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Abstract  Fatigue life computing methods are generally based on putting into equation the mechanical 

quantities calculated at the micro or meso scale, the relevance of these selected quantities being validated by 

the capacity of the models to reproduce experimental results at the macroscopic scale. Although the scaling 

of the damage mechanisms involved in fatigue crack initiation processes are relatively well identified (grain 

scale, slip bands), their explicit consideration in fatigue criteria is still not well-developed. Furthermore, the 

existing methods do not consider the microstructure-sensitivity. The aim of this paper is to present the 

computational strategies developed to account for the microstructure-sensitivity in the calculation of fatigue 

strength. This work is based on three parts: (1) the development of 3D microstructure modeling tools (2) the 

analysis of the dispersion induced by the microstructure heterogeneities on the critical fatigue damage 

indicators and (3) the development of a statistical approach which provides a framework for analyzing 

calculation results in the HCF (High Cycle Fatigue) regime.  

In this background, a method of analysis based on the construction of statistical extreme value distributions 

from FEA calculation results was developed. The evolution of the scaling parameters of these distributions 

for different loading conditions informed us about the effect of non-proportional loading and microstructure. 

A design method based on these extreme value statistics is presented to obtain a new mesoscopic criterion 

sensitive to microstructure parameters. Finally, surface effects are discussed too. 

Keywords  HCF, crystal plasticity, extreme value probability, FE simulation. 

Abbreviation and designation 

HCF: High Cycle Fatigue 

FIP: Fatigue Indicator Parameter 

RVE: Representative Volume Element 

SVE: Statistical Volume Element 

GEV: Generalized Extreme Value distribution 

Microscopic length scale: corresponding to the integration points 

Mesoscopic length scale: Corresponding to the average density in a grain 

Macroscopic length scale: Corresponding to the elementary volume average 

1. Introduction 

In literature, methods for determining the fatigue behavior based on multiscale modeling estimate 

that the fatigue strength of metals depends on the extreme value statistics of a single microstructure 
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attribute [1] (for example inclusion size). This is only valid when the considered element of 

microstructure is a representative volume element (RVE) with regards to fatigue. Although the 

definition of the RVE is possible for some deterministic behaviour aspects (such as elastoplastic 

behaviour), it is difficult to evaluate a RVE for the HCF strength which is macroscopically highly 

dispersed. Therefore the use of a single microstructure element (with a smaller volume than the 

RVE with regards to the fatigue behaviour but equal to the RVE size with regards to the 

elastoplastic behaviour) does not make it possible to take into account the contribution of the 

microstructure heterogeneities in the HCF response. To solve this issue, Liao [2] used the Monte 

Carlo method to build statistical volume element (SVE) of a microstructure with a random 

distribution of grain sizes and crystallographic orientations. Despite considering elastic behaviour of 

crystal only, Liao showed a good correlation between the results obtained by modeling the extreme 

value probability with a Fréchet distribution and experimental results. Recently, Przybyla et al. [3, 4] 

introduced a new framework taking into account the effects of neighborhood through the extreme 

values of the marked correlation functions to quantify the influence of microstructure on the fatigue 

limit and the contribution of interactions in the microstructure in the case of uniaxial loading. 

Przybyla used Gumbel distribution function to describe the extreme value probability of the studied 

parameters. 

The purpose of this work is, first, to analyze the microstructure sensitivity (morphology and 

orientation) of the fatigue indicator parameter (FIP) corresponding to the adaptation of multiaxial 

fatigue strength criteria at the mesoscopic length scale. Then a statistical study is used to define new 

mesoscopic thresholds for the FIPs, different from the original thresholds of the macroscopic 

criteria. Finally, the capability of the macroscopic criteria to take into account the microstructure 

sensitivity will be discussed through a comparison between the thresholds determined by the 

statistical response of the microstructure at the grain scale (called mesoscopic) and the original 

macroscopic thresholds. Free surface effects are also discussed with the comparison between FIPs 

determined from different FE models: 2D, 3D and 3D taking into account the grain surface only. 

2. Numerical model 

2.1. Constitutive relations 

The material parameters considered in this work are those of pure copper. This material has a 

face-centered cubic crystal structure with 12 slip systems (<111> {110}). The behaviour is modeled 

by cubic elasticity and crystal plasticity constitutive law. The crystal plasticity model used in this 

work is the one introduced by Meric and Cailletaud [5]. The cubic elasticity constants, the material 

parameters and the coefficients of the interaction matrix have been identified on a high purity copper 

by Gérard et al. [6].  

2.2. Grain morphology and crystallographic texture 

The simulations performed in this study were done using 3D semi-periodic microstructures 

(periodicity along X1 and X2). The Voronoï polyhedra method was used to model the morphology of 

the grains. The initial domain (with dimensions x1=1, x2=1 and x3=0.5) is filled by randomly 
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positioned and oriented germs so as to have a distance greater than or equal to 0.02 between two 

germs. The CAD model was discretized by around to 5.10
5
 linear tetrahedral finite elements (figure 

1-(b)). Computed microstructure contains 200 equiaxed grains (figure 1-(a)) with an average of 

2500 finite elements per grain. In addition to loading, periodicity conditions were applied on the 

planes corresponding to X1min, X1max, X2min and X2max. To take into account the free surface 

effect, the symmetry conditions were applied on the face corresponding to X3min. The grain 

number on the free surface (corresponding to X3max) is about 50. Finally, the random selection of 

200 crystal orientations was carried out in the Euler space defined by the three angles ( 21 ,, ϕφϕ ) 

assuming cubic crystal symmetry and triclinic sample symmetry. Figure 1-(c) shows the {100} and 

{110} pole figures of these 200 orientations. Given the low number of orientations, this 

crystallographic aggregate can be considered as having no preferential orientations. 

Figure 1. (a) Grain morphology, (b) Mesh and (c) {100} and {110} pole figures showing the selected 

crystallographic orientations 

2.3. Fatigue loading conditions 

Different loading conditions are investigated in this section: uniaxial loading, and tension /torsion 

loadings with different biaxiality ratios aak τσ=  and different phase shifts. The selected loading 

ratio is 1max,min, −==� aaR σσ . The combined loading levels equivalent to the median fatigue limit 

at 10
7
 cycles are determined using the Crossland criterion [9]. These load levels are given in Table1. 
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Table 1. Tension ( aσ ) and torsion ( aτ ) stress amplitude used for different load conditions ( aa τσ  [MPa]) 

loading Tension Torsion
Combined loading 

tension/torsion 
P

h
a

se
 s

h
if

t biaxiality 0=k ∞=k  5.0=k  1=k  2=k

°= 0ϕ
56/0 

0/36 

43.5/22 30/30 17/34 

°= 45ϕ 47/23 31/31 17/34.5 

°= 90ϕ 56/28 34/34 17.5/35 

3. Mesoscopic fatigue indicator parameters 

The studied fatigue indicator parameters (FIPs) were selected from stress criteria widely used in the 

literature. The multiaxial HCF criteria considered here are Crossland [9], Matake [10] and Dang 

Van [11]. These fatigue criteria are generally defined in the context of continuum mechanics. In 

order to evaluate the fatigue criterion on each computed microstructures, the usual HCF criterion 

are projected on the slip systems of the crystals. This procedure is repeated for each crystal 

considering its local orientation ( 21 ,, ϕφϕ ) and localstress state computed by FE for each loading 

case. For instance, the shear stress vector in a given plane is transformed into a resolved shear stress 

vector over a slip system. The rotation of the crystal in space (defined by the Euler angles 

( 21 ,, ϕφϕ )) covers all the planes and directions of space, which enables to find the same critical 

planes and directions (planes and directions maximizing the criterion) than those obtained by the 

original criterion (with continuous formulation). Table 4 displays the expressions of FIPs adapted to 

the crystal scale. 

Table 2. Expression of Fatigue Indicator Parameters (FIPs) of the studied criteria 
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Finally, the parameters iα  and iβ  describing the median macroscopic threshold of the considered 

criteria are identified from two median fatigue limits for 10
7
 cycles of the considered material on 
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smooth specimens under fully reversed loadings: tension ( MPas 561 =− ) and torsion ( MPat 361 =− ) 

from the work of Lukas and Kunz [12]. The parameters iβ  are identical for the three criteria 

( 1−=== tdvmc βββ ). The expression of iα  are given in Table 2. 

A comparison between the mesoscopic FIPs predictions and the macroscopic (original) criteria is 

shown in Figure 2. This comparison shows the existence of grains at the surface (highlighted in light 

blue) or in the entire volume element from which the FIP exceeded the macroscopic threshold. The 

macroscopic threshold is not applicable at the grain scale. This is especially true for the Crossland 

criterion where most of the grains are above the threshold. For other criteria, only a small number of 

grains exceeded the macroscopic threshold. A statistical analysis of the microstructure-sensitivity of 

the different FIPs will be presented in the next section. This statistical analysis will determine a new 

mesoscopic threshold to take into account the microstructure heterogeneities. 

Figure 2. Locus of the 200 FIPs at the grain length scale (gray dots), and macroscopic criterion (black dot) in 

the case of tension loading ( 1−=�R ). The FIPs corresponding to the surface grains are highlighted (in light 

blue) and the black straight line is the experimental macroscopic threshold 

4. Microstructure sensitivity 

The HCF strength is related to the critical grain whose response leads to the maximum value of the 

FIP. These extreme values are located at the tails of the probability density functions of mesoscopic 

responses (see Figure 3) and are highly sensitive to the microstructure attributes. To study these 

critical grains, several statistical approaches are possible. The method selected for this work was 

based on the extreme value probability. This method involves the statistical analyze of the 

maximum values of the mesoscopic FIP, corresponding to the various studied volume element, by 

considering a single value for each aggregate. 

Figure 3. Localization of the extreme values in the tails of the Dang Van FIP distribution 

(a) Crossland FIP (b) Matake FIP (c) Dang Van FIP 
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The extreme value database was constructed by identifying the maximum value of FIP for each 

statistical volume element (SVE). The number of SVEs was between 25 and 35: they were obtained 

by the combination of 7 random morphologies (Figure 4-(a)) and 5 isotropic textures (Figure 4-(b)). 

This sample size is sufficient to determine the extreme values distribution function. Indeed Przybyla 

showed that from a number of SVEs greater than 20, the difference between the empirical 

distribution and the experimental sample becomes negligible [3, 4]. The maximum value of FIP has 

been determined on the one hand from the FIP concerning all the grains of the SVE and on the other 

hand by separating only the surface grains of the aggregate. 

 (a) grain morphologies 

MICRO 1 MICRO 2 MICRO 3 MICRO 4 

MICRO 5 MICRO 6 MICRO 7  

(b) grain orientations

Pole figure {100} Pole figure {110} Pole figure {111} 

ORIEN 1 

ORIEN 2 

ORIEN 3 

ORIEN 4 

ORIEN 5

Figure 4. (a) random morphologies and (b) isotropic textures used to create the extreme values database 
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5. Generalized extreme values probability 

Let us consider a random variable x  with the distribution function ( )xFX . The n  extreme 

realizations in n  samples of the random variable can be defined as:

( )nn XXXY ,...,,max 21=                        (1) 

The distribution function of nY  is defined as: 

( ) ( ) ( )yXyXyXPyYPyF nnYn
≤≤≤=≤≡ ,...,, 21               (2) 

According to the Fisher-Tippet theorem, if there exist two real normalizing sequences ( )
1≥nna , 

( )
1≥nnb and a non-degenerated distribution (not reduced to a point) G  so that: 

( ) ( )xGbxaFx
a

bY
P

n

nn

n

n

nn →
+∞→

+=��
�

�
��
�

�
≤

−
                     (3) 

G  is necessarily one of the three types of distributions: Fréchet, Weibull or Gumbel. 

Jenkinson [13] combined the three limit distributions in a single parametric form called Generalized 

Extreme Value (GEV) distribution depending on a single parameter ξ : 

( ) ( )

( )( )�	
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The ξ  parameter is called extreme index. Its sign indicates the type of asymptotic distribution: 

Weibull ( 0<ξ ), Gumbel ( 0=ξ ) or Fréchet ( 0>ξ ). The variable ( ) nnn abY −  is called 

normalized maximum of the random variable x .The parameters na  and nb  are also called shape 

factors of the distribution. 

Figure 5. Probability density and cumulative probability determined using the maximum likelihood method 

from the extreme values of Crossland FIP for tensile loading ( 1−=�R )

We are interested in the maximum values of different FIPs listed in Table 2. Scale factors ( na  and 
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nb ) and extreme index ξ  are determined using the maximum likelihood method with a confidence 

interval of 99%. Figure 5 shows a comparison between the determined distributions and the samples 

for the Crossland FIP. The identified GEV density function and distribution function showed a good 

correlation with the probability density and the cumulative probability determined from the extreme 

values of FIPs database. 

6. Results and discussions 

Figure 6 represents the mesoscopic thresholds (medians and also the values of 0.1 and 0.9 quantiles) 

for each loading condition. The mesoscopic thresholds are statistically determined from the FIPs at 

the grain scale considering the local stress state. This local stress state is computed by a finite 

element (FE) simulation. A comparison between the mesoscopic thresholds obtained by considering 

a 3D FE model (described above) and a 2D FE model [14] is presented in this figure.  

The mesoscopic thresholds are normalized by the macroscopic threshold to analyze the effect of 

microstructure variability. Referring to figure 6, for all studied loading conditions and studied FIPs, 

the normalized mesoscopic thresholds were always larger than 1 in the case of the local stress state 

computed by 2D FE model [14]. When the local stress state is determined by a 3D model, the 

mesoscopic threshold determined from all aggregate grains decreases for Matake and Dang Van 

criteria, and increases slightly in the case of Crossland criterion. This threshold is higher for 

Crossland criterion and is close to 1 for Matake criterion and especially for Dang Van criterion. The 

mesoscopic threshold determined by considering only the surface grains becomes lower than the 

macroscopic threshold for Dang Van criterion. This is not valid for the other two criteria. This 

comparison highlights the ability of the Dang Van criterion to reflect the microstructural 

heterogeneities compared to the two other criteria.

On the other hand, the mesoscopic thresholds, defined as the medians of the extreme value 

distribution of the studied FIPs depend on the loading case. This gap depends on the studied FIP: it 

is low in the case of the Crossland and Dang Van FIPs (Figure 6-(a) and (c)) and important in the 

case of the Matake FIP (Figure 6-(b)). For this last FIP, the change in mesoscopic thresholds was 

observed especially for the biaxial loading with a phase shift of 90°. This difference can be justified 

by considering that the macroscopic loading levels applied to the polycrystalline aggregate were 

determined by reference to the Crossland criterion.

Figure 6. Evolution of the median (a probability of 0.50) of the extreme value distributions of (a) Crossland, 

(b) Matake and (c) Dang Van FIPs, as a function of loading conditions determined by 2D (in black), and 3D 

(in blue and red) FE model. The two limits of the interval correspond to a probability of 0.10 and 0.90. 

(a) Crossland FIP (b) Matake FIP (c) Dang Van FIP 
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Finally, the mesoscopic threshold, common to all the loading cases was determined as the average 

of the thresholds associated to each loading conditions. This mesoscopic average threshold is shown 

in Figure 6 by the dashed horizontal lines passing through all intervals bounded by the values of 0.1 

and 0.9 quantiles in the case of Crossland and Van Dang FIPs. For Matake FIP, this was also true 

except for the case of biaxial loadings with a phase shift of 90° due to the reasons mentioned above. 

(a) Crossland (b) Matake (c) Dang Van

Figure 7. Predictions from (a) Crossland, (b) Matake and (c) Dang Van at the macroscopic length scale 

(black line) and the mesoscopic length scale considering all grains (gray dots) and surface grains (gray dots).  

The mesoscopic threshold of different FIPs is the average (over the different loading conditions) of 

the medians of the extreme value distributions. Keeping the same value for the iα  parameter, the 

new criterion containing microstructural heterogeneities contribution at the mesoscopic length scale 

is plotted in Figure 7. This Figure illustrates for each criterion two mesoscopic thresholds : the first 

was determined from all the grains of the aggregate (red line) and the second was computed by 

considering only the surface grains. When the mesoscopic threshold is close to the macroscopic one 

(black line), the microstructure heterogeneities are taken into account by the original criterion. This 

is especially the case of Dang Van criterion, when the mesoscopic threshold determined for all the 

aggregate grains is equal to the macroscopic thresholds, and to a lesser extent the case of Matake 

criterion (Table 3). For the Crossland criterion, the distance between the two straight lines is 

important in the case of thresholds determined from all the grains and from the surface grains (table 

3). This comparison proves that critical plane type approaches can capture the microstructure 

heterogeneity despite simplifying assumptions [11].

Table 3. Values of macroscopic thresholds and mesoscopic thresholds obtained by 2D and 3D FE modeling 

Criterion 
Macroscopic

Thresholds 

Mesoscopic Thresholds 

2D model 

(all grains)

3D model 

(all grains) 

3D model 

(surface grains) 

Crossland 36.15 54.78 55.68 51.48 

Matake 36.15 41.97 39.21 36.82 

Dang Van 36.15 39.81 36.36 33.59 
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7. Conclusion 

From polycrystalline modeling of pure copper coupled with a statistical study of the critical grains, 

we analyzed the mesoscopic responses of the multiaxial fatigue criteria, widely studied in the 

literature (Crossland, Matake and Dang Van). This statistical study allows us to introduce 

microstructural heterogeneities effect in the variability of the fatigue strength.

The comparison between the mesoscopic predictions of these criteria and the macroscopic (original) 

ones shows that they are not conservative at the grain scale. Indeed the identification of 

macroscopic parameters of these criteria ( iα  and iβ ) does not take into account the variability due 

to the microstructure. The solution would be to readjust these parameters on the most critical grain 

computed from FE calculations. These critical grains are located in the tails of the aggregate 

response distributions. One of the most used methods to statistically study these critical grains is the 

extreme value probability. The statistical moment’s determination of the different distributions 

allowed us to define a new mesoscopic threshold for the studied criteria. 

These thresholds are the average of the medians of the extreme value distributions related to the 

different loading conditions. These thresholds are different or similar to the macroscopic thresholds 

depending on the considered criterion. For Dang Van, the mesoscopic threshold is equal to the 

macroscopic value of the fatigue indicator parameter. At the opposite, for Crossland, the ratio 

between meso and macro thresholds is greater than 1.4. Matake criterion has a ratio of around 1.1. 

Finally, except for the biaxial loading with a phase shift of 90° where FIP median values are very 

different from one criterion to another, the mesoscopic thresholds is almost the same for all the 

loading conditions. Thus, these new mesoscopic thresholds can therefore be determined by applying 

a single loading case. 
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