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The Pseudotemporal Bootstrap for Predicting
Glaucoma From Cross-Sectional Visual Field Data

Allan Tucker and David Garway-Heath

Abstract—Progressive loss of the field of vision is characteristic
of a number of eye diseases such as glaucoma, a leading cause of
irreversible blindness in the world. Recently, there has been an ex-
plosion in the amount of data being stored on patients who suffer
from visual deterioration, including visual field (VF) test, retinal
image, and frequent intraocular pressure measurements. Like the
progression of many biological and medical processes, VF pro-
gression is inherently temporal in nature. However, many datasets
associated with the study of such processes are often cross sectional
and the time dimension is not measured due to the expensive nature
of such studies. In this paper, we address this issue by developing
a method to build artificial time series, which we call pseudo time
series from cross-sectional data. This involves building trajectories
through all of the data that can then, in turn, be used to build
temporal models for forecasting (which would otherwise be impos-
sible without longitudinal data). Glaucoma, like many diseases, is
a family of conditions and it is, therefore, likely that there will be
a number of key trajectories that are important in understanding
the disease. In order to deal with such situations, we extend the
idea of pseudo time series by using resampling techniques to build
multiple sequences prior to model building. This approach nat-
urally handles outliers and multiple possible disease trajectories.
We demonstrate some key properties of our approach on synthetic
data and present very promising results on VF data for predicting
glaucoma.

Index Terms—Bootstrapping, cross section, data analysis, glau-
coma, time series.

I. INTRODUCTION

PROGRESSIVE loss of the field of vision is characteristic
of a number of eye diseases such as glaucoma, a leading

cause of irreversible blindness in the world. Recently, there has
been an explosion in the amount of data being stored on patients
who suffer from visual deterioration, including visual field (VF)
tests, retinal images [1], and perhaps, in the not too distant
future, even continuous intraocular pressure measurements [2].
The aim now is to extract as much information as possible from
these data in order to address fundamental questions still open
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within the glaucoma research community. The VF test assesses
the sensitivity of the retina to light. It is typically measured by
automated perimetry, a technique in which the subject views a
dim background as brighter spots of light are shone onto the
background at various locations in a regular grid pattern. The
brightness at which the subject sees the spots of light is related
to the retinal sensitivity. There are many diseases and conditions
that affect the VF, the most common being the optic neuropathy
“glaucoma,” neurological, and retinal diseases. Early detection
of glaucoma as well as other conditions and diseases that cause
visual impairment is invaluable as early intervention can slow
VF deterioration.

Like the progression of many biological and medical pro-
cesses, VF progression is inherently temporal in nature. While
many studies involve learning computational and statistical
time-series models of progression from longitudinal data, such
as [3] and [4], many datasets associated with the study of such
processes are often cross sectional and the time dimension is
not measured due to the expensive nature of such studies across
a large population and the slowly progressive nature of the con-
dition requiring many years of data collection.

In this paper, we address this issue by developing a method
to build artificial time series, which we call pseudo time series
from cross-sectional data. This involves building trajectories
through all of the data that can then, in turn, be used to build
temporal models. Results demonstrate how these models can
be used to perform temporal analyses, such as classification
and forecasting, that would otherwise be impossible without
longitudinal data. Glaucoma, like many diseases, is a family
of conditions, and therefore, it is likely that there will be a
number of key trajectories that are important in understanding
the disease. In order to deal with such situations, we extend the
idea of pseudo time series by using resampling techniques to
build multiple sequences prior to model building. This approach
naturally deals with outliers and multiple disease trajectories.
In medical terms, the use of pseudo time series for modeling
multiple trajectories will assist clinicians in forecasting future
values of variables such as VF sensitivity and to determine on
which trajectory a patient is likely to be traveling in order to
make the appropriate intervention.

The paper is organized as follows. Section II introduces
pseudo time series for cross-sectional data as well as the tempo-
ral bootstrap that deals with outliers and multiple trajectories. In
Section III, our methods are applied to simulated data in order to
explore some of the characteristics of the associated models. We
then explore learning these models from a cross-sectional VF
dataset that are tested on an independent glaucoma longitudinal
study. Finally, we present our conclusions in Section IV.
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Fig. 1. Full MTS dataset from N = 250 with two sample MTS lines plotted
using the first two components after multidimensional scaling.

II. METHODS

In this section, we describe the two datasets that are used to
explore pseudo time series. We also describe two methods for
building pseudotemporal models: the pseudotemporal model,
which builds an ordering across all cross-sectional data, and the
pseudotemporal bootstrap, which builds a number of sequences
over the data and can handle outliers and multiple disease tra-
jectories.

A. Synthetic Data

Multiple time-series data are generated using an autoregres-
sive hidden Markov model (ARHMM) with three discrete states
in order to determine the trajectory of each time series. An
ARHMM was used as it manages to capture the relatively
smooth transition from healthy to disease states through autore-
gressive dependencies. This smooth transition is typical in VF
data (and indeed many other medical data such as cancer). The
three states represent a starting healthy region and two diseased
regions. The observed variables are Gaussian and conditioned
upon the hidden state and the same variable at the previous
time point. We set the length of each multivariate time series
(MTS) T to be 30, as this reflects common longitudinal stud-
ies in the biological and medical literature. The hidden variable
always starts in the healthy state and has a probability distribu-
tion that determines the probability of change to one of the two
disease states. This probability is set to 0.1 and the probability
of remaining in the healthy state is 0.8. Once a disease state is
reached, it cannot change (as the probability of remaining in
this state is 1.0). These parameters ensure realistic progression
of states, as seen in VF data, that has been labeled according to
an established field test classification algorithm [5].

Throughout the paper, we use multidimensional scaling to
plot data. As a result, axes represent the first two components
of this scaling and allow us to visualize higher dimensions.
The ARHMM data are plotted in Fig. 1 using multidimensional
scaling given the Euclidean distance between data. Also plot-
ted are some sample time-series trajectories that originate in

TABLE I
BREAKDOWN OF THE DATASETS

the healthy region and then travel to one of the two diseased
states. We sample a single point from each time series in order
to simulate a cross-sectional dataset. We then use these data to
explore how well we can recreate the original time-series model
using our pseudo-time-series approach on the sampled cross-
sectional data only. This allows us to perform classification
and forecasting using the original full time-series data as a test
set. These datasets along with the code that generates them (in
MATLAB in conjunction with the Bayes Net Toolbox) are avail-
able at http://people.brunel.ac.uk/∼cssrajt/ARHMMdat.

We explore the effect of cross-section sample size on model
prediction accuracy and explore the smoothing property of the
temporal bootstrap.

B. VF Datasets

We also use two VF datasets to test our approach. One dataset
involves a large cross-sectional study of VF tests on 162 peo-
ple, representing an expanded dataset that was used to evaluate
the classification accuracy of an optic nerve head imaging de-
vice [6]. In brief, there were 84 healthy subjects and 78 patients
with early glaucomatous VF loss. A full medical history was
taken and detailed ocular examination performed. Subjects un-
derwent Humphrey VF testing with the 24-2 program. The VF
data for each subject are classified into one of two classes:
healthy or glaucomatous based upon an established classifica-
tion algorithm for the field test [5]. We also have data from
a longitudinal study of 23 ocular hypertensive patients (who
eventually develop reproducible glaucomatous VF loss) from a
longitudinal study at Moorfields Eye Hospital. A total of 255
patients with ocular hypertension (raised intraocular pressure,
a major risk factor for glaucoma) volunteered to take part in
a randomized placebo-controlled trial of treatment to prevent
the onset of glaucoma [7]. Of these, a number developed repro-
ducible VFs loss, as judged by the same classification algorithm,
over a median period of six years. Subjects had several repeated
clinical visits (approximately every six months). We use this as
an unseen dataset to evaluate the learned pseudotemporal mod-
els. In other words, we ask “can we use the cross-sectional data
to build models to forecast and classify future states of the gen-
uine temporal data?”. Table I summarizes the two VF datasets.
For both datasets, we calculate the average sensitivity of groups
of VF points based upon their relationship to nerve fibre bundle
(NFB) that carries the information from the retina to the visual
cortex, via the optic nerve head. There is a well-established re-
lationship between VF test locations on the retina and the NFB
distribution [1]. Fig. 2 shows how the NFBs are distributed over
the VF points where “X” denotes the blindspot—these measure-
ments are ignored (taken from [8]). As a result, both datasets
contain six NFB variables and one class variable.
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Fig. 2. Allocation of VF points to NFBs.

C. Preliminaries

In order to explain the algorithms, we first set out some no-
tation. Let N be the number of variables in a dataset, DT be
a time-series dataset containing T measurements, Di

T repre-
sent the ith time point in DT , DCS be a cross sectional dataset
containing L cases, and O be some ordering of the cases in
DCS . We define a pseudo time series to be the pair 〈DCS , O〉
such that the cross-sectional data are placed into an ordering
that can be treated as a temporal or developmental series prior
to model building. In addition, let a dataset be assigned two
or more classes in C where one is deemed to be the starting
class, C1 or the “healthy” class and the others as the “diseased”
classes, Ci, i > 1. Using the pseudotemporal ordering, O, of the
data samples in DCS , we can build a time-series model of the
dataset. The idea is that the inclusion of this ordering should
both improve model performance and enable the ability to fore-
cast future states. The hidden Markov model [9] will be used to
model the pseudo time series from both approaches. Parameters
are learned from the pseudo time series and used to forecast
future class states or variable values.

We now describe two algorithms for building pseudo-time-
series models, one that involves using PQ trees to efficiently
build sequences via partial orderings, and the other that uses
resampling techniques to build numerous pseudo time series for
data that have multiple possible disease states and that can deal
with outliers.

D. Pseudo Multivariate Time-Series Model Construction

The first method for generating a pseudo multivariate time-
series model (PMTS) is based on fitting a partial path through
the entire cross-sectional dataset DCS . This path is designed
to minimize some distance metric between data and is found
using a PQ-tree approach, as outlined in [10] in combination
with a simple hill-climbing procedure. Here, we use Euclidean
distance.

The PQ-tree approach is used simply to add efficiency to
the search as the possible number of orderings can be very
large. PQ-trees are a graph-structure device that can represent
a partial ordering of points, and indicate which parts of the
ordering are well supported (Q nodes) and which parts contain
more uncertainty (P nodes). While the children of a P node can
be put into any order, children of a Q node may be reversed
in order but may not otherwise be reordered. To construct an
ordering from data, first, a distance matrix is generated between
all the variables and this is used to build a minimum spanning
tree. The diameter path of the tree is used as the main Q node
of the PQ tree—the backbone of the reconstructed ordering.

Branches of the diameter path are added as P and Q nodes to
the main Q node. Therefore, the constructed PQ tree represents
a partial ordering of the data samples. The full algorithm can be
found in [10].

We convert the partial ordering represented by the PQ tree into
a full ordering, O using a hill-climb method to further minimize
the distance within the PQ-tree constraints. We constrain this
search to find paths with a fixed, user-defined, start- and endpoint
representing the most extreme healthy and diseased cases in the
cross-sectional data.

Once a PMTS is constructed from the full ordering O, a
model-fitting stage is carried out to build a temporal model for
forecasting. The whole process for creating a pseudotemporal
model using this approach is described in Algorithm 1.

The parameters that affect the quality of the PMTS model
in Algorithm 1 are the size L and the number of disease states
C in the dataset DCS . Fitting one trajectory through a dataset
with many disease states will result in an unrealistic trajectory
and, therefore, poor temporal models. Also, if the startpoint
and endpoint are badly chosen then this too will result in poor
trajectories. In many datasets, these points are relatively easy to
select using multidimensional scaling methods.

E. Pseudotemporal Bootstrap Model Construction (TBS)

We now introduce another way of generating pseudo time
series that can naturally deal with multiple trajectories and out-
liers in the data. It is inspired by Efron’s bootstrap [11], and
hence the name, and attempts to deal with the natural variabil-
ity between the trajectories of disease within a population by
repeatedly resampling from DCS and fitting shortest paths be-
tween the “healthy” C1 and “diseased” classes Ci, i > 1. Each
of these paths is used as an ordering O to generate a differ-
ent pseudo time series, which a time-series model can then be
trained on. The method used here for finding the shortest path
is the Floyd–Warshall algorithm [12]. The TBS algorithm is
described in Algorithm 2.

Building temporal models using the TBS approach in
Algorithm 2 avoids the issues with selecting good startpoints
and endpoints that is inherent with the PMTS in Algorithm 1.
As long as the data have suitably labeled classes C representing
diseased and healthy cases, the algorithm should build realistic
trajectories. However, as we show in the next section, the size
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of the DC S sample, L, has a dramatic effect, while the variance
within the data has less impact.

III. EXPERIMENTS AND RESULTS

The experiments involve looking at two datasets: first, a syn-
thetic one that involves two disease states. This is in order to
explore the properties of the proposed TBS algorithm in dealing
with multiple trajectories. Second, real-world cross-sectional
data and longitudinal data from VF tests of both healthy and
glaucomatous patients. These are explored using both the PMTS
and the TBS algorithms to see which is the most appropriate and
whether there are multiple trajectories that can reveal character-
istics of glaucoma.

A. Synthetic Data

First, we look at the synthetic data generated from the
ARHMM. Fig. 3(a) shows some sample trajectories learned us-
ing the TBS algorithm and Fig. 3(b) shows the trajectory learned
using the PMTS algorithm. It is clear that PMTS is not capable
of learning multiple trajectories, so for the remainder of this
section on synthetic data, we focus on the TBS model, which
appears to build realistic looking trajectories into both diseased
regions. We generate the data as described earlier and build an
ARHMM model from the cross-sectional data using the TBS
algorithm. The model is then used to make a one-step-ahead
forecast of the original MTS data as well as one-step-ahead
classification of the next state. The whole process is then re-
peated 100 times generating different MTS and cross-sectional
data. These results are used to calculate accuracies and confi-
dence limits for different sample sizes L.

Table II (top) shows the outcome of forecasting the unseen
MTS data using the models learned using the TBS algorithm
for different sample sizes from 50 to 500 by measuring the sum
squared error (SSE) of forecasts for the different models. It also
includes the results of learning a model from the original MTS
data for comparison. Fig. 4 shows the mean values graphically
for clarity. It appears that for smaller samples of cross-sectional
data (L = 100 or less), the quality of forecasts for the model
are substantially lower than the ideal model learned from the

Fig. 3. (a) Sampled cross-sectional dataset from the original MTS with exam-
ple TBS plotted. (b) PMTS on the sampled cross-section data.

TABLE II
(TOP) MEAN FORECAST SSE AND 95% CONFIDENCE FOR ARHMM DATA, AND

(BOTTOM) MEAN CLASSIFICATION FORECAST ACCURACY AND 95%
CONFIDENCE FOR ARHMM DATA

Fig. 4. Mean SSE with 95% confidence limits (in gray) on HMM learned from
original MTS (both smoothed and unsmoothed) and TBS from cross-sectional
data for various samples size L.

full MTS data. However, as the sample size increases the error
rates decrease dramatically. In fact, for sample sizes of 250 or
greater, the TBS model appears to outperform the original data.
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TABLE III
HMM LEARNED FROM FULL MTS (LEFT) AND FROM TBS (RIGHT) FOR

CLASSIFICATION OF THE ARHMM DATA—CONFUSION MATRIX FOR

ONE-STEP-AHEAD CLASSIFICATION (THREE CLASSES)

This unexpected result is potentially due to the way the TBS
algorithm selects trajectories with small distance between each
datum. As a result, the TBS models are generally “smoother”
than the original MTS because outliers are included with less
frequency than other data. We test this hypothesis by applying a
standard convolution smoothing algorithm to the original MTS
data and then running the forecast experiments on this. These
results are also documented in Table II (top) and Fig. 4, and
show that the accuracies of the model learning using the TBS
algorithm do indeed converge much closer to the smoothed data
model as sample size increases. Looking at the confidence lim-
its of the different models, it seems that the TBS also reduces
the variation as sample size increases. However, the confidence
intervals are always wider than the smoothed MTS models. We
found the smoothing effect of TBS to be more pronounced if
we increased the variance in the original ARHMM-generating
process so that the data appeared noisier, i.e., the TBS improve-
ment over the full MTS was even more pronounced but both
had higher errors in general.

We next explore how well the TBS model performs at classi-
fying the next state in the MTS data. Classification is performed
by treating each consecutive pair of time points as inputs into the
system with no class information. The model must then forecast
the class at the second time point. Table II (bottom) shows the
mean classification accuracy and 95% confidence limits. It is
clear that the sample size has much less effect on the accuracy
than on the forecasts, with all methods performing well for sam-
ples sizes of 50 or more. However, the confidence plots reveal
that the TBS is far more variable when the sample size L is 50,
while at L >= 100, both the mean values and the confidence
limits converge.

Looking at the classification accuracy in more detail,
Table III (left) shows the confusion matrix of the three clas-
sified states using the model learned from the full MTS data and
Table III (right) shows the confusion matrix of the TBS model,
both for L = 250. It is interesting to note that while the over-
all accuracy is approximately the same, the TBS model does
less well on predicting healthy states (here class 1), whereas the
errors for the full MTS are only found to be between the two
diseased states (classes 2 and 3). Nevertheless, the TBS model
still performs extremely well in general at forecasting future
class values across all classes.

To summarize, our experiments indicate that if there is a
suitably large enough sample of cross-sectional data, then the
true underlying MTS model can indeed be learned with a high
degree of accuracy. This applies to both the classification and
forecasting tasks, though the sample size was more influential
on forecast accuracy. In addition, the TBS algorithm performed

Fig. 5. VF cross-sectional data with (a) TBS and (b) PMTS (1 represents
healthy patients and 2 represents glaucomatous according to AGIS score [5]).

well while simultaneously filtering the data, making it particu-
larly useful in dealing with outliers. We now explore how both
the PMTS and the TBS algorithm perform on real-world VF
data.

B. VF Data

The cross-sectional data with sample TBS trajectories are
plotted in Fig. 5(a) and the PMTS trajectory on the cross-
sectional data is plotted in Fig. 5(b). It appears that there is
a general progression from healthy to diseased that the PMTS
trajectory captures [from left to right in Fig. 5(b)]. However, the
TBS trajectories also seem to capture two distinct regions of dis-
ease state (in the top left and bottom left of Fig. 5(a)—note that
the multidimensional scaling has resulted in progression mov-
ing from right to left in this figure). We now compare the ability
of the two algorithms to forecast and classify future states, and
see if TBS does indeed capture distinct diseased regions.

Fig. 6 shows box–whisker plots of the SSE for one-step-ahead
forecast using the PMTS model, the TBS model and the model
learned from the longitudinal data. Here, one step is based upon
the longitudinal VF data that were collected approximately ev-
ery six months. We also include the SSE scored using the pre-
vious NFB value as the forecast state (“PrevDatum”) in order
to provide a reference—this is used as clinicians generally con-
sider there to be slow progression between tests. The median
SSE over all patients is 0.284 for the full MTS data, 0.326 for
the TBS model, 0.525 for the PMTS model, and 0.393 for the
PrevDatum approach. It appears that the TBS model captures
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Fig. 6. Box-whisker plots for SSE of each forecast over all NFBs of the 23
patients using models learned from the original MTS, the TBS and PMTS on the
cross-sectional data, and a straw-man approach based upon the previous datum.

some of the dynamics of the disease process in that it improves
the accuracy of forecasts of the longitudinal data compared with
the baseline PrevDatum (the PMTS performs relatively poorly).
The TBS model seems to perform significantly better than both
PrevDatum and PMTS on a number of individual patients, most
likely due to the TBS capturing the two distinct trajectories.

The SSE for one-step-ahead forecasts for each NFB varied
between 0.319 (NFB4) and 0.811 (NFB3) with a mean of 0.551.
This shows that some NFBs are more easily predicted than
others, possibly due to varying noise and VF sampling density.
Scatter plots (not shown) seem to imply that the accuracy is
better for higher values of sensitivity that makes sense because,
as sensitivity decreases, there is known to be increased noise
within the VF.

As with the ARHMM data, classification is performed by
treating each consecutive pair of time points as inputs into the
system with no class information. The model aims to forecast the
class at the second time point. It appears that for classification,
the PMTS model performed as well as the TBS model (the area
under receiver operating characteristic (ROC) curve is 0.817 and
0.813, respectively), both of which are almost as good as the
model learned from the longitudinal data (0.826). Obviously,
the key classification is the “point of conversion,” and for these
data, both TBS and PMTS manage to achieve an accuracy of
0.739.

Finally, we explore the meaning of the discovered trajectories
in a little more detail with respect to glaucoma. Looking at the
most extreme points according to the multidimensional scaling
plots of the TBS trajectories in Fig. 5(a), we can explore some
of the characteristics of the two disease states. Fig. 7 shows the
values of the NFBs at the extremes of each disease trajectory as
well as the data at the most “healthy” point in the cross-sectional
data. It seems that one trajectory is characterized by only two
NFBs deteriorating in sensitivity (NFBs 1 and 2) whereas the
other seems to be characterized by a more general decrease in
sensitivity and a particular collapse in NFB 3. A well-known
feature of glaucoma is called the “nasal step” whereby early
damage is seen in the nasal region represented by the distal
regions of NFBs 2 and 5 (see Fig. 2). These findings have been
supported by clustering approaches on nontemporal data [13].

Fig. 7. Sample data from the VF cross-sectional data based at the extreme end
of two trajectories. NFBs are as described in Fig. 2.

Interestingly, it appears from this figure that the two trajectories
result in different patterns of VF loss: NFBs 1 and 2 (in the
upper arcuate region) in extreme 1, and more generalized loss
including NFBs 3, 5 and 6, in extreme 2.

To summarize the VF data results, it appears that given enough
data, both the PMTS and TBS models are capable of learning the
temporal behavior of the disease well enough to classify the next
state when tested on independent longitudinal data. However,
the TBS model shows superior performance to the PMTS model
when it comes to forecasting values of NFB variables. The TBS
is also shown to be able to automatically discover disease states
that represent well-known characteristics of glaucomatous VF
loss.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a method to construct ap-
proximate temporal models from cross-sectional data without
any time information. We adopt an ordering approach using a
shortest-path algorithm on multiple samples of data to gener-
ate different trajectories through the data. We test this on syn-
thetic data and real-world medical data from VF tests with very
promising results. This sort of analysis will potentially enable
clinicians to forecast future values of important variables re-
lated to disease and to determine on which trajectory a patient is
likely to be traveling along. This can greatly improve the choice
of appropriate intervention.

A related area of research, known as panel analysis [14], in-
volves trying to build models along both the temporal dimension
and the population dimension from panel studies. Another line
of research known as pooling has explored combining cross-
sectional data with time-series data [15]. Fitting trends through
data [16] is a common approach and is related in some ways
to the idea of identifying a trajectory. Another related area of
research is sequence reconstruction. This involves trying to find
the best order for a particular set of data. Methods include the
traveling-salesman-problem approach that aims to minimize the
distance between each datum [17], and more recently, the use of
PQ trees has been explored to encode partial orderings in order
to account for uncertainty in the data due to elements such as
noise [10] (which we adopt in one of our algorithms here).

The research in this paper opens up a multitude of other
directions for investigation.
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1) Exploring the algorithm on other biological and medical
datasets. For example, microarray studies of diseases with
slow progression over many years such as Becker mus-
cular dystrophies [18]. Since expression data come from
muscle biopsies, there are no longitudinal data from one
patient, but it would be extremely valuable to have an idea
of how the disease progresses at a molecular level.

2) Incorporating other types of data into the glaucoma models
to see what effect they have on the trajectories. For exam-
ple, in early glaucoma, there is frequently poor agreement
between retinal image data and VF data concerning the
presence of glaucoma [19], [20]. It could be that the initial
manifestation or progression of glaucoma varies between
eyes with certain identifiable characteristics. This could
create several new trajectories that should be captured
by our approach. Also, the exploration of the effects of
medication upon trajectory could be explored within this
context.

3) There are numerous approaches to dealing with irregular
time series [21]. In this paper, we do not address the fact
that the “disease-process time difference” between each
datum is unknown. It would be interesting to see if dis-
tances such as Euclidean could be used in conjunction
with irregular time-series methods to interpolate values.

Finally, a note of caution should be made concerning the
use of cohort studies where subjects may differ through some
non-disease-related factor prevalent at different points in time.
Care must be taken in these cases and data must be interpreted
appropriately. We intend to carry out further tests to explore
the performance of our approach on nonprogressing patients
(essentially controls). It is extremely difficult to get hold of
longitudinal data for controls and one method could involve
generating pseudo time series of healthy patients where the
series would “walk” around the healthy region.
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