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Extending the capabilities of the dual-grid finite-difference

time-domain method

Romain Pascaud1, Gaël Godi1, Raphaël Gillard1, Renaud Loison1, Joe Wiart2 and

Man-Faı̈ Wong2

Abstract – In this paper, improvements of the dual-grid finite-
difference time-domain (DG-FDTD) method are proposed. This
multiresolution approach is particularly suitable for the simula-
tion of surrounded antenna problems. By successively combin-
ing two finite-difference time-domain (FDTD) simulations with
different resolutions, it allows the evaluation of the environment
effects on the radiated fields, and it also gives information on the
antenna input impedance. In this paper, we propose two different
techniques to extend the DG-FDTD capabilities. The first one
consists of a correction procedure. Its application to a lens an-
tenna analysis exhibits accurate results while providing a com-
putation speedup of 16.7. The second technique consists of its
hybridization with the multiple-region FDTD to make the sim-
ulation of transmission problems possible. A study involving
two ultra-wide band antennas shows the relevance of the hybrid
method that allows a fast and accurate characterization of scat-
tering parameters.
Index Terms – FDTD methods, Numerical analysis, Lens anten-
nas, Antenna array mutual coupling.

I. Introduction

Although the finite-difference time-domain (FDTD) me-

thod [1] is a powerful, robust, and popular tool for the

analysis of various structures over a large bandwidth, the

simulation of large problems such as large antennas or an-

tenna arrays remains a current issue. Actually, the antenna

often requires a fine description to deal with near-field pa-

rameters like the impedance, whereas its environment does

not need such a discretization. The uniform discretization

of the classical FDTD volume finally leads to oversampled

areas that increases the computational time.

Nonuniform orthogonal grids or graded mesh are common

solutions to deal with the discretization problem [2]. How-

ever, these methods are limited to specific geometries that

conform to the specialized grid.

A multiresolution time-domain (MRTD) approach has

been introduced as an alternative to classical FDTD [3].

It uses a wavelet expansion of the fields in the FDTD vol-

ume, and the vanishing moments properties of wavelet, to

reduce the computational requirements. Nonetheless, the

MRTD can be cumbersome when boundary conditions are

involved. Moreover, no actual thresholding criterion ex-

ists that allows an automated choice of the wavelet com-

ponents to be neglected.

The multiple-region finite-difference time-domain (MR-

FDTD) approach has been proposed for the simulation of

problems where distant elements are involved in an infi-

nite homogeneous medium [4]. The MR-FDTD divides

the classical FDTD volume into sub-volumes that inter-

act with each other thanks to radiation integrals. Signifi-

cant savings can be made since there is no need to mesh

the space between the sub-volumes. It also reduces the

numerical dispersion involved in large meshed regions.

However, compression techniques are required to make the

MR-FDTD competitive with the classical FDTD in terms

of computational time [5]. Unfortunately, it generates an

instability during the calculation. One way to overcome

this instability issue is to consider an unilateral MR-FDTD

instead of a bilateral one [6]. Nevertheless, it may be inac-

curate if the sub-volumes are close since the second-order

coupling effects are not taken into account.

Subgridding finite-difference time-domain (SG-FDTD)

schemes have also been intensively investigated [7-12].

Various approaches exist: sequential computations [7],

subgridding in space only [8], and subgridding in space

and time [9-12]. Whatever the subgridding technique, it al-

ways consists in using different cell sizes over different ar-

eas of the volume. During the simulation, the fields on the

boundary of one grid are used to compute the fields on the

boundary of the other grid. Nevertheless, spurious reflec-

tions from the interface exist that limit the ratio of spatial

steps between the grids [9-11]. Moreover, a late time in-

stability may appear when computing the electromagnetic

fields [12].

Recently, the dual-grid finite-difference time-domain

(DG-FDTD) approach has been introduced by the authors

for the fast simulation of surrounded antennas [13]. The

DG-FDTD successively combines two FDTD simulations

with different resolutions. Firstly, the antenna is charac-

terized without its environment using a fine FDTD sim-

ulation. Secondly, the surrounded performance of the an-

tenna are evaluated using a coarse FDTD simulation of the

antenna with its environment. Therefore, the DG-FDTD is

particularly suitable to compute the environment effects on

the radiated fields [13, 14]. It also gives the modifications

on the input impedance of the antenna due to the environ-

ment.

Since these modifications are computed with a coarse

FDTD, we only have an approximate value of the mod-

ified impedance. We proposed in this paper a correction

procedure to improve the computation of the surrounded



impedance. A second critical situation can be encoun-

tered when we try to extend the DG-FDTD to transmission

problems. In this case, the coarse description of the en-

vironment, that includes the receiving structure, does not

lead to an accurate transmission coefficient. We then pro-

pose to hybridize the DG-FDTD with the unilateral MR-

FDTD to analyze such a transmission problem [15].

The discussion proceeds with a reminder of the DG-FDTD

principle in Section II. Section III presents a new possible

application of the DG-FDTD: the fast and accurate simu-

lation of lens antennas. The correction procedure is then

described and applied to this test case. Afterwards, the

hybridization of the DG-FDTD with the unilateral MR-

FDTD is detailed in Section IV. Finally, some conclusions

are drawn in Section V.

II. DG-FDTD method

A) DG-FDTD principle

Consider the open problem presented in Figure 1(a), where

an antenna is placed near a scattering element. As shown in

Figure 1(b), the DG-FDTD simulation divides the overall

analysis into two different FDTD simulations.

(a)

(b)

Fig. 1. (a) Electromagnetic problem, (b) DG-FDTD decomposi-
tion.

Firstly, we define a finely discretized FDTD volume that

only includes the antenna. This FDTD volume is termi-

nated by perfectly matched layers (PMLs) in order to sim-

ulate an infinite problem [16]. This simulation goes from

t0 to Tobsfine
with a time step dtfine

that respects the Courant-

Friedrich-Levy (CFL) stability condition. Tobsfine
is chosen

so that the electromagnetic energy may be radiated outside

the FDTD volume. We finally have the characteristics of

the antenna without its environment. During this simula-

tion, the “primary” radiation of the antenna, namely when

no disturbing environment is involved, is stored on a near-

field surface. Such a radiation is calculated with a good

accuracy thanks to the fine discretization.

Secondly, this primary radiation is used as the excitation of

a coarse FDTD simulation that represents both the antenna

and its environment. The excitation is carried out by means

of an excitation surface based on the total field/scattered

field decomposition principle [17]. This simulation also

starts at t0, but ends at Tobscoarse which can be larger than

Tobsfine
, depending on the size of the problem. The time

step dtcoarse used in the second simulation might be larger

than dtfine
since the spatial steps, and thus the CFL con-

dition, are different. Note that a coarse description of the

antenna is included to deal with second-order scattering

phenomena. It guarantees that all coupling effects between

the antenna and its environment are taken into account,

and especially the influence of the backscattered field on

the antenna input impedance. Besides, the generator of the

antenna has to be switched off since the incident power is

already present in the primary radiation that is used as the

excitation of the coarse FDTD volume. This second step

may be combined with a correction procedure that is pre-

sented in details in Section III.D.

To sum up, the DG-FDTD enables the computation of the

surrounded characteristics of the antenna in a fast way, but

it also makes possible the accurate simulation of the an-

tenna without its environment. The DG-FDTD turns out

to be well adapted to problems that imply a lot of sim-

ulations where the environment is changed. Indeed, once

the antenna is characterized with the fine FDTD, it can be

quickly simulated in various configurations thanks to the

coarse FDTD. The DG-FDTD remains stable since it com-

bines two classical FDTD simulations that both respect

their own CFL stability condition. Furthermore, it is easy

to implement in contrast with other FDTD multiresolution

approaches. Actually, only the excitation mechanism must

be added to a classical FDTD code.

B) DG-FDTD post-processings

The DG-FDTD method allows the evaluation of the an-

tenna characteristics with and without its environment. In

order to compute both the different reflection parameters,

we use

(1) S11( f ) =
b1( f )

a1( f )

where S11 is the reflection parameter, whereas a1 and b1

are the incident and reflected waves at the generator ter-

minals, respectively. Actually, the reflected wave b1 can



be divided into two waves: the one due to the antenna,

and the one due to the environment. Hence, it is possible

to compute the reflection parameter without the environ-

ment by considering b1 = b1fine
, where b1fine

is calculated

during the first step of the DG-FDTD. On the other hand,

the S11 parameter with the environment requires to add

the reflected waves coming from both FDTD simulations:

b1 = b1fine
+ b1coarse .

The radiation patterns are calculated by means of a near-

to-far-field transformation based on the Huygens princi-

ple [18]. A Huygens surface is defined in the FDTD vol-

ume, and the field components on this surface are stored

at each time step. Once the simulation is over, the elec-

tric and magnetic equivalent currents ( EJ and EM) are eval-

uated in the frequency domain. Finally, the far-fields are

computed with a near-to-far-field transformation in the fre-

quency domain that involves a numerical integration of the

equivalent currents. The radiation patterns of the antenna

are obtained by considering a Huygens surface that totaly

includes the antenna in the first step of the DG-FDTD sim-

ulation. With regard to the far-field of the overall problem,

it is calculated using a Huygens surface that includes both

the antenna and its environment during the second step of

the DG-FDTD simulation.

III. Simulation of integrated lens antennas

using the DG-FDTD

A) Integrated lens antennas

The significant increase of millimeter-wave applications

in the last decades is partially explained by the congestion

of the frequency spectrum. As a result, antenna designers

have to focus on millimeter-wave antenna design and opti-

mization. Among the variety of millimeter-wave antennas,

integrated lens antennas (ILA) are widely spread [19-22].

An ILA consists of a dielectric lens fed by a primary

source in direct contact with the lens body. Depending on

the required radiation characteristics, the lens radius may

be equal to several wavelengths. In order to simulate such

an electrically large antenna, asymptotic methods are often

used since they are efficient from the calculation point of

view [19, 20]. However, they still suffer from inaccuracies

since the multiple internal reflections are not well taken

into account [21]. A fullwave electromagnetic method is

needed to perform fully accurate simulation of the ILA.

FDTD technique has already been successfully applied to

the analysis of three-dimensional lenses [21, 22]. Nonethe-

less, the uniform discretization of the classical FDTD may

be a problem. Actually, the source often requires a fine dis-

cretization to deal with short dimensions, whereas the lens

shape does not. The uniform small spatial steps finally lead

to huge computational time and memory requirements. We

propose to analyze integrated lens antennas with the DG-

FDTD method.

B) DG-FDTD simulation of integrated lens antennas

As mentioned in Section II.A, the DG-FDTD involves two

FDTD simulations with different resolutions (Fig. 2).

(a)

(b)

Fig. 2. DG-FDTD application to the ILA analysis: (a) fine FDTD
simulation of the primary source, (b) coarse FDTD simulation of
the overall structure.

The primary source is firstly simulated alone while stor-

ing its primary radiation on a near-field surface (Fig. 2(a)).

The FDTD volume is terminated by uniaxial PMLs [23]

to simulate an infinite problem. As a result, the primary

source radiates in an infinite dielectric medium with ǫrlens
.

Secondly, the primary radiation of the source is used to ex-

cite a coarse FDTD volume that represents both the source

and the dielectric lens (Fig. 2(b)). The presence of the pri-

mary source in the coarse simulation guarantees that the

multiple internal reflections are taken into account to com-

pute the S11 parameter. One may note that Figure 2 is a

schematic, and in practical the lens is several wavelengths

when the primary source is very small.

C) Numerical example

The simulated integrated lens antenna is presented in Fig-

ure 3. This axisymmetric ILA has been designed and op-

timized in [20] to provide a sectoral shaped coverage. Its

diameter and height are equal to 6.1 × λ0 and 4.1 × λ0

( f0 = 28 GHz), respectively. The primary source and lens

characteristics are presented in [20].

In order to evaluate the accuracy of the DG-FDTD, three

approaches are compared (Table 1). The classical fine

FDTD involves small spatial steps: dxfine = dyfine =
λ0/102, and dzfine = λ0/84 at f0 = 28 GHz. It enables

us to deal with short dimensions of the primary source.



Fig. 3. Simulated axisymmetric ILA.

On the opposite, the classical coarse FDTD compels us

to make some approximations. In this particular case, the

spatial steps dxcoarse and dycoarse are three times larger,

and dzcoarse is twice larger, than those of the fine FDTD

(dxcoarse = dycoarse = λ0/34, and dzcoarse = λ0/42).

Concerning the DG-FDTD, the primary source is simu-

lated alone using the fine discretization, whereas the sec-

ond simulation involves the coarse description of the entire

structure.

Figure 4(a) presents the simulated far-field radiation pat-

terns in the (yOz) plane at f0 = 28 GHz. The DG-FDTD

and the classical coarse FDTD results are in good agree-

ment with the classical fine FDTD results. Both main lobe

and sidelobes are well predicted by those methods. Ac-

tually, the coarse mesh resolution is accurate enough to

analyze the far-field.

The simulated reflection parameters are reported in Fig-

ure 4(b). We first notice that the reflection parameter de-

pends on the presence of the lens. Indeed, some rip-

pling effects appear in the |S11| parameter. Concerning the

coarse classical FDTD, the reflection parameter turns out

to be inaccurate. The response is shifted in frequency, and

the bandwidth at −10 dB is over-evaluated. Concerning

the DG-FDTD, the response is better, and the ILA band-

width is well predicted. Some rippling effects due to the

dielectric lens are observed. Nevertheless, there is still sev-

eral differences. In fact, the primary source in the coarse

simulation is not matched at all at f0 = 28 GHz since its

response is shifted in frequency by 3.5 GHz. Hence, for

highly resonant structures, the coarse representation of the

source might lead to inaccuracies on the reflection parame-

ter. In the next Section, a correction procedure is proposed

to deal with this problem.

As far as computing time and memory requirements are

concerned, the fine FDTD simulation of the ILA requires

104 hours and 7500 MB using an AMD 64-4200 PC.

The coarse FDTD simulation only needs 4 hours and

21 minutes, and 627 MB. The DG-FDTD simulation takes

6 hours and 13 minutes: 1 hour and 52 minutes for the first

step, and 4 hours and 21 minutes for the second step. Con-

(a)

(b)

Fig. 4. Simulation results: (a) far-field radiation patterns in the
(yOz) plane at f0 = 28 GHz, (b) |S11|.

cerning the memory requirements, they are 74 MB for the

first step, and 627 MB for the second one. Finally, we have

a computational speedup of 16.7, and a reduction by 10.7

of the memory requirements.

D) Correction procedure

As we have seen in Section III.C, some differences are ob-

served between the reflection parameters obtained with the

DG-FDTD and the fine FDTD (Fig. 4(b)). The coarse dis-

cretization of the primary source during the second step

of the DG-FDTD leads to an inaccurate reflected wave

b1coarse . A simple correction procedure can be carried out to

improve the evaluation of the reflection parameter (Fig. 5).

This correction procedure requires a coarse simulation of

the primary source alone in addition to the two FDTD sim-

ulations involved in the DG-FDTD (Fig. 5(b)). Two field

components are stored by means of probes in each FDTD

simulation of the primary source. Two transfer functions

T are evaluated by calculating

(2) Tfine( f ) =
Exfine

( f )

Ezfine
( f )

and

(3) Tcoarse( f ) =
Excoarse( f )

Ezcoarse( f )



Fine FDTD Coarse FDTD DG-FDTD

First step Second step

Spatial steps: dx = dy 0.105 mm 0.315 mm 0.105 mm 0.315 mm

Spatial step: dz 0.127 mm 0.254 mm 0.127 mm 0.254 mm

Volume size: Nx × Ny × Nz 673 × 673 × 397 253 × 253 × 212 151 × 151 × 57 253 × 253 × 212

Time step: dt 0.2 ps 0.53 ps 0.2 ps 0.53 ps

Observation time: Tobs 3 ns 3 ns 3 ns 3 ns

Near-field surface: Nx × Ny × Nz - - 117 × 117 × 36 -

Excitation surface: Nx × Ny × Nz - - - 39 × 39 × 18

Table 1. Different simulation approaches: parameters.

(a)

(b)

Fig. 5. Correction procedure for the DG-FDTD method: (a) fine
FDTD simulation of the primary source, (b) coarse FDTD simu-
lation of the primary source.

where Ez is the incident field component in the microstrip

line of the primary source, whereas Ex is the major field

component radiated by the primary source inside the di-

electric media. These transfer functions give an informa-

tion of the fine and coarse transmission between the gen-

erator and the direction of maximum radiating in the ho-

mogeneous dielectric media. Note that each component is

taken at the same physical position in the fine and coarse

simulations.

The inaccurate reflected wave b1coarse is finally corrected

during the computation of the surrounded S11 parameter

using

S11( f ) =
b1fine

( f ) + b1coarse( f ).
Tfine( f )

Tcoarse( f )

a1( f )
.(4)

As we can see in Figure 6, the correction procedure im-

proves the accuracy of the DG-FDTD method.

The correction procedure involves a coarse simulation of

the primary source that requires 8 minutes, namely 2.1 %

of the overall computational time. The DG-FDTD with the

correction procedure turns out to be a good approach to

simulate lens antennas.

Fig. 6. Simulated |S11| as a function of the frequency for the
DG-FDTD with and without correction.

IV. Hybridization of MR-FDTD

and DG-FDTD methods

Section III has shown that the DG-FDTD accuracy might

suffer from the coarse description of the primary source

during the second step of the simulation. In the same way,

the dual-grid FDTD approach may be inaccurate if both

the antenna and the environment require a fine discretiza-

tion. Consequently, the analysis of transmission between

antennas remains a problem using the DG-FDTD method.

We propose in this Section to hybridize the DG-FDTD

with the unilateral MR-FDTD to analyze the transmission

between antennas.

A) Test case

Figure 7 presents the problem to be simulated. It consists

of two ultra wide-band (UWB) monopole antennas [24]

placed on an infinite ground plane, and separated by D.

Antenna 1 is fed with a matched generator that produces a

time domain Gaussian pulse, narrow enough to cover the

studied bandwidth (from 0 to 14 GHz). Antenna 2 acts as

a matched antenna.



Fig. 7. Simulated test case: coupling between two UWB anten-
nas.

The triangle-shaped geometry of the antennas implies a

fine spatial discretization that leads to an oversampled

FDTD volume. Thus, various advanced approaches are

considered: DG-FDTD, unilateral MR-FDTD, and the

proposed hybrid approach based on the unilateral MR-

FDTD and the DG-FDTD. During this study, two spa-

tial discretization are considered: a fine one with dxfine =
dyfine = dzfine = 0.3 mm = λ0/140, and a coarse one

with dxcoarse = dycoarse = dzcoarse = 1.2 mm = λ0/35

( f0 = 7 GHz).

B) Unilateral MR-FDTD principle

The unilateral multiple-region FDTD is depicted in Fig-

ure 8(a). In this example, two sub-volumes are invol-

ved: sub-volume (a) that includes antenna 1, and sub-

volume (b) that contains antenna 2. Firstly, antenna 1 is

simulated alone in sub-volume (a) while storing the field

in the near-field surface at each time step. Thus, we de-

termine and store the primary radiation of antenna 1, that

is to say its radiation when no disturbing environment is

involved. Secondly, this stored field is used to excite sub-

volume (b) by means of the radiation integrals. Note that

it is possible to evaluate various configurations of the en-

vironment without simulating again antenna 1.

The unilateral MR-FDTD differs from the classical bilat-

eral one by neglecting the feedback from antenna 2 to an-

tenna 1. Hence, the inherent instability of the bilateral MR-

FDTD is avoided, while still enabling the direct transmis-

sion to be finely characterized. However, it can lead to in-

accuracies on the antenna 1 reflection parameter since the

backscattered field from antenna 2 to antenna 1 is not taken

into account.

In our case, sub-volumes (a) and (b) are finely discretized

with 88 × 40 × 80 cells, and compression techniques are

involved to reduce the computational time of Kirchhoff in-

tegrals [5].

Figure 8(b) presents the hybrid approach based on the uni-

lateral MR-FDTD and the DG-FDTD.

The MR-FDTD/DG-FDTD approach is divided into three

steps. Firstly, we simulate antenna 1 alone in sub-volu-

me (a), while storing its primary radiation in the near-

field surface 1. Secondly, this stored field is radiated to-

(a)

(b)

Fig. 8. Advanced FDTD methods decomposition: (a) unilateral
MR-FDTD, (b) MR-FDTD/DG-FDTD.

wards antenna 2 thanks to the radiation integrals. During

the second step, the near-field surface 2 is implemented in

sub-volume (b), in order to store the field scattered by an-

tenna 2. Finally, this stored field is used as the excitation

of the coarse FDTD volume (c) that includes the overall

structure. In fact, the first two steps consist of a unilat-

eral MR-FDTD simulation, whereas the third step is a DG-

FDTD simulation. The correction procedure presented in

Section III.D might also be applied, but in this example the

coarse description of antenna 1 is accurate enough to take

into account the second order coupling effects.

Sub-volumes (a) and (b) are both finely discretized with

88 × 40 × 80 cells, and compression techniques are still

involved. Sub-volume (c) uses the λ0/35 mesh. The size

of this volume depends on the distance D between the an-

tennas.

C) Numerical results

The accuracy of the MR-FDTD/DG-FDTD approach is

now evaluated. A parametric study is performed consid-

ering the test case shown in Figure 7.

Table 2 presents the involved FDTD volumes as well as

their associated mesh densities for the five simulation ap-



proaches that are considered. The classical FDTD simula-

tions use uniform cubic mesh.

The S parameters derived from each simulation are com-

pared with the reference ones by evaluating the mean

squared difference ǫi j given by

(5) ǫi j =

√

√

√

√

1

N f

fmax
∑

f = fmin

||Si jRef( f )| − |Si j ( f )||2

where N f is the number of frequency points, Ref is for

Reference, fmin is equal to 0 GHz, fmax is equal to

14 GHz, and Si j is a linear value.

Figure 9 shows the error ǫ11 and ǫ21 as a function of the

simulation approach and the distance D that ranges from

9.6 to 96 mm.

– The classical coarse FDTD turns out to be inac-

curate whatever the distance D. The important er-

ror is due to the coarse description of the antenna

geometry.

– The DG-FDTD gives good results for the |S11| (espe-

cially if D > 25 mm). Indeed, the main part of the

reflection is firstly simulated with a fine FDTD, and

combined with a coarse evaluation of the backscat-

tered field due to antenna 2. On the contrary, the DG-

FDTD gives poor results for |S21|. This is due to the

(b)

(a)

Fig. 9. Errors ǫ as a function of the simulation approach and the
distance D between the antennas: (a) ǫ11, (b) ǫ21.

coarse discretization of antenna 2 during the second

step of the DG-FDTD.

– The unilateral MR-FDTD exhibits inaccuracies on

the S parameters for short distances (until 40 mm).

The sizeable second-order coupling effects are not

taken into account with this approach.

– The hybrid method turns out to be accurate on the

S parameters for a large range of distances. The hy-

bridization of the unilateral MR-FDTD and the DG-

FDTD takes advantage of both methods.

Figure 10(a) presents the computational time as a function

of the distance D. The coarse FDTD and the DG-FDTD

are always faster than the fine FDTD, whereas the unilat-

eral MR-FDTD and the hybrid approach become compet-

itive when D > 15 mm.

Figure 10(b) exhibits the cumulative calculation time. The

simulation of a given distance D between antennas with

classical FDTD requires the simulation of the overall

structure. As a result, if we consider N different distances,

we need to simulate N large FDTD volumes. For the mul-

tiresolution approaches, it is different. We only require one

fine simulation of antenna 1. Once antenna 1 is character-

ized, we just need to perform the further simulations for

each distance, namely a coarse simulation of the overall

structure for the DG-FDTD, a fine simulation of an-

(b)

(a)

Fig. 10. (a) computational time, (b) cumulative computational
time, as a function of the simulation approach and the distance
D between the antennas.



tenna 2 for the MR-FDTD, and these two simulations for

the MR-FDTD/DG-FDTD. Thus, the larger the number of

configurations, the more competitive the multiresolution

approaches.

Considering both accuracy and time criteria, the hybrid ap-

proach turns out to be the best trade-off to analyze the cou-

pling between these antennas.

V. Conclusion

In this paper, two improvements of the dual-grid FDTD

have been presented.

First of all, a correction procedure has been successfully

applied to the DG-FDTD simulation of an integrated lens

antenna. The far-field radiation patterns and the reflection

parameter have been evaluated with a good accuracy. The

correction procedure is particularly useful for the analy-

sis of highly resonant structures that are not precisely de-

scribed during the second step of the DG-FDTD. Although

the correction procedure implies a third simulation, the

computational speedup is still equal to 16.7.

Secondly, an hybrid solution has been proposed to the

analysis of problems where the environment must be finely

discretized. The MR-FDTD/DG-FDTD approach has been

applied to study the coupling between two UWB antennas.

Results have shown a reduction of the computational time

for the hybrid approach while providing accurate results

on the S parameters.
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Nationales Micro-ondes, Toulouse, France, 23-25 May
2007.
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