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PARTICLE DISPERSION IN SUPERSONIC SHEAR LAYER BY DIRECT
NUMERICAL SIMULATION

YANNICK BURY* and JEAN-LUC ESTIVALEZES
(estivale@onecert. fr)

ONERA DMAE, 2 Av Edouard Belin, BP 4025, 31055 TOULOUSE,
FRANCE

Abstract. In experimental measurements like Laser Doppler Velocimetry, small solid or liquid par-
ticles are used to tag the flow in order to measure fluid velocity. In this case, particles are supposed
to have the same behaviour as fluid particles in order to give reliablity to the experimental measure.
However it has been shown [5] that noticeable errors can appear in the rms velocity measurement
of supersonic jet or shear layer, even if care has been taken concerning particle seeding of the flow.
The aim of this paper is to use direct numerical simulation of particle-gas flow to investigate this
phenomenon.

1. INTRODUCTION

We are mainly concerned with three dimensional supersonic mixing layers. In
such flows, beyond convective Mach number greater than 0.6, stability theory and
direct numerical simulations show that oblique modes are much more rapidly am-
plified than two dimensional modes [11] (which correspond to the incompressible
modes) leading to A vortices which are staggered in the streamwise direction. This
particular behaviour could involve strong modification in mixing process. The
object of the present work is to investigate how those highly three dimensional
structures influence particles dispersion and the implications it can induce on
velocity measurement by Laser Doppler Anenometry. Moreover, we will restrict
ourselves in this study to the transitional stage of the mixing layer development as
in the experiments of [5] discripancies on rms velocity have been observed only
few diameters downstream of the jet outlet.
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2. NUMERICAL METHOD

2.1. GOVERNING EQUATIONS

The full time dependent Navier-Stokes equations for three-dimensional fluid mo-
tion are written in a non-dimensional conservative form. For a three-dimensional
cartesian case, we have :

oU OF 3G oH OF, 3G, oH,

it =0 1
TR L ML PR MR W M
U is the vector of conservative variables :
U= (p, pu, pv, pw, E)" )

F, G, H are the non-viscous fluxes. F,, G,, H, are the viscous contributions.
Here p,u,v,w,E denote respectively the density, fluid velocity components in
the directions x, y and z, and the total energy (sum of the internal and kinetic
energy). Non-dimensionalization of these equations is with respect to reference
quantities, namely a reference length L*, velocity U, density p}, temperature 77",
and viscosity u}. L*/U} is the time reference scale, while pjU;? is the pressure
(and total energy) reference. The superscript * refers to a dimensional quantity.
In our case, as we are interested by a temporal mixing layer, the reference length
is chosen as the initial vorticity thickness of the longitudinal velocity profile :
L = 3y, the reference velocity, temperature, density and viscosity are respectively
Uf, T}, p}, ui, which are the far field values of the upper stream ( cf 1). Using
this non-dimensional scheme, we introduce the Reynolds number of the flow
Re = pjU[duo/u} and the Mach number which is in our case equal to the con-
vective Mach number M. is M = U} //YR*T, where R* =287.15J kg~! K~ 1.
The Prandt] number, assumed to be constant, is defined by Pr = u*C; /k* where k*
is the thermal conductivity. The viscosity follows Sutherland’s law. The system is
completed by the definition of the total energy, written in non-dimensional form
as :

| R S S
E: —
y_1+2p(u +v° +w) 3)
and by the perfect gas law :
p_ T 4
pyM? @

2.2. NUMERICAL SCHEME

Equations are solved using a finite volume high order extension of MacCormack’s
scheme due to Gottlieb and Turkel [4]. This scheme has already been used by
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many authors for boundary layer simulations [1], [2], for mixing layer simula-
tions [9], [10], [12], and for supersonic jet flow studies [7]. Based on predictor
corrector phases, the scheme is explicit, second order accurate in time and fourth
order in space. The time step Ar follows a CFL condition, and Fourier criteria.
Extension to three dimensions and to the complete fluid motion equations is done
through a directional splitting sequence :

U™ =L L Lo Ly Ly Ly L LA LA LY LY LU
Ut =L L L LY UL L L L L L U

v4 x Hy Hz

)

Ly, Ly, L;, Ly, Ly, and L,, correspond respectively to the implementation of F, G,
H, F,, G, and H,. L;F (with i = x, y, or z) refers to a sweep in the direction i with
forward predictor and backward corrector. The alternate version L;, employs a
backward predictor and forward corrector.

2.3. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

Because we deal with temporal mixing layer cf 1, periodic boundary conditions
are used in the streamwise and spanwise directions (x and y directions). As we
are considering an unbounded compressible mixing layer, non reflective bound-
ary conditions based on Thompson work [13], [3] are used in the cross-stream
direction (z direction). ‘

Initialization of velocity, temperature and density fields consists of two parts, the
mean profiles and the pertubations from linear stability theory [11]. The mean non
dimensional velocity profile in the streamwise direction is :

i = tanh(2z) (6)

The mean non dimensional temperature and density profiles are given by Crocco
relations:

- (7)

The initial disturbance field is specified by :

W = AReal{a(a,0)e/(®™+0)}4 5
AaReal{ (01, B) @8 1 a(ct, — B)elx-B)} ®)
where (o, B) is an eigenfunction of the linear instability wave with streamwise
wavelenght L, = 27/0. = 13.36 8 and spanwise wavelenght L, = 21t/ = 13.36 8.
It consists of a two dimensional and a pair of oblique waves. The angle of the
oblique waves with the x direction is 45 . Similar disturbances are added for p’,
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v/, w!, and T'. Here the value of the phase is m/2 in order to get the translative
mode [11], [8].

2.4. PARTICLES DISPERSION SIMULATION

The following assumptions are made for the dispersed phase :

— dilute flow,

— all particles are rigid spheres,

— particle-particle interactions are neglected,

— density of particles is much larger than that of the fluid
— gravity is negligible.

With those assumptions the non dimensional particles motion equation writes:

AV Cy.- -
—=4(U-
dt St( V)
. )
ax 4
—— T V
dt

where U is the fluid velocity at the particle location and V is the particle velocity.
St = p;‘,d*lz,U i /181" 8¢, is the Stokes number and C, is the modified Stokes drag

factor coefficient ( Cz = 14 0.15Re®%, for particle Reynolds number Re,, =

|U — V|d,/v lesser than 1000). The velocity and particle position equations are
integrated by the fourth order Runge-Kutta method. Fluid velocity at particles
positions is interpolated by fourth order Hermite polynomials.

3. MESH DEPENDANCE STUDY FOR THE FLOW FIELD SIMULATIONS

Before dealing with particle flow simulations, we would like to check mesh de-
pendance for the flow field simulation in order to determine the best compromise
between computational cost and spatial resolution. To do that, we have run the
flow solver with various resolutions. For the case considered in this paper, the
numerical domain is a parallelipiped as described previously. We have used four
different grids ranging from 32x32x32 to 96x96x96. In all thoses cases, the grids
are regular rectangular ones in the three spatial directions, no particular stretching
is used. The Reynolds number for the simulations is Re = 400, and the convective
Mach number is M, = 0.8. On the figure 2 a), we have drawn the evolution of
the normalized vorticity thickness , 8/ in fonction of the non dimensional time
tU} /dw0. As can be seen on that figure, the curves corresponding to the 64x64x64
and 96x96x96 grid points are nearly similar. In order to emphasize the difference
between the various grid resolutions, one dimensional kinetic energy spectrum in
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the streamwise direction has been computed. To perform this Fourier analysis,
first the two-dimensional kinectic energy spectrum in streamwise and spanwise
direction and integrated in crosstream direction is evaluated by:

L,/2
E (ks kyy 1) = /_ : /2ﬁ(kx,ky,z,t)ﬁT (ks Ky, 2,1)dz (10)

where @ (ky,ky,z,t) is the complex conjugate of G(ky,ky,z,t). The one-dimen-
sional kinetic energy spectrum in the streamwise direction is defined by

Tk, 1) = /k E ke, ky, 1)k, (11)

A similar definition is used to get the one dimensional kinetic energy spectrum
in the spanwise direction On the figure 2 b) are shown the different spectrum for
the different resolutions, good agreement is obtain for the 64x64x64 grid resolu-
tion compared to the 96x96x96 one. From thoses results, one can think that the
64x64x64 grid resolution can be a good compromise to perform the particle flow
simulations.

4. RESULTS FOR PARTICLE DISPERSION

4.1. PARAMETERS OF THE FLOW SIMULATION

Coming from the previous results on the flow field simulation, we have cho-
sen 64x64x64 grid cells, uniformly distributed in the three spatial direction The
Reynolds number based on &y is 400 and the convective Mach number is 0.8.
Amplitudes of the disturbances are A| = A, = 0.025. Initially, 64x64x64 particles
are seeded uniformly in the computational domain ( one particle per cell) and
particle velocity at the beginning of the calculation in each computational cell is
the same as the fluid velocity in the cell. Dispersion of particles with Stokes num-
bers ranging from 0.1 to 1000 were simulated. Since there are periodic boundary
conditions in the streamwise and spanwise directions, particles which move out of
the box in these two directions from one side will be put back in the domain from
the other side. Particles which move out the box in the cross-stream direction will
not be recovered.

4.2. STOKES NUMBER DEPENDENCE OF PARTICLE DISPERSION

On figure 3 a) is summarized the evolution of the root mean square of particle
number per cell over the whole field versus the Stokes number for different times.
It is defined by

N,
Nrms = (ZN?/NL)I/Z (12)

i=1
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Here N. = 64x64x64 and at time t = 0, N,,,; = 1. This quantity is used to deter-
mine the overall concentration character of particles.

It is obvious that particles with Stokes numbers close to unity have larger N,
value which is similar to the results of [6]. It should be noted that unlike incom-
pressible flows simulations, here three dimensional A-shaped large scale struc-
tures strongly affect the dispersion even in the early stages of the mixing layer
destabilization. Indeed, we don’t observe two dimensional pairing as in the incom-
pressible shear layer. This can be clearly seen on figure 3 b) where a perspective
view of a pressure surface, that enclose a minimum of pressure (associated with
strong rotation) is shown.

In order to examine the dispersion patterns for the different Stokes numbers, we
have used the plane concept already defined in [6]. It corresponds to a thin slice
with a thickness of a computational cell. Indeed, for the (x,z) plane at y =L, /2,
it means a thin slice with L,/2 <y < L,/2+ Ay, where Ay is the mesh spacing in
the y direction.

We have drawn on figure 4 the distribution of the particles in the plane (x,z)
aty =L, /2 at time ¢ = 26. For the smallest Stokes number, the particles seem to
follow quite closely the fluid particles. Particles with Stokes number close to unity
tend to accumulate around the edge of the three dimensional large scale structures.
For larger Stokes numbers, the dispersion of particles in the cross-stream direction
is decreasing, indeed the particles are less influenced by the A shaped vortices.
On figure 5, is drawn the particles distribution in the plane z = 0. The accumula-
tion of the particle with Stokes number of unity on the edge of the vortex is clearly
seen on that figure. Those particles trace the projection of the three dimensional
coherent structures on that plane.

On figure 6, the particles distribution in the plane x = L, /2 is plotted. Here again,
the structure projection on this plane is obvious when one looks for St = 1 particles
locations. Actually, theses particles seem to roll up around the arms of the A vortex
in an helical way.

From this plane cut, particles with St = 10 show a quite different behaviour.
Clearly, those particles are less sensitive to the vortex, and there is no such ac-
ccumulation at the egde of the vortex arms, even if a void zone is present inside
the vortex. For greater particle Stokes number, there is no more effect of the 3D
vortex on the particle distribution, only a wavy movement can be seen on this
plane cut.

In order to quantify the influence of those structures on particle dispersion the root
mean square of particle number per cell for (y,z), (x,z), (x,y) planes, Nyy(x),
Nyms(Y), Nems(x) has been evaluated at time ¢ = 26 (figures 7 a), b), ¢) for various
Stokes numbers. For example N,,,(x) is defined by :

cp

Nyms( 2N2 (x)/Nep)'/? (13)
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where N, is the total number of computational cells in the plane (y,z) and N;(x)
is the number of particles in the ith cell of that plane. The same definition is used
for the two others quantities Nyps(y) and Npps(z).

On figure 7 a), we can observe how the particles with different Stokes numbers
concentrate along the streamwise direction. The maximum concentration is ob-
tained for particles of unity Stokes number, when concentration is minimal for
small and larger Stokes numbers. Moreover, the trend observed on that figure
for the Stokes number which gives the maximum concentration, is completely
opposite to that obtained for incompressible shear layer [6]. Even though for the
incompressible case, N,s(x) is maximum at the boundaries of the computational
box in x direction (for x near 0 and x near Ly) and minimal elsewhere, here
Nyms(x) is maximum in the center of the box ( in x direction ) and minimal at
the boundaries. This emphasizes that dispersion mecanisms are really different in
the two cases.

The next figure 7 b) gives the particles accumulation for the spanwise y direction.
The same conclusions as in the previous figure can be drawn. The local minima
observed for Stokes number of 1 show the trace of the arms of the A vortex
whereas Stokes number of 10 particle present in that zone a local maxmium.

The figure 7 c) shows the particle accumulation in the cross-stream direction.
Due to the lack of pairing of spanwise vortex, the maximum concentration for
the different Stokes number is restricted to a zone of size 28, centered at z =
0. Maximum concentration is obtained with Sz = 1 particles. This is consistent
with the fact that supersonic shear layer gives rate of growing much smaller than
the incompressible one. From these three figures, the level of concentration in
the three direction is much lower compared to the incompressible case. This
shows that particle dispersion is our case much more threedimensional than in
the incompressible case.

4.3. RESULTS OF PARTICLE DISPERSION FOR NON UNIFORM SEEDING

Whereas in the previous section, uniform seeding of particles has been used, i.e.
one particle per cell for all the computational cells, here we would like to study
the influence of non uniform particle seeding on the particle dispersion. Two cases
have been considered. In the first one, only the upper half of the domain is seeded
with one particle per cell; in the second one, the half lower of the domain is seeded
in the same way. To compare the effect of non uniform seeding on the particle dis-
persion, we have calculated the components of the tensor of the particle velocity
fluctuations. Mean values of particle velocities are calculated by plane averaging
in the homogeneous directions, then particle velocity fluctuations are given by :

u':u——(u)
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where u is the particle velocity in the direction x. From this, we can obtain for
example (i v ). This study on non uniform seeding has been done only for Stokes
numbers 0.1 and 1. On the figure 8 and 9, we have plotted the various statistics
versus the cross-stream direction for non uniform seeding ( upper and lower) and
for the two Stokes number, respectively, St = 0.1 and St = 1. The aberrant point
on the (u’z) profile for the half upper seeding case at St = 1 is due to an under
sampling in the average calculation. In fact for that particular plane, there are not
enough particles to give a converged statistic. On the figure 10 are plotted the
same quantities, but now for uniform seeding. The comparison of the three figures
is self explainatory. For the two Stokes numbers, the profiles are shifted compare
to uniform seeding. Moreover, the maximun values of the profiles are different in
the two cases. This strong difference between the two type of seeding is crucial
for the Laser Doppler Velocimetry application. Even, if seeding particles are small
enough in order to closely follow fluid particles and so assumed to give a reliable
experimental measure, non uniform seeding can completely alter the experimental
measure.

S. CONCLUSION

Direct numerical simulations of particles dispersion in supersonic 3D mixing-
layer have been carried out. First comparisons with the incompressible case show
important differences due to strong three-dimensionality of such flows. Particles
with Stokes number close to unity are centrifuged to the periphery of large scale
vortices and give the maximum dispersion. Because of the A shape of those vor-
tices and because no pairing of two-dimensional structure is present, dispersion
behaviour is very different from the incompressible case. Non uniform seeding
has been shown to have a great impact on fluctuating particles velocity lead-
ing to shifted profiles compared to uniform seeding. As a consequence, velocity
measurements by Laser Doppler Velocimetry can be altered and not reliable.
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Figure 2. a) Evolution of the normalized vorticity thickness b) One dimensional kinetic energy
spectrum at time ¢ = 26
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a) b)
Figure 3. a) N, for different Stokes numbers b) isosurface of min pressure at time =20
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Figure 4. Plans cut of thickness Ay centered at y = L,/2 , from left to right St = 0.1, St = 1,
St =10, 5t =100

Figure 5. Plans cut of thickness Az centered at z = 0
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Figure 6. Plans cut of thickness Ax centered at x = L, /2
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Figure 8. Non uniform seeding for St = 0.1
St=1 St=1

Lower seeding Upper seeding —‘
y , : ot == |2

-5 -3 -1 1 3 5
Figure 9. Non uniform seeding St = 1

0.1 }

0.0 s

: 01—
5 -3 -1 1 3 5 -5-3-11 3 5

Figure 10. Uniform seeding





