences ( )
1≥nna , 

( )
1≥nnb and a non-degenerated distribution (not reduced to a point) G  so that: 

( ) ( )xGbxaFx
a

bY
P

n

nn

n

n

nn →
+∞→

+=��
�

�
��
�

�
≤

−
                     (3) 

G  is necessarily one of the three types of distributions: Fréchet, Weibull or Gumbel. 

Jenkinson [13] combined the three limit distributions in a single parametric form called 

Generalized Extreme Value (GEV) distribution depending on a single parameter ξ : 
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The ξ  parameter is called extreme index. Its sign indicates the type of asymptotic distribution: 

Weibull ( 0<ξ ), Gumbel ( 0=ξ ) or Fréchet ( 0>ξ ). The variable ( ) nnn abY −  is called 

normalized maximum of the random variable x .The parameters na  and nb  are also called 

shape factors of the distribution. 

We are interested in the maximum values of different FIPs listed in Table 4. Scale factors ( na

and nb ) and extreme index ξ  are determined using the maximum likelihood method with a 

confidence interval of 99%. Figure 4 shows a comparison between the determined distributions 

and the samples for the Crossland FIP. The identified GEV density function and distribution 

function showed a good correlation with the probability density and the cumulative probability 

determined from the extreme values of FIPs database. 

Figure 4. Probability density and cumulative probability determined using the maximum 

likelihood method from the extreme values of Crossland FIP for tensile loading. 

RESULTS AND DISCUSSIONS 

Figure 5 represents the mesoscopic thresholds (medians and also the probabilities of 0.1 and 0.9 

quantiles) for each loading condition. These factors are normalized by the macroscopic 

threshold to analyze the effect of microstructure variability. Referring to figure 5, for all studied 

loading conditions and studied FIPs, the normalized mesoscopic thresholds were always larger 



than 1. The adaptation of different studied criteria at the mesoscopic length scale requires 

increasing this threshold to account for the microstructure variability at this length scale. 

On the other hand, the mesoscopic thresholds, defined as the medians of the extreme value 

distribution of the studied FIPs depend on the loading case. This gap depends on the studied 

FIP: it is low in the case of the Crossland and Dang Van FIPs (Figure 5-(a) and (c)) and 

important in the case of the Matake FIP (Figure 5-(b)). For this last FIP, the change in 

mesoscopic thresholds was observed especially for the biaxial loading with a phase shift of 90°. 

This difference can be justified by considering that the macroscopic loading levels applied to 

the polycrystalline aggregate were determined by reference to the Crossland criterion. 

Figure 5. Evolution of the median of the extreme value distributions of (a) Crossland, (b) 

Matake and (c) Dang Van FIPs, us function of loading conditions. The dots correspond to the 

median; the two limits of the interval correspond to a probability of 0.10 and 0.90. 

Finally, the mesoscopic threshold, common to all loading cases was determined as the average 

of the thresholds associated to each loading conditions. This mesoscopic average threshold is 

shown in Figure 5 by the dashed horizontal lines passing through all intervals bounded by the 

probabilities of 0.1 and 0.9 quantiles in the case of Crossland and Van Dang FIPs. For Matake 

FIP, this was also true except for the case of biaxial loadings with a phase shift of 90° due to the 

reasons mentioned above.

Figure 6. Predictions from (a) Crossland, (b) Matake and (c) Dang Van at the macroscopic 

length scale (black line) and the mesoscopic length scale (gray dots). The extreme values of 

these predictions are represented by red dots; the new criteria determined by the average of the 

medians of the extreme value distributions are represented by the red line. 

The mesoscopic threshold of different FIPs is the average (over the different loading conditions) 

of the medians of the extreme value distributions. Keeping the same value for the iα  parameter, 

the new criterion containing microstructural heterogeneities contribution at the mesoscopic 

length scale is plotted in Figure 6. When the mesoscopic threshold (red line) is close to the 

macroscopic one (black line), the microstructure heterogeneities are taken into account by the 

(a) Crossland FIP (b) Matake FIP (c) Dang Van FIP 

(a) Crossland FIP (b) Matake FIP (c) Dang Van FIP 



original criterion. This is especially the case of Dang Van criterion and to a lesser extent the 

case of Matake criterion. For the Crossland criterion, the distance between the two straight lines 

is important. This comparison proves that critical plane type approaches can capture the 

microstructure heterogeneity despite simplifying assumptions [11]. 

CONCLUSIONS 

In this work, we analyzed the responses of mesoscopic multiaxial fatigue criteria, widely 

studied in the literature (Crossland, Matake and Dang Van) from polycrystalline modeling of 

pure copper coupled with a statistical study of the critical grains. This statistical study allows us 

to introduce microstructural heterogeneities effect in the variability of the fatigue limits. 

The comparison between the mesoscopic predictions of these criteria and the macroscopic 

(original) criteria shows that they are not conservative at the grain scale. Indeed the 

identification of macroscopic parameters of these criteria ( iα  and iβ ) does not take into 

account the variability due to the microstructure. The solution would be to readjust these 

parameters on the most critical grain predictions from a calculation. These critical grains are 

located in the tails of the aggregate response distributions. One of the most used methods to 

statistically study these critical grains is the extreme value probability. The statistical moment’s 

determination of the different distributions allowed us to define a new mesoscopic threshold for 

the studied criteria. 

These thresholds are the average of the medians of the extreme value distributions related to the 

different loading conditions. According to the criterion, these thresholds are different or similar 

to the macroscopic thresholds. For Dang Van, the mesoscopic threshold is close to the 

macroscopic value of the fatigue indicator parameter (a ratio between the two thresholds is 1.1). 

At the opposite, for Crossland, the ratio between meso and macro thresholds is greater than 1.5. 

Matake criterion has a ratio of around 1.2. 

Finally, except for the biaxial loading with a phase shift of 90° where FIP median values are 

very different from one criterion to another, the mesoscopic thresholds is almost the same for all 

loading conditions. These new mesoscopic thresholds can therefore be determined by applying a 

single loading case. 
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