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Bildgebung mit prompt emittierten Photonen und

Compton-Kamera Detektoren zur

Reichweitenveri�kation in der Protonenbestrahlung

Zusamenfassung

Die potenziellen Vorteile der Protonenbestrahlungen aufgrund der vorteilhaften Tiefen-
dosiskurve und der überlegenen Dosiskonformation müssen durch Kontrolle der Be-
strahlung gewährleistet werden, um die Gefahr von Unsicherheiten in der Protonenre-
ichweite zu minimieren. In-vivo Reichweitenveri�kation ist hochgradig wünschenswert, um
die Qualität der Bestrahlung zu garantieren und eine zuverlässige Angabe der Protonenre-
ichweite im Patienten oder anderen biologischen Zielen (z. B. Kleintieren) zu erhalten. Die
entwickelten Methoden beruhen hauptsächlich auf der Detektion von Sekundärstrahlung,
welche während der Bestrahlung aus Kernreaktionen im Gewebe hervorgeht. Es wurde
gezeigt, dass von dieser Strahlung besonders prompt emittierte Photonen eine starke Ko-
rrelation mit dem distalen Ende der Tiefendosiskurve aufweisen. In dieser Arbeit wird
eine ausführliche und detaillierte Untersuchung der Bildgebung mittels prompter Gam-
maquanten (PG) durchgeführt. Die verwendeten Compton-Kamera Detektoren be�nden
sich derzeit in der Entwicklung für die Reichweitenveri�kation in der Protonenbestrahlung.
Zusätzlich werden auch mögliche Verbesserungen der an der LMU entwickelten Compton-
Kamera diskutiert, um die E�zienz und Bildgebung in biomedizinischen Anwendungen zu
verbessern.

Im ersten Kapitel werden Monte-Carlo Simulationen durchgeführt, um die Leistungs-
fähigkeit der LMU Compton-Kamera zu evaluieren. Die spektrale Au�ösung für experi-
mentelle und simulierte Daten einer monoenergetischen 4.44 MeV Punktquelle wurde ver-
glichen. Basierend auf Monte Carlo Simulationen wurde die Winkel-Au�ösung und das
Potenzial für Bildgebung mittels des �Maximum-Likelihood Expectation-Maximization�
(MLEM) Algorithmus charakterisiert. Bei Anwendung einer Energie-Selektion von ±5%
um den bekannten Wert der Quelle verschlechterte sich die Winkel-Au�ösung von 2.9◦

bei 2 MeV zu 6.2◦ bei 6 MeV, obwohl sich die Orts- und Energieau�ösung der Detek-
toren leicht verbesserte. Die Ergebnisse lassen sich auf die unvollständige Absorption der
gestreuten Elektronen zurückführen. Punktquellen konnten mit Submillimeter-Genauigkeit
rekonstruiert werden und durch die Energie-Selektion wurde die Ortsau�ösung um ∼60%
verbessert. Die Leistungsfähigkeit in realistischeren und komplexeren Szenarien wurde
anhand der Bestrahlung mit 150 MeV Protonen untersucht. Es zeigte sich, dass die
�Compton Sequence Reconstruction� (CSR) fünfmal mehr Events ermittelt als theoretisch
möglich, d. h. viele fehlerhafte Events sind enthalten. Dies spiegelt sich in einem erhe-
blichen Hintergrundrauschen in den Bildern wieder, da die fehlerhaften Events von der
CSR nicht erkannt werden. Abschlieÿend hat eine Optimierungs-Studie ergeben, dass
Anpassungen des derzeitigen Detektor-Designs, z. B. durch dickere Siliziumschichten, die
Leistungsfähigkeit des Detektors verbessern können. Dies würde die E�zienz verbessern
und es ermöglichen potentiell bis zu 10% der registrierten Events als Compton-Streuung
zu erhalten.



xviii Zusammenfassung

Der zweite Teil dieser Arbeit war darauf fokussiert, den Rahmen für die quantita-
tive Machbarkeitsstudie von Bildgebung mit prompt emittierten Photonen zur Protonen-
Reichweitenveri�kation zu scha�en. Dazu wurden experimentelle und simulierte Daten
von Bestrahlungen homogener und heterogener Phantome mit einzelnen Protonen-
Nadelstrahlen verwendet. Der Vergleich zwischen dem LMU-Detektor und der Polaris-J
Compton-Kamera sowie des MLEM und des �Stochastic Origin Ensemble� (SOE) Algo-
rithmus bestätigte eine konsistente Korrelation von Protonen-Reichweite (RD) und PG
Verteilung (RPG). Für die Bestrahlung eines Wasserphantoms war die Abweichung von
RD und RPG kleiner als 3.0 mm für Simulationen und kleiner als 5.0 mm für experi-
mentelle Daten. Aufgrund von fehlerhaften Compton-Events hat die Bildrekonstruktion
für heterogene Phantome unscharfe PG Emissions-Verteilungen ergeben. Dies erzeugt
Mehrdeutigkeiten in der Reichweitenbestimmung, welche für den LMU Prototypen nicht
vernachlässigt werden können. Falls nur perfekte Compton-Events berücksichtigt werden,
ergeben sich verlässliche PG Pro�le die eine gute Übereinstimmung mit der ursprünglichen
Emission aufweisen. In diesem Fall waren die Reichweitenunterschiede (RD − RPG) zwis-
chen 2.0 mm und 4.0 mm. Weiterhin wurde untersucht ob es die Methode ermöglicht
Abweichungen in der Protonenreichweite zu erkennen. Dazu wurden Simulationen (LMU-
Prototype) und experimentelle Daten (Polaris-J) von homogenen Phantomen genutzt.
Veränderungen in der Reichweite des Protonenstrahls von 3.0 mm, 5.0 mm und 6.0 mm
konnten in Wasser und Polyethylen nachgewiesen werden, indem die relativen Di�eren-
zen zwischen den RPG Werten berechnet wurden. Um die Möglichkeit von PG Bildge-
bung für Kleintiere zu untersuchen, wurde eine �Proof of Concept� Studie durchgeführt,
bei der die Bestrahlung eines Wasserphantoms mit niederenergetischen Protonenstrahlen
(100 MeV, 50 MeV und 35 MeV) simuliert wurde. Die Ergebnisse bestätigen die weit-
erhin bestehende Korrelation zwischen Protonenreichweite und Wendepunkt einer Sig-
moidfunktion, mit der die wahre PG-Abfall ge�ttet wird. Die festgestellten Reichweit-
enunterschiede waren im Submillimeter-Bereich. Die Ergebnisse weisen allerdings auch
auf Einschränkungen aufgrund der intrinsischen Fähigkeiten des Detektors hin, da die
rekonstruierten PG-Pro�le (trotz Benutzung perfekter Daten) kaum der ursprünglichen
PG-Verteilung entsprechen. Eine erste Monte-Carlo Simulation basierend auf den Daten
einer Kleintier-Computertomographie wurde durchgeführt, um die möglichen Grenzen für
vorklinische Anwendungen zu veranschaulichen. Dafür wurde versucht das PG Signal einer
35 MeV Protonenbestrahlung zu rekonstruieren. Ein erheblicher Ein�uss der geringen Re-
ichweite und der Heterogenitäten entlang des Strahlwegs wurde beobachtet. Dies legt
die Einschränkungen der Anwendbarkeit dieser Methode nahe, unter Berücksichtigung der
Leistungsfähigkeit derzeitiger Detektorkon�gurationen.

Abschlieÿend wurde die Leistungsfähigkeit einer zweiteiligen Compton-Kamera unter-
sucht, die zur Bildgebung für Radioisotope entwickelt wurde. Eine Ortsau�ösung von
3.0 mm wurde für 137Cs (662 keV) und 60Co (1.173 MeV und 1.332 MeV) Punktquellen
nachgewiesen. Diese Ergebnisse bestätigen die Umsetzbarkeit des Systems, welches eine
verbesserte Winkel-Au�ösung bei höheren Energien aufweist. Dies ist in Übereinstim-
mung mit der experimentell bestimmten Orts- und Energieau�ösung für den Streuer- und
den Absorber-Detektor. Auÿerdem wurde gezeigt, dass Submillimeter-Genauigkeit bei der
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Bestimmung der Position von Quellen erreicht werden kann, falls Ungenauigkeiten in der
Bestimmung des Wechselwirkungspunktes mittels des Algorithmus für den LaBr3-Detektor
verringert werden können.





Prompt gamma imaging based on Compton camera

detector systems for range veri�cation in proton

therapy treatments

Abstract

The potential advantages o�ered by proton therapy due to the favourable depth-dose
distribution and the resulting superior dose conformity must be ensured by controlling and
monitoring the beam delivery to overcome the peril of range uncertainty. In vivo range
veri�cation is highly desired in order to guarantee the treatment quality by having a reliable
estimation of the proton beam range inside the patient or other biological targets (e.g.
small animals). Mainly, the proposed methods rely on the detection of secondary particles
and photons originated from nuclear interactions inside the target during the irradiation.
Among this secondary radiation, prompt gamma (PG) emission has been demonstrated
to be well correlated with the distal dose fall-o� of the depth-dose distribution. In this
thesis, an extensive and dedicated investigation of the PG imaging performance based on
Compton camera (CC) detectors, which are currently under development for proton beam
range monitoring, is presented. The study includes possible design upgrades for the LMU
CC prototype envisaging an improved e�ciency and imagining capability for biomedical
applications.

In the �rst part, a Monte Carlo (MC) simulation study was performed in order to
assess the performance of the LMU CC prototype. Experimental and simulated spectral
response were compared using a 4.44 MeV mono-energetic point-like source. In addition,
by means of MC simulations, the angular resolution and the imaging capabilities using the
Maximum-Likelihood Expectation-Maximization (MLEM) reconstruction algorithm were
characterised. Applying an energy selection of ±5% around the known source value, the
angular resolution was degraded from 2.9◦ at 2 MeV to 6.2◦ at 6 MeV due to the incomplete
absorption of recoil electrons despite the slightly better position and energy resolution of
the detector component. Point sources could be reconstructed with submillimetre accuracy
and the spatial resolution of the image was improved by ∼60%, when the energy window
is applied for the selection of Compton events. The performance in more realistic and
complex scenarios was evaluated using a reference 150 MeV proton beam irradiation. As-
sessing the MC simulation information, it was found that the fraction of events retrieved
by the Compton sequence reconstruction (CSR) is �ve times larger than the amount of
correct Compton events that could be theoretically retrieved, i.e., many incorrect events
are obtained. This is translated into considerable background noise in the images because
of non-valid events, which cannot be rejected by the CSR. Finally, a detector optimisation
study suggested that changes in the current design such as considering thicker silicon lay-
ers for the tracker component could improve the performance of the detector con�guration
enhancing the e�ciency, while the potential Compton event retrieval would reach 10% of
the total number of registered triggers.

The second part of this work was focused on providing a framework for the quantitative
evaluation of the feasibility of PG imaging for proton beam range monitoring using single
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pencil beams in homogeneous and heterogeneous phantoms exploiting simulated and ex-
perimental data. The comparison of the aforementioned LMU prototype and the Polaris-J
(University of Maryland, USA) CC detectors in addition to the MLEM and the Stochastic
Origin Ensemble (SOE) algorithms underlines a consistent correlation of the proton beam
range (RD) and the obtained PG distribution (RPG). For the baseline water phantom
study, the distance between RD and RPG was within 3.0 mm and 5.0 mm for the simulated
and experimental data, respectively. In heterogeneous targets, the image reconstruction
yields blurred PG emissions due to incorrect Compton events, causing ambiguities in the
PG/proton range estimation, which are not negligible with the LMU prototype. By mak-
ing use of perfect event retrieval, reliable PG pro�les that correspond better to the ground
truth emission are retrieved. In this case, range di�erences (RD-RPG) were between 2.0 mm
and 4.0 mm. Moreover, the ability of the method for resolving shifts in the proton beam
range was evaluated in homogeneous targets exploiting simulated (LMU) and experimental
(Polaris-J) data. Shifts of 3.0 mm, 5.0 mm and 6.0 mm have been resolved in water and
high density polyethylene (HDPE) targets by calculating the relative di�erence between
the estimated RPG values. In order to evaluate the feasibility of PG imaging for small
animal irradiation, a proof of concept study was conducted by simulating three di�erent
low energy proton beams (100, 50, 35 MeV) impinging on a water phantom. The results
have indicated a still valid correlation within submillimetre range di�erence between the
proton beam range and the in�ection point of the sigmoidal �t in the true PG fall-o�
region. However, the �ndings also have suggested limitations of the intrinsic capabilities
of the detector con�gurations, since reconstructed PG pro�les (employing perfect data)
barely resemble the ground truth PG distribution. With the aim of exemplifying the pos-
sible constraints for a potential pre-clinical application, a �rst MC simulation study using
small animal computed tomography (CT) data was performed attempting to retrieve the
PG signal due to a 35 MeV proton beam irradiation. A noticeable impact of the very short
range combined with the heterogeneities along the beam path has been observed. It could
be translated into drawbacks in the applicability of the method accounting for the current
capabilities of the detector con�gurations.

Finally, the performance of a two-stage CC detector designed for radioisotope imaging
was investigated. A spatial resolution of 3.0 mm was demonstrated for the imaging of
137Cs (662 keV) and 60Co (1.173 MeV and 1.332 MeV) point-like sources. The �ndings have
revealed the feasibility of the system with an improved angular resolution for increasing
energies according to the experimentally determined energy and position resolution of
the scatterer and absorber detector components. Furthermore, submillimetre precision in
the source position estimation can be achieved if ambiguities in the interaction position
determination by means of the algorithm for position retrieval of the monolithic LaBr3
detector can be solved.



�***Now, the special interest of radium is in the intensity of its rays which several
million times greater than the uranium rays. And the e�ects of the rays make the radium
so important. If we take a practical point of view, then the most important property of the
rays is the production of physiological e�ects on the cells of the human organism. These
e�ects may be used for the cure of several diseases. Good results have been obtained in
many cases. What is considered particularly important is the treatment of cancer. [...] But
we must not forget that when radium was discovered no one knew that it would prove useful
in hospitals. The work was one of pure science. And this is a proof that scienti�c work
must not be considered from the point of view of the direct usefulness of it. It must be done
for itself, for the beauty of science, and then there is always the chance that a scienti�c
discovery may become like the radium a bene�t for humanity.***�

The Discovery of Radium, Address by Madame Marie Sklodowska Curie at Vassar
College, 1921





Part I

Rationale & Background





� On the other hand, if we are successful, we shall have the

largest electron accelerator in the world and new areas of

research will be opened to us.�

Robert R. Wilson

1
Introduction

Cancer, the second leading cause of death after heart failure, is a generic term for a group
of diseases characterised by the growth of abnormal cells, which can invade adjoining parts
of the body and/or spread to other organs. External factors, such as tobacco or infections,
and internal factors, such as genetic mutations or also predisposition, may act together or
in sequence causing cancer in almost any part of the body. By 2012, 8.8 million people
died from cancer being nearly 16% of all worldwide deaths and 32.6 million were living
with the disease (within �ve years of diagnosis). New cases are expected to increase by
70% in the next 20 years [Ferlay et al., 2013].

Social and economic impacts of cancer have attracted more e�orts in order to have
a better understanding of the disease and most e�ective manners to treat it. According
to the World Health Organization, the correct diagnosis is essential for an adequate and
e�ective treatment that depends on the type of cancer. A tailored patient treatment should
encompass one or more modalities among surgery, chemotherapy, immunotherapy and/or
radiotherapy. About 50% of the diagnosed population receives radiotherapy in localized
tumours during the course of the illness with an estimation that the radiation contributes
to around 40% towards curative treatment [Begg et al., 2011].

The discovery of X-rays by W.C. Röntgen in 1895, quickly followed by the discovery of
natural radioactivity and the isolation of radium in 1898 by M. Curie, were the basis for
the most spread radiotherapy techniques nowadays [Thariat et al., 2012]. Teleradiotherapy
or external-beam radiotherapy is delivered with a radiation source at a certain distance
from the patient surface, whereas in brachytherapy the radiation source is placed inside the
patient targeting the organ with a tumour. Conventional radiotherapy is delivered mainly
with linear accelerators (LINACs), which are able to produce high energy photons (X-
ray beams) with energies between 6 MV and 20 MV for deep-seated targets. Furthermore,
electrons can also be produced by the accelerator being suitable for super�cial lesions. More
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recently, technological improvements gave rise to the adaptation of the beam delivery to
a 3D conformal approach in more complex scenarios and the optimization of the image-
guidance during the treatments [Thariat et al., 2012].

The therapeutic potential of protons arose as a novel proposal with Robert R. Wilson.
He suggested the use of protons due to their �nite range in tissue, as the increasing energy
loss with decreasing energy results in the so-called Bragg peak. Ten years later in 1954, the
�rst patient was irradiated with a 340 MeV proton beam generated by the 184-inch synchro-
cyclotron in Lawrence Berkeley Laboratory [Tobias et al., 1958]. In the subsequent years,
nuclear physics laboratories were adapted to treat cancer patients, and the community was
very active in research for treatment planning regardless of the limitations faced during the
clinical practice due to the lack of dedicated centres. The situation changed when the �rst
hospital-based proton therapy facility started at Loma Linda University Medical Centre in
1990. It was the milestone motivating the expansion of facilities and patients around the
world and gather the attention of the radiation oncology community [Das and Paganetti,
2015]. By November 2017, around 70 active facilities worldwide are treating patients with
protons, 11 also with carbon ions, and 40 more are under construction [PTCOG, 2017].

The use of ionizing radiation in cancer treatment relies on the accuracy to deliver
therapeutic dose to the target volume, while the exposure of adjacent healthy structures
is minimized. For photons, the radiation dose as a function of depth in the patient rises
rapidly, building up a maximum due to the contribution of secondary electrons ejected
by the photons, then it decreases exponentially as photons are attenuated. By contrast,
the energy deposition of charged particles increases with depth and then abruptly drops
forming a sharp, narrow and characteristic peak close to the end of their range (cf. �gure
1.1).

The �nite range of protons and the ability to stop the beam just at the boundary of
the target allow treating cancer with a high dose conformity. Nevertheless, advantages of
proton therapy are still not completely exploited due to the high sensitivity to uncertainties
in any prediction of the beam range. This lack of accuracy could result in either margin
underestimations with portions of the tumour not receiving any dose or a shift in the
sharp distal dose fall-o� causing an undesirable dose deposition in adjacent healthy tissues.
Those uncertainties in the beam range estimation can be divided in two main categories:
the treatment planning and the treatment delivery (cf. chapter 2). Despite the complexity
of the uncertainties, their e�ects should be mitigated to overcome limitations of proton
therapy in clinical practice. This �eld of research has been investigated over the last
two decades and di�erent approaches to measure and assess proton beam ranges in-vivo
have been proposed [Polf and Parodi, 2015]. Those methods are mainly based on the
detection of secondary particles originated from nuclear interactions inside the patient.
Regarding produced gammas, two kinds can be detected: (1) annihilation gammas from
the production of positron emitters and (2) PGs from excitations of the tissue nuclei.

PG detection for range veri�cation was �rst proposed by Min et al. [2006]. Inelastic
interactions of protons occur along the penetration path of the beam until 2-3 mm before
the Bragg peak, therefore the emission has been found to be well correlated with the
distal dose fall-o� [Knopf and Lomax, 2013]. An additional advantage is the feasibility
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Figure 1.1: Depth-dose distributions for a mono-energetic photon beam (green) and mono-
energetic proton beams (purple). The photon dose shows a maximum close to the entrance and
afterwards decreases with depth. For protons, the absorbed dose increases with depth and reaches
a narrow 'Bragg peak' near the maximum range. This dose peak must be broadened by overlapping
di�erent beam energies and the resulting spread-out Bragg peak (SOBP) (red) aims to cover the
extended tumour target volume. Adapted from [Durante and Loe�er, 2010] and [Bortfeld and
Wolfgang, 1996].

to perform real-time veri�cation of the proton beam during the treatment. However, the
accuracy of this method strongly depends on the detector performance and the way in
which the measured spectrum is translated into an image of the beam range.

This thesis aims to perform an extensive and dedicated study of PG imaging based
on Compton camera (CC) detectors as a range veri�cation tool during proton therapy
treatments, assessing the design and performance of two di�erent prototype con�gurations.
This work also includes an optimisation of the current LMU CC detector investigating
possible upgrades of the design. Furthermore, the image reconstruction tasks in this thesis
are addressed by using the iterative MLEM and SOE algorithms. Two-dimensional (2D)
images of the PG distributions are employed to quantitatively verify the correlation between
the reconstructed PG range and the proton beam range.

This thesis is divided into �ve parts set out as follows: the �rst part, Rationale & Back-
ground (I) reviews the fundamental aspects of the physics of proton therapy underlying
the peril of range uncertainty. A brief overview on the state-of-the-art in-vivo range veri�-
cation methods, which have been proposed, investigated or already clinically implemented
is presented. Chapter 3 is primarily dedicated to establish the relevance of PG detection as
a range veri�cation tool, studying the rationale of the emission during proton irradiation.
This chapter also includes a summary of the di�erent detection modalities and concludes



6 1. Introduction

with the theory behind CC devices, which paves the way to introduce the main topic of
this thesis. Furthermore, a description of the two investigated detector systems is given.

The employed materials and methods are fully addressed in part (II): Analysis tech-
niques for Compton camera detectors. Chapter 4 presents simulation models of the CC
detector con�gurations in the Geant4 Monte Carlo simulation toolkit [Agostinelli et al.,
2003]. The methods for converting the detector acquisition into Compton events using the
MEGAlib software package [Zoglauer et al., 2006] are explained in detail. Furthermore,
the reconstruction performance is evaluated in terms of event statistics using the data ob-
tained by two di�erent detector con�gurations. The image reconstruction algorithms are
introduced in the second part of the chapter. A comprehensive description of the MLEM
method that includes the modelling of the system matrix is given. This response matrix
takes into account the intrinsic uncertainties of the measurement process and the physics of
the interactions. Lastly, the context of application of the SOE implementation developed
by Mackin et al. [2012] is presented.

In part III (LMU Compton camera prototype performance), the benchmarking of the
LMU CC prototype is presented. The spectral response obtained using Monte Carlo (MC)
simulations is compared to experimental data from mono-energetic point-like sources. The
Angular Resolution Measurement (ARM) is characterised by simulating radioactive point
sources with energies ranging from 2 MeV to 6 MeV. A study of the Compton sequence
reconstruction performance in terms of kinematic parameter estimation is carried out for
two di�erent irradiation set-ups. Additionally, the in�uence of the energy selection window
is analysed. Finally, chapter 5 evaluates the imaging capabilities of the LMU prototype.

The feasibility of PG imaging for single proton pencil beams is studied exploiting sim-
ulated and experimental data from the LMU and Polaris-J CCs in part IV (Proton range
veri�cation through prompt gamma imaging). Di�erent target scenarios were considered
for various proton beam energies. One-dimensional (1D) PG pro�les were extracted from
the obtained 2D distribution and compared with the known depth-dose curve and the ref-
erence PG emission. A quantitative correlation between the reconstructed PGs and the
proton beam range is investigated using the PG range value estimation method from Tian
et al. [2018]. In addition, low energy irradiation simulations were performed as a proof of
concept study for small animal PG imaging.

In the last part (V, Outlook for Compton camera detectors in proton therapy), a sum-
mary of the closing remarks of this thesis is presented. Chapter 7 explores the potential
of di�erent detector modi�cations based on the limitations faced with the LMU proto-
type. The �rst section involves simulation studies for an upgraded detector with thicker
silicon trackers. Moreover, the second section includes experimental and simulated data
with a two-stage CC set-up for low energy gamma detection. The main conclusions of the
research in PG imaging based on CC detectors conducted in this thesis are outlined in
chapter 8. Guidelines for future work envisaging the clinical and pre-clinical development
and implementation are also given.



`I have approximate answers and possible beliefs in

di�erent degrees of certainty about di�erent things,

but I'm not absolutely sure of anything.�

Richard Feynman

2
Physics background and sources of range

uncertainties

Range uncertainties are probably the main factor limiting the ability of proton therapy
to spare healthy tissue and therefore exploit its full potential to treat patients. Since the
e�ects appear as part of the daily treatment routine, range margins are typically de�ned
to mitigate the peril of under-dosage ensuring the coverage of the clinical target volume
under all possible sources of uncertainties. Additionally, cautious beam directions are
chosen, trading tumour dose conformity for safer delivery. Thus, the treatment volumes
become bigger and the Bragg peak advantage partially vanishes.

This chapter introduces the basic physics of proton interactions with matter along with
a brief explanation of treatment delivery and treatment planning. Later, the range uncer-
tainty issue is de�ned and its causes described. Finally, the di�erent in-vivo approaches
that have been developed over the last years to tackle range uncertainties in proton therapy
are presented.

2.1 Proton interaction mechanisms

2.1.1 Energy loss rate

Protons release their energy in di�erent interactions with the traversed material. Each
one of those interactions can change the direction and the energy of the original particle.
The average rate at which protons lose energy δE per unit path length δz due to Coulomb
interactions is given by the linear stopping power S:
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S(E) = −δE
δz

[MeV cm−1] (2.1)

The stopping power can be expressed in units of mass thickness. Equation 2.1 has to be
divided by the density of the medium ρ resulting in the mass stopping power [MeV cm2/g].

The dominant e�ect for proton energy loss in the therapeutical energy regime results
from inelastic interactions with electrons via electromagnetic Coulomb forces, known as
electronic stopping power, over the nuclear and radiative contributions. The following
analytical expression describes the electronic mass stopping power of ions, as derived by
Bethe [1930] and Bloch [1933] (so-called Bethe-Bloch equation):

S

ρ
= −4πNAr

2
emec

2Z

A

z2

β2

[
ln

2mec
2γ2β2

I
− β2 − δ

2
− C

Z

]
(2.2)

where NA is the Avogadro number, re is the classical electron radius, me is the electron
mass, z is the charge of the particle, Z is the atomic number of the medium, A is the
atomic mass number, c is the speed of light, β = v/c where v is the velocity of the particle,
γ = (1− β2)−1/2 is the Lorentz factor and I is the mean excitation energy of the medium.
Furthermore, δ is the density correction, relevant for ultra-relativistic particles and C is
the shell correction term, which becomes relevant when the velocity of the charged particle
reaches the velocity of atomic electrons.

For very low energies, β becomes comparable to the velocity of the orbital electrons and
equation 2.2 is no longer valid. For this so-called Lindhard region [Lindhard et al., 1963],
the energy loss is proportional to β. For intermediate energies preceding the Bethe-Bloch
region (> 1 MeV), energy losses can be described by the model of Anderson and Ziegler
[Ziegler et al., 1985]. The electronic stopping power as a function of the kinetic energy of
protons impinging on a water target is depicted in �gure 2.1. The Bethe-Bloch equation

Figure 2.1: For protons in water the total energy loss is plotted as function of the kinetic energy
using NIST 2005 data. The di�erent energy regions and the contributions from the electronic (red
line) and nuclear (blue line) energy loss are also shown [Kraan, 2015].
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mainly describes the �nite range and the characteristic depth-dose along the beam direction
with a low entrance plateau ending with a steep Bragg peak (cf. �gure 2.2a) [Bragg and
Kleeman, 1904].

2.1.2 Range

The range R is an empirical concept providing the thickness of an absorber that the
proton can just penetrate. The projected range Rmf , on the other hand, is the sum of
individual path lengths projected onto the incident particle direction. A similar quantity
RCSDA, called continuous slow-down approximation (CSDA) range [Seltzer and Berger,
1982], represents the average path length travelled by a proton when it slows down from
an initial energy Eo down to a �nal energy Ef=0. In terms of the total mass stopping
power, RCSDA is de�ned as:

RCSDA =

∫ 0

Eo

(
− dE

Stot(E)

)
(2.3)

where Eo is the initial kinetic energy of the charged particle, the total mass stopping power
Stot(E) is a function of the kinetic energy of the protons and RCSDA is typically in cm2g−1.

The RCSDA does not necessarily represent the depth of penetration in a de�ned direction
in the absorbing medium, because the de�nition refers only to interactions which result
in energy loss. The ratio Rmf/RCSDA is called the detour factor and accounts for the
scattering e�ects responsible for the di�erence between Rmf and RCSDA. Figure 2.2a
depicts the projected range of a proton beam in water as a function of the initial beam
energy. The region of interest in proton therapy is extended in the interval from few
centimetres to around 30 cm (mid-line of a large adult male's pelvis), which corresponds
to energies between 50 MeV and 230 MeV.

(a)
(b)

Figure 2.2: MC calculated depth-dose curves for di�erent proton beam energies in water (2.2a).
The range of protons in water based on the projected mean range is depicted in 2.2b as a function
of the beam energy. Taken from [Molinelli et al., 2013] and [Paganetti, 2012].
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The Bragg peak has a �nite longitudinal width. The stochastic nature of the interac-
tions gives the actual range for each proton, which has small variations from the correspond-
ing mean value. This e�ect is termed range straggling and it determines the longitudinal
widening of the proton dose distribution peak that becomes broader for high beam energies.

2.1.3 Multiple Coulomb scattering

When penetrating matter, protons are laterally scattered through: 1) de�ection by
Coulomb interactions with electrons (a small e�ect due to the mass ratio between pro-
tons and electrons), and 2) Coulomb interactions with atomic nuclei known as multiple
Coulomb scattering (MCS). This latter e�ect is described by the Molière theory, as the
probability distribution function of the scattering angle θ [Durante and Paganetti, 2016]:

f(θ) =
1

4π θ2
M

∑
k

fk(θ
′
)

Bk
(2.4)

where θM is the characteristic MCS angle, θ
′
is the reduced scattering angle and B is

the logarithm of the e�ective number of collisions in the target. Even though, due to the
central limit theorem, the probability distribution of the de�ection angle in a thick material
is nearly Gaussian as the result of numerous small random de�ections with a width given
by [Highland, 1975]:

σθ =
14.1MeV
βpc

Zp

√
L

Lrad

[
1 + 0.038 ln

(
L

Lrad

)]
(2.5)

The lateral scattering described by equation 2.5 increases for thick targets (L is the
total mass thickness) and target materials with high atomic number Z. Lrad ∼ Z−2 is the
radiation length. In addition, the scattering decreases while increasing the energy due to
the βpc factor.

Nevertheless, the Gaussian description is not perfect. The presence of large-angle tails
that are originated from electromagnetic interactions is described by the Molière theory,
and nuclear interactions, which are not negligible and typically calculated by MC ap-
proaches [Durante and Paganetti, 2016]. Figure 2.3 shows the e�ect of beam broadening
by multiple scattering including exit window, beam monitors and a water phantom for
proton and carbon ion projectiles. Broadening is about 3.5 times larger for proton than
for carbons ions considering the same range.

2.1.4 Nuclear interactions

Protons having su�cient kinetic energy to overcome the Coulomb barrier may interact
inelastically with atomic nuclei. The target can break up, be excited, or yield a parti-
cle transfer reaction; however, the contribution to energy losses is substantially less than
electromagnetic processes. Modelling approaches of nuclear interactions are based on the
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Figure 2.3: Lateral scattering full width at half maximum (FWHM) is calculated for protons
and carbon ions in the GSI facility. Initial beam width of 5.0 mm is assumed. At a distance of
140 cm from the exit window, the beam enters the water phantom and is considerebly scattered
[Weber and Kraft, 2009].

two-step picture called cascade-evaporation to describe the collision interaction [Durante
and Paganetti, 2016]. This model includes the abrasion (particle removal during ion-ion
interaction) and ablation (nuclear de-excitation) steps.

The probability of not having a nuclear interaction after travelling a certain distance x
is given by [Kraan, 2015]:

P (x) = e
− x
λint and λint =

A

NAσρ
(2.6)

where λint is the mean free path or interaction length and σ the total cross section. For
proton-nucleus inelastic interactions, the threshold value is around few MeV.

The general modelling approach samples the probability that a nuclear event happens
by means of cross sections from databases and parametrised physics models. In proton
therapy, when the incident particle hits a nucleus, a series of nucleon-nucleon collisions
are prompted. Individually, the aforementioned events can be described as a three-stage
process:

• Intra-nuclear cascade: This model implemented by Bertini et al. [1974] is based on
the assumption that the incident particle interacts with quasi-free nucleons within
the nucleus and this is one of the possible models for the dynamic part the reaction.
Protons and neutrons have momentum and binding energy following the Fermi gas
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model and the semi-empirical mass formula [Battistoni et al., 2016]. The path-length
for the projectile is computed with its total cross section and the nucleon density.
Once the nuclear interaction occurs, the type and momentum of the striking particle
and the target are determined. If the energy is above the cut-o� threshold and the
assertion of the Pauli exclusion principle is ful�lled, the �nal state particles (secon-
daries) are treated as the primary and transported through the nucleus producing the
cascade [Ferrari and Sala, 1998]. The production time-scale corresponds to strong
interactions at around 10−22 - 10−23 s. Depending on the energy, secondary particles
can scatter or escape and through the coalescence mechanism not only protons and
neutrons, but also light nuclear fragments can be emitted [Ribanský et al., 1973]
[Blann, 1983]. Among other possible models, the binary cascade model [Folger et al.,
2004] is similar to the intra-nuclear cascade. By contrast, the quantum molecular dy-
namics model [Sorge et al., 1989] is the most comprehensive hadronic inelastic model,
which does not simulate nucleon-nucleon collisions, but a more collective e�ect.

• Pre-equilibrium: This stage corresponds to the moment when particles of the cascade
are below the energy threshold (few tens of MeV), but the nucleus is not in thermal
equilibrium. The interactions are modelled using a semi-classical approach, where
nuclear collisions originate holes in the Fermi sea that represent the excited nucleons
[Gri�n, 1966]. For each step, there is a di�erent probability for the emission of
particles; however, the residual nucleus stays in equilibrium with some excitation
energy, which is shared among the remaining nucleons [Battistoni et al., 2016].

• De-excitation: The de-excitation process undergoes in di�erent ways depending on
the mass of the target nucleus [Battistoni et al., 2016]. Light particles with kinetic
energies of few MeV can be emitted from the excited nucleus according to the nu-
clear evaporation approach [Weisskopf, 1937]. In the so-called Fermi-breakup model
[Fermi, 1950], the excitation energy may be larger than the binding energy of some
fragmentation channels; therefore, the nucleus splits into smaller fragments. This
mechanism plays a signi�cant role in human-body interactions because of the rel-
evance for low-Z nuclei. By contrast, for heavy nuclei (Z ≥ 65), which apart from
metallic implants are not relevant in proton therapy, the �ssion of the excited nucleus
into two fragments becomes the main mechanism to dissipate the residual energy. Fi-
nally, after the aforementioned processes, the remaining excited nuclei release energy
through the emission of gamma (γ) rays.

Nuclear interactions directly a�ect the absorbed dose curve. There is a considerable
energy dependent reduction in the primary proton �uence and secondary particles can
have a relevant contribution to the total energy deposition in the build-up region. The
contribution for proton beams in water is about 10% for 150 MeV and up to 20% for 250
MeV [ICRU, 2000]. Furthermore, secondary particles of di�erent types may be produced.
High-energetic ones are originated mostly in the intra-nuclear cascade and pre-equilibrium
stage and are emitted in the forward direction in the laboratory frame, whereas low-energy
secondaries are emitted more or less isotropically in the centre-of-mass frame of the mother
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nucleus [Kraan, 2015]. Most importantly, secondary particles are highly relevant to infer
the proton beam range in vivo (cf. section 2.4).

2.2 Clinical implementation of proton beams

2.2.1 External beam therapy treatment delivery

The beam characteristics are highly dependent on the dose delivery technique that is used.
There are two di�erent ways in which the protons can be delivered for treatment. Passive
scattering technology is named in this way since the �eld-speci�c hardware is required
[Koehler et al., 1977]. The mono-energetic pencil beam generated from the accelerator is
broadened laterally and longitudinally in order to produce a homogeneous dose distribution
throughout the solid angle covering the tumour (cf. �gure 2.4). Lateral spreading is
achieved by a system of scatterers with di�erent degree of complexity. Range modulation
is accomplished either using a rotating absorber of an appropriately tailored pro�le (range
modulator wheels) or by plates of variable thickness or, for small modulation, a stationary
absorber (ridge �lter) [Schippers, 2015]. A tumour speci�c combination of collimators
and compensators conforms the dose to the lateral and distal shape of the target region
keeping a constant energy width modulation. The neutron production due to the additional
materials along the beam path and the poor conformation in the proximal part of the target
are disadvantages of this technique.

Figure 2.4: Scheme of a passive scattering proton beam delivery system. The range shifter
wheel is used to vary the range while the �rst and second scatterers spread out the beam laterally.
Tailored collimators and compensators ensure an improved target conformality [Goitein et al.,
2002].

Active scanning is a much more modern technique. In this approach, the depth and
direction of the proton pencil beams are dynamically changed to cover the target volume
following an optimal pattern. Among the advantages can be mentioned the proximal and
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distal dose conformity, the absence of patient-speci�c hardware and the more e�cient use
of the protons. A scheme illustrating such a system is shown in �gure 2.5. The proton
pencil beam is de�ected and steered by a magnetic �eld, and the range is adjusted either by
changing the energy of the beam at the accelerator level or by dynamically adding material
in front of the patient with a range shifter [Lomax, 1999]. The scan can be performed in
two ways: spot (discrete steps) or raster (continuous) scanning. In the raster scanning, the
intensity is varied while the beam is moving and in the spot scanning the dose delivered is
controlled at each point [Goitein et al., 2002]. Technical challenges include overcoming the
interplay e�ects of the tumour motion and the scanning sequence [Schippers and Lomax,
2011].

Figure 2.5: Basic principles of an active proton beam scanning system: A narrow pencil beam is
de�ected by a magnetic �eld, which allows to scan the target volume. The intensity can be varied
from spot to spot or continuously along the path [Goitein et al., 2002].

2.2.2 Treatment planning

Regardless of the delivery technique, the use of radiation requires a plan that based on
the patient anatomy model can generate steps for the treatment delivery and compute
the expected dose distribution within the patient. The ultimate goal is the delivery of a
dose distribution, which gives the best trade-o� between tumour coverage and avoidance
of healthy surrounding tissue.

Proton therapy treatment planning mostly adopts semi-empirical analytical formalisms
and algorithms to calculate the dose in the patient [Mohan and Grosshans, 2017]. Ray-
tracing models use generic functions to describe the proximal build-up as well as the distal
fall-o� of the depth-dose curves, while lateral penumbra functions are used to form the
lateral pro�les [Paganetti and Bortfeld, 2006]. On the other hand, pencil-beam algorithms
rely on pencil kernels, derived from physical data in order to model the dose contribution
of each individual pencil beam in which a broad �eld is decomposed, or being directly
delivered with a beam scanning delivery system [Lomax, 1999]. However, MC simulations
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are considered the gold standard for dose calculations despite the extensive computational
time and the demands that an implementation implies in the clinical routine.

Three di�erent planning strategies can be distinguished for proton therapy. In single
�eld uniform dose plans each treatment �eld contributes a uniform dose within the target.
For the so-called `�eld patching', two or more �elds are combined in such a way that the
�rst �eld treats a segment of the target avoiding nearby critical organs with its lateral
penumbra, while the subsequent �elds cover the remaining target matching their distal
dose fall-o� with the lateral penumbra of the �rst �eld. The weight of the low- and high-
dose regions is ensured by using a combination of patch �elds with di�erent junctions
[Bussière and Adams, 2003]. By contrast, intensity modulated proton therapy, analogous
to intensity modulated radiotherapy and only possible with beam scanning delivery is a
technique that delivers non-uniform dose distributions for each treatment �eld. The desired
uniform dose distribution in a tumour is obtained by superimposing the dose contribution
of all the �elds. A non-uniform dose in each of the directions causes additional degrees
of freedom used for the optimisation of the plans, i.e., improved dose conformality and
steeper dose gradients sparing the critical structures around the tumour [Paganetti and
Bortfeld, 2006].

2.3 Range uncertainty

The depth-dose distribution depicted in �gure 1.1 gives an idea of how much cancer treat-
ments can be improved with the use of protons. The sharp distal dose fall-o� is the most
relevant strength but also causes the peril of high sensitivity to uncertainties. Any inaccu-
racy in the range may lead to either an inadequate coverage of the target or a considerable
over-dosage in critical structures. Knowledge of the penetration depth is part of the clinical
practice for both X-rays and protons; however, the dose distributions delivered with pro-
tons are much more sensitive to uncertainties (see �gure 2.6 for a schematic explanation).

Figure 2.6: The potential dose bene�t of proton therapy is hampered by the high sensitivity to
range uncertainties. The di�erent scenarios in the �gure compare changes in the delivered dose
distributions of photon and proton irradiation in the case of heterogeneous media. For photons,
the dose beyond the target is a few percent compared with the 100% dose contribution in the
same scenario for the SOBP �eld [Knopf and Lomax, 2013].

The potential sources of beam-range prediction uncertainties can be divided into two
main categories [McGowan et al., 2013], depicted with the chart in �gure 2.7: treatment
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planning (calculations within the treatment planing system) and treatment delivery (dis-
crepancies between planned and delivered dose).

Figure 2.7: Sources of range uncertainties in proton therapy can be classi�ed in two main
categories. Adapted from [McGowan et al., 2013].

2.3.1 Sources from treatment planning

CT inaccuracies

Patient image data for treatment planning is acquired based on an X-ray computed to-
mography (CT) scan, whose information is expressed in terms of linear photon attenuation
coe�cients in the Houns�eld unit scale. Inaccuracies in those values are caused by noise,
CT artefacts and beam hardening [Paganetti, 2012]. Moreover, this information has to
be translated into relative (to water) stopping power via semi-empirical calibration curves
introducing inaccuracies of about 1-3% of the proton beam range [Scha�ner and Pedroni,
1998].

Dose algorithm inaccuracies

The algorithms used to compute the dose distributions have intrinsic approximations and
assumptions, which result in additional uncertainties. Analytical dose calculation algo-
rithms mostly project the range based on the water equivalent length in the patient ne-
glecting the position of inhomogeneities relative to the Bragg peak [Paganetti, 2012], being
less sensitive to complex geometries and density variations. Therefore, those algorithms
have limitations predicting the range degradation caused by MCS. Sawakuchi et al. [2008]
studied this e�ect as a function of the proton energy and geometric complexity �nding a
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di�erence in the 80% to 20% distal fall-o� position in the order of ∼2 mm for a 220 MeV
proton beam.

In contrast to analytical mathematical methods, MC models (gold standard in dose
calculations) use random sampling from probability distribution functions for interactions
of the primary beam as well as the production and corresponding transport of secondary
particles in a medium. Since di�erences between analytical dose calculation engines and
MC simulations (cf. �gure 2.8) have been demonstrated, implementation of MC dose
algorithms could overcome the limitations from range degradation due to inhomogeneities
[Paganetti, 2012].

Figure 2.8: Dose distributions for passively scattered proton therapy computed with (a) a
commercial treatment planning system and (b) a MC simulation. In (c) the di�erence (a)- (b)
illustrates the under dosage due to conventional model predictions. Adapted from [Mohan and
Grosshans, 2017].

2.3.2 Sources from treatment delivery

The success of a proton therapy treatment depends, among other factors, on how accurate
the position of the patient during irradiation is matching with the planning CT. However,
the exact alignment can never be reproduced. Conventionally, treatments are performed
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with fractioned schemes, i.e., the total dose is delivered in the course of treatment over
weeks, which can come along with patient anatomy changes: weight loss, tumour shrinkage
or normal tissue swelling [Polf and Parodi, 2015]. Besides the aforementioned changes, a
human-being has bowel movements, respiration and heartbeats that cause position shifts
during the delivery of a single fraction. Geometric variations in proton therapy can also
result in density changes, thereby modifying the radiological path length, which at the
end can translate into considerable under-dosage of the target and over-dosage of healthy
tissue or even worse organ at risk (OAR)s. These e�ects appear for both passive and active
delivery techniques.

2.3.3 Uncertainties management

A treatment plan should be robust enough against uncertainties. Robustness for conven-
tional radiotherapy (high energy X-rays) is achieved with proper safety margins around the
clinical target volume, thus ensuring the correct dose delivery despite possible set-up and
anatomy variations during the irradiation. The scenario for protons is much more complex,
since the range uncertainty depends on the radiological depth where the tumour is located,
and the assumptions behind the planning target volume are not necessarily always valid.
Margins for OARs have similar issues.

In proton therapy, the range uncertainty is incorporated into the treatment plan by
ensuring con�dence in the calculated dose distribution [Verburg, 2015]. Increasing the
safety margins to the distal surface of the target, the robustness of the plan can be achieved.
However, this will lead to a reduction in the dose conformity or distorted distributions when
density changes in the beam path a�ect the proton range. Beam-speci�c proximal and
distal margins must be assigned to the clinical target volume, but there is no universally
accepted standard. Figure 2.9 shows a schematic representation of a target, an OAR, the
position of the proton range and the standard margins which made individual beams robust
against a −1.5σ variation of the end-of-range.

Anatomical changes in the beam path give rise to perturbations in the dose distribution.
For passive scattering, these relative shifts can be compensated by `smearing' the proton
range with a compensator. Nevertheless, this technique reduces the conformity of the
dose distribution [McGowan et al., 2013]. On the other hand, intensity modulated proton
therapy treatments are more sensitive to uncertainties in patient positioning and anatom-
ical motion, requiring `robust optimisation' techniques. This process considers multiple
uncertainty scenarios de�ning an objective function for optimisation of the dose distribu-
tion. For instance, it may consider the nominal dose distribution, six dose distributions
obtained by shifting the patient CT along three orthogonal directions and two additional
dose distributions incorporating uncertainties in the range [Mohan and Grosshans, 2017].

Regardless of the selected technique to make plans more robust against uncertainties,
a quanti�cation of the delivered beam range is still not addressed. Thus, a real-time
monitoring device can overcome the limitations originated by uncertainties, providing more
precise information about the protons inside a patient during the treatment.
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Figure 2.9: Range margins for a uniform dose distribution robust against a ±1.5σ variation
of the range. The distal dose surface is positioned at a distance from the target of 1.5σ of the
expected range distribution. A separation of 2σ between the mean position of the end-of-range
and the edge of the OAR provides a 98% con�dence level. If this margin is bigger than the
distance between the target and the OAR, the beam direction is forbidden in the clinical practice.
Adapted from [Verburg, 2015].

2.4 Methods for in vivo range veri�cation

2.4.1 Direct relative stopping power assessment

Proton radiography and tomography

Previously in section 2.3.1, an explanation about the errors related to the conversion of
X-ray images Houns�eld units to proton stopping power was introduced. Di�erences in the
proton range up to 3% [Paganetti, 2012] could be reduced if the stopping power (relative
to water) of protons is measured directly, i.e., by using them for imaging, hereafter referred
as proton computed tomography (pCT). To this end, proton beams must completely pene-
trate the patient requiring energies much higher than those used in the therapeutic regime
[Parodi, 2014]. For the thickest parts of the body, it becomes a challenge because the avail-
able energies at existing proton therapy centres are not su�cient to traverse the patient.
Nonetheless, a reduced angular coverage may be su�cient to perform imaging for prostate
and sacral cases skipping thick and bony structures [Rinaldi et al., 2011].

The pioneering idea of pCT was outlined in the 60s by Cormack [1963] (Nobel laureate
for the invention of X-ray CT) including the energy loss of charged particles in his method
to reconstruct radiological images. Five years later Koehler [1968] demonstrated the high
density contrast but poor spatial resolution of proton radiography for an aluminium ab-
sorber. First experimental pCT acquisition was performed by Cormack and Koehler [1976]
using a 158 MeV proton beam; they succeeded in the reconstruction of density di�erences
of less than 1% in a phantom consisting of lucite and a sugar solution. For a long time pCT
remained in its infancy as a result of the technological and instrumentation limitations, but
a breakout conceptual design speci�cally for proton irradiation treatments was proposed
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within the US pCT collaboration project [Schulte et al., 2004].
The main drawback of proton computed tomography is the limited spatial resolution as

a consequence of MCS. Small angle de�ections in the proton trajectories are translated in
uncertainties in the reconstructed images. Despite di�erent system proposals and research
e�orts, an optimal set-up must include tracking and measurement of individual particles
together with their residual energy [Langen et al., 2015] as is illustrated in �gure 2.10.
Furthermore, the beam is either broadened or scanned by magnets and the phantom must
be able to rotate (for a patient by rotating the gantry) within the detectors by at least
180◦. Finally, for each particle, the geometrical path together with the integrated energy
loss (in terms of the water equivalent path length) should be provided.

Figure 2.10: The pCT scanner has two tracking detectors before and two behind the phantom
in order to enable the reconstruction of trajectories for single particles. Protons are stopped in a
multi-stage scintillating detector measuring their residual energy/range. Adapted from [Johnson,
2018].

Proton tomography can provide an upper limit on the range error (as measurement done
before treatment), which occurs during the treatment [Knopf and Lomax, 2013]. However,
at the moment, most e�orts in pCT are aiming to get more accurate stopping power ratio
values for treatment planning purposes.

2.4.2 Indirect methods

These methods are based on the detection of nuclear reactions or the ultrasonic signals ac-
companying proton irradiation of tissue. The beam range is assessed from the measurement
of another signal.

Positron emission tomography

Nuclear interactions between protons and the irradiated tissue along the beam path induce
transient β+

− activation. Target fragmentation originates a footprint of radio-tracers that
decay via positron emission. The emitted positron travels a small distance (∼mm) before
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annihilating with an electron in the medium producing two almost anti-parallel coincident
gammas of 511 keV, which can be detected with a positron emission tomography (PET)
detector [Parodi, 2012]. Most frequent β+ emitters produced in the human body are listed
in the table 2.1. In soft tissues, the prominent radionuclide species are 11C, 13N and 15O.

β+

emitter
Half-life
[min]

Reaction
channel

Threshold
energy
[MeV]

15 O 2.037 16O(p,pn) 16.79

11C 20.385

12C(p,pn)11C 20.61
14N(p,2p2n)11C 3.22
16O(p,3p3n)11C 59.64
16O(p, α d)11C 27.50

13N 9.965
16O(p,2p2n)13N 5.66

14N(p,pn)13N 11.44

30P 2.498 31P(p,pn)30P 19.7

38K 7.636 40Ca(p,2p2n)38K 21.2

Table 2.1: Most frequent nuclear reactions in the human body for positron emitter pro-
duction in proton therapy. Adapted from [Beebe-Wang et al., 2003]

For proton irradiation, dose monitoring by means of PET techniques was developed
by di�erent groups during the 90s and to-date it is the only established method in the
clinical practice [Knopf and Lomax, 2013]. However, dose distributions cannot be directly
correlated with the β+

− emitters activity due to di�erences in the physical processes involved.
PET-based treatment veri�cation is performed as follows (cf. �gure 2.11): a recon-

structed image of the positron emission in the patient is retrieved from the information of
the detector, but since a direct comparison is not possible, a reference must be created.
MC simulations typically are performed in order to create a PET measurement estimation
on the basis of the treatment plan, the time-course of irradiation, patient CT, detector ge-
ometry and imaging procedure. This approach was �rst deployed by Parodi et al. [2007a]
in proton therapy. The simulated proton �uence is convolved with the cross sections for
the main reaction channels and then scaled with the target nuclei densities. Corrections for
biological washout and radioactive decay are applied to those distributions and �nally, the
expected PET distribution is obtained applying a convolution kernel to model the resolu-
tion of the scanner. This reference distribution is compared with the measured PET data,
which allows estimating whether the dose was delivered favourably [Parodi et al., 2007a].
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Range veri�cation accuracy of 1-2 mm was demonstrated in patients with skull base tu-
mours (depth pro�les shown in �gure 2.12) due to the good immobilization and registration
between treatment and imaging CT along with reduced washout in bony structures [Parodi
et al., 2007b]. Nevertheless, in other anatomical sites, the accuracy is typically around 3-5
mm, indicating a lack of millimetre range accuracy for every tumour indication [Knopf and
Lomax, 2013].

Figure 2.11: For a dose delivery scheme, the β+− activity distribution is computed via Monte
Carlo simulations (predicted). Afterwards, a comparison with the measured activity is performed.
If signi�cant deviations are found corrections must be applied, otherwise the next fraction is
delivered. Dose and β+

− activity are depicted as isolines superimposed onto the patient planning
CT. Adapted from [Shakirin et al., 2011].

PET data acquisition is categorized in three di�erent operational modalities:

• In-beam PET: The detector is integrated into the proton therapy delivery system
enabling the acquisition during (for synchrotron-based facilities) or immediately after
(for cyclotron-based facilities) irradiation. The strength of this technique is the time
course of the acquisitions providing high β+

− activity levels for both long (e.g. 11C
and 13N) and short (e.g. 15O and 10C) half-life components, which also reduce the
e�ect of biological signal washout. Furthermore, the treatment position is preserved
and uncertainties associated with patient repositioning or anatomical changes are
minimised [Zhu and El Fakhri, 2013]. By contrast, among the disadvantages of in-
beam PET systems are the expensive integration into the beam delivery and the
demanding technical challenges that have to be faced during the implementation.
Since geometrical limitations of the detector are one of the major obstacles, time-of-
�ight techniques have been proposed to reverse the e�ects of limited angle information
[Crespo et al., 2007]. In addition, Tashima et al. [2016] developed a transformable
PET system that can be placed around the patient table o�ering a visualisation of
a physically opened space with an extended axial �eld-of-view [Yoshida et al., 2017].
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Figure 2.12: Measured (green) and calculated (magenta) activity depth pro�les for the lateral
(left) and posterior-anterior (right) �elds taken along the center and at 5 mm o�set of the 2D
distributions for a patient with pituitary adenoma. Dashed and dashed-dotted lines mark the
positions of the distal maximum and 50% fall-o�, respectively. Planned (blue) and MC (cyan)
dose are also depicted. The corresponding positions of the measured and predicted activity distal
maximum and 50% distal fall-o� agree within 0.6-1.9 mm. Adapted from [Parodi et al., 2007b].

Finally, an important aspect to take into account during the beam-on acquisition is
the considerable prompt radiation background, which can saturate the signal of the
detectors [Parodi, 2012].

• In-room PET: A stand-alone PET scanner is placed in the treatment room and the
image is acquired immediately after the irradiation has �nished. The �rst implemen-
tation was carried out by Zhu et al. [2011] in the proton therapy centre of the Mas-
sachusetts General Hospital. The use of a conventional full-ring detector eliminates
the limited angle issue of the in-beam technique producing better quality images. Bi-
ological washout and uncertainties related to repositioning and anatomical changes
are considerably reduced. However, the major drawback is the co-registration ac-
curacy between the PET acquisition and the planning CT, since the comparison is
made with CT-based simulated predictions, along with the limited �eld-of-view of
the small-bore system [Parodi, 2012].

• O�-line PET: The image is acquired with a commercial PET device outside of the
treatment area [Parodi et al., 2007b]; thus, the acquisition has a delay that depends
on the distance to the imaging facility and related time for patient transfer and
repositioning. As a consequence, there is a signi�cant loss of counting statistics,
because the contribution of short-live radionuclei species such as 15O has vanished
and the biological washout processes degrade the performance. These e�ects must
be included in the simulation process in order to have a reliable comparison with the
measured activity. Additional issues related to repositioning errors and anatomical
changes should also be considered even though this can be compensated when using
a combined PET/CT device.
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As mentioned before, PET is the only imaging technique already clinically implemented
for proton range veri�cation in few centres that provides indirect, though relevant informa-
tion about the dose deposition in the patient. However, technological and methodological
improvements may be implemented for a more reliable correlation between the induced
β+
− activity and the dose delivery. A better knowledge of the cross section values for the

dominant emitters along with improved CT [Bauer et al., 2013; Berndt et al., 2017] and
a better modelling of the biological washout could give a more accurate prediction of the
simulated activity. Additionally, dedicated instrumentation and high-sensitivity detectors
could improve the resolution of the images [Bisogni et al., 2016].

Ionoacoustics

Thermoacoustic detection of the Bragg peak is a consequence of the conversion of localized
energy deposition to a mechanical pressure wave (ionoacoustic signal). Therefore, the cor-
relation between both phenomena can be used to determine the proton beam range [Parodi
and Assmann, 2015]. The feasibility of ionoacoustics was �rst investigated for beam diag-
nostics by Sulak et al. [1979] using 200 MeV and 158 MeV protons impinging onto a water
phantom and measuring the signal of hydrophones placed at variables distances from the
beam. They were successful in demonstrating how the thermal expansion produces the
observed signals. However, the �rst clinical investigation was performed in the 90s by
Hayakawa et al. [1995] during the proton irradiation of a liver cancer patient. At this
time, the proof-of-principle was limited by the lack of tailored instrumentation and proton
delivery systems, which produced complex ionoacoustic signals. Nowadays, ionoacoustics
has raised a revived interest due to improved ion beam therapy systems and ultrasound
technology along with the commercial establishment of intrinsically pulsed proton acceler-
ators (synchrocyclotrons). The ability of this promising technique to characterise the dose
distribution derives from the dominant mechanisms of energy transfer (electromagnetic
interactions), and the monitoring of the beam range in the patient could be performed by
overlapping ionoacoustic images of the Bragg peak with conventional ultrasound anatomy
images [Lehrack et al., 2017].

By detecting and mathematically inverting the ultrasound waves produced upon the
stopping of protons in water, as proposed by Kellnberger et al. [2016], the deposited dose
pro�le could be reconstructed. It provides a direct measure of the energy deposition and en-
ables ultrasound-difraction limited imaging resolution (100-300 micrometers) within several
centimetres penetration depth. The experimental set-up for the 3D ionoacoustic imaging
for 20 MeV protons hitting a water target is shown in �gure 2.13. The three-dimensional
reconstructions of the Bragg peak are also depicted, including the e�ect on the proton range
when a 0.5 mm thick aluminium absorber is introduced along the beam path. Bragg peak
positions and FWHM of the lateral distribution are in good agreement with Geant4 MC
simulations and previous 1D experimental measurements [Assmann et al., 2015]. Ionoa-
coustic imaging for range veri�cation has demonstrated an accuracy better than 1.5 mm
for homogeneous target irradiations although at still prohibitively high doses [Patch et al.,
2016]. The feasibility of proton range assessment using a synchrocyclotron at clinical ener-
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gies [Lehrack et al., 2017] has been proven, even though also in this case the required dose
is exceeding the standard treatment regimes. Further detector developments and signal
processing optimisation must be implemented to enable in vivo veri�cation. A more chal-
lenging situation is encountered for heterogeneous scenarios, because di�erent materials
produce di�erent pressure waves for the same energy deposition. Some simulation studies
have been performed in order to model the generation and propagation of ionoacoustic
signals based on CT data, but experimental validation still has to be done [Jones et al.,
2018].

Figure 2.13: Experimental set-up (a) for 3D imaging of a 20 MeV proton beam. The ultrasound
array was moved in lateral steps along the beam to record the data. Maximum intensity projection
in the xy (b) and yz (c) -planes are reconstructed, range (dz = 4.3 ± 0.2 mm) and FWHM
(dr = 0.28 ± 0.05 mm) agree well with previous measurements and Monte Carlo simulations.
Range shifts (e) and changes in the lateral spread distribution (d) can be resolved by the 3D
reconstruction [Kellnberger et al., 2016].

Prompt gamma monitoring

PGs are emitted during proton irradiation as consequence of nuclei de-excitation from nu-
clear interactions along the beam path (cf. section 2.1.4) with typical energies from 2 MeV
to 15 MeV. These gammas were �rst identi�ed as noisy events that are not straightforward
to disentangle from the signal of β+

− emitters in in-beam PET by Parodi et al. [2005] and
the direct measurement of this signal for proton range veri�cation was proposed one year
later by Min et al. [2006].

This method has the advantage to enable real-time veri�cation, since the PG emission is
isotropic and can be detected within few nanoseconds after the nuclear interaction occurs.
Theoretically, clinical doses are high enough to produce an acceptable rate of gammas
in order to retrieve the information of the proton beam delivery. Theoretical aspects of
prompt gamma imaging as well as a discussion about the detection methods including CC
systems are presented in chapter 3.
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3
Prompt Gamma monitoring

Prompt gamma (PG) monitoring techniques for range veri�cation are based on the detec-
tion of energetic photons (in the range of MeV) promptly emitted in the de-excitation stage
of nuclei, which have undergone inelastic nuclear interactions during proton or ion therapy
treatments. The feasibility of this method was �rst investigated using MC simulations by
Jongen and Stichelbaut [2003] and experimentally veri�ed by Min et al. [2006]. Potential
application in clinical routine is justi�ed because compared to PET monitoring, PGs are
not a�ected by washout e�ects and their production cross section is much more favourable
[Polf and Parodi, 2015]. Therefore, di�erent groups worldwide have studied the correlation
between the deposited dose and the PG emission as well as di�erent detector modalities
have been explored.

In this chapter, a complete overview of the state-of-the-art in PG detection as a range
veri�cation tool in proton therapy is presented. First, the rationale of PG emission is
explained followed by the description of the di�erent detection modalities that have been
proposed during the last years. Finally, the CC systems which are investigated in this
thesis are fully introduced.

3.1 Rationale of prompt gamma imaging

Nuclear excitations due to inelastic interactions of protons and target nuclei occur along
the penetration path until some millimetres before the Bragg peak, where the energy
of the primary protons drops below the reaction threshold, resulting in a distal fall-o�
correlated with the proton beam range [Knopf and Lomax, 2013]. A subsequent excited
nucleus decays into lower energy states emitting photons. Above the particle emission
and evaporation energies, this process competes with the emission of other secondaries as
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protons, neutrons and alpha particles, originating residual nuclei that can be in an excited
state [Verburg et al., 2012]. Thus, the gammas emitted from nuclear emission are either
due to the target nuclei or any fusion/�ssion production and the resulting nucleus can
decay through di�erent channels.

Nuclei have quantised energy states with well-established properties and as long as the
cross sections of the transitions are high enough, discrete gamma emissions can be ex-
tracted from the standard measurements [Verburg et al., 2012]. For lower incident proton
beam energies, only some excitation levels can be reached and few discrete lines are dis-
tinguishable in the energy spectrum. At higher proton energies, many reaction channels
are feasible and the spectrum is called the quasi-continuum [Murphy et al., 2009]. PG
emission during proton irradiation depends strongly on the energy of the incident protons
and the tissue composition of the target [Polf et al., 2009a]. The gamma lines from proton
interaction with 12C, 16O and 14N, the most abundant elements in the human body, are
listed in table 3.1. The transitions indicate inelastic reactions from the �rst excited state
to the ground state.

Target Reaction
channel

Eγ
(MeV)

Transition
Iπi , E

∗
i → Iπf , E

∗
f

Mean life
(s)

16O 16O(p,p')16O* 2.74 2− 8.87 → 3− 6.13 1.8 x 10−13

6.13 3− 6.13 → 0 + g.s. 2.7 x 10−11

6.92 2+ 6.92 → 0+ g.s. 6.8 x 10−14

7.12 1− 7.12 → 0+ g.s 1.2 x 10−19

16O(p,x)12C* 4.44 2+ 4.44 → 0+ g.s. 6.1 x 10−14

16O(p,x)15N* 5.27 5
2

+
5.27 → 1

2

−
g.s. 2.6 x 10−12

12C 12C(p,x)11C* 2.00 1
2

−
2.00 → 3

2

−
g.s. 1.0 x 10−14

12C(p,p')12C* 4.44 2+ → 4.44 0 + g.s. 6.1 x 10−14

14N 14N(p,p')14N* 1.64 1+ 3.95 → 0+ 2.31 6.9 x 10−15

2.31 0+ 2.31 → 1 + g.s. 6.9 x 10−15

5.11 2− 5.11 → 1+ g.s. 6.3 x 10−12

Table 3.1: Relevant reaction channels for prompt gamma emission in proton therapy (g.s.
ground state). Data available from [Kozlovsky et al., 2002] and [Verburg et al., 2012].

For 16O the discrete lines at 6.13, 6.92 and 7.12 MeV are the most dominant gamma
emissions for low incident proton beam energies [Tilley et al., 1993]. For proton energies
above 15 MeV, the reactions 16O(p,x)12C* result in a notable increment of 4.44 MeV PGs
from the residual 12C*. The dominant gamma emission contribution for proton reactions
with 12C is the 4.44 MeV line, which apart from the 12C(p,p')12C* reaction includes also
small contributions from 12C(p,2p)11B*. Levels above the 4.44 MeV line, coming from 12C
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reactions, mostly decay through alpha emission [Ajzenberg-Selove, 1990]. On the other
hand, the role of 14N is less signi�cant, because the abundance in tissues is lower compared
to oxygen and carbon. Its more important gamma emissions are at 2.31, 1.64 and 5.11
MeV. Figure 3.1 depicts the cross sections of the relevant components of tissue for proton
irradiation.

Figure 3.1: Total cross sections for proton induced reactions with carbon, oxygen and nitrogen
calculated by nuclear reaction models of di�erent MC codes and dedicated simulation models
[Verburg et al., 2012]. Experimental data were plotted from Bauho� [1986].

The isotropic emission of PGs is much more favourable than PET as a range veri�cation
tool. Prompt gammas can be detected within few nanoseconds after the nuclear interaction
and have theoretically high production rates for a typical therapeutic dose rate of 2 Gy/min
[Moteabbed et al., 2011]. Moreover, if the longitudinal dose pro�le is compared with the
emission distribution of prompt secondary particles (as shown in �gure 3.2), PGs are well-
correlated with the primary range, preserving the information of their initial direction while
traversing the target [Krimmer et al., 2018].

The �rst experimental attempt to measure the correlation between the PG emission and
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Figure 3.2: 1D distributions of secondary prompt radiation with energies above 1 MeV emerging
from the simulation (Geant4) of a cylindrical water phantom irradiated by a 160 MeV proton
beam [Krimmer et al., 2018]. The correlation between the PGs and the dose pro�le justi�es the
development of a tool to retrieve the proton range based on these physical quantities.

the distal fall-o� of the dose pro�le was performed by Min et al. [2006]. A shielded detector
was used in order to mitigate the signal from fast neutrons and measure only the gammas
passing through a collimator hole emitted perpendicular to the beam direction. Three
layers are depicted in the schematic drawing of �gure 3.3a: the para�n layer and the B4C
powder moderating and then capturing high energy neutrons together with products of the
B(n,γ) reaction and at the end a lead layer to stop unwanted gammas. The measurements,
choosing a lower threshold of 4 MeV for the gamma detection, proved a clear correlation
between the maximum of the prompt gamma distribution and the Bragg peak location, for
example the agreement was within 1-2 mm at 100 MeV (cf. �gure 3.3b). For high energy
(150 MeV and 200 MeV) proton beams the distal fall-o� of the gammas is reduced due to
the background of high energy neutrons and broader due to the increased range straggling.

In the subsequent years, di�erent groups demonstrated the feasibility of range veri-
�cation by means of PG distributions for clinical mono-energetic proton pencil beams.
Dedicated detector systems were successful in measuring PG signals from plastic phantom
irradiation scenarios (Polf et al. [2009a,b]). MC simulations for homogeneous irradiation
scenarios carried out using custom-built prototype systems showed a reasonable correlation
between the retrieved signal and the depth-dose pro�le (Kang and Kim [2009]; Frandes et al.
[2010]; Richard et al. [2011]). Furthermore, the viability of PG veri�cation for passively
scattered SOBP �elds has been theoretically demonstrated (Polf et al. [2009a]; Moteabbed
et al. [2011]; Testa et al. [2014]).
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(a)
(b)

Figure 3.3: Scanning system set-up (�gure 3.3a) used to detect PGs near to the dose fall-o�
region. For three di�erent beam energies (100, 150 and 200 MeV) the measured depth-dose is
correlated with the PG distribution as depicted in �gure 3.3b. Adapted from [Min et al., 2006].

The prompt emission of gammas within the tissue is dependent on the proton beam
energy as well as the elemental composition of the irradiated material [Polf et al., 2009b].
Those di�erences enable methods to determine the elemental composition of the target by
measuring the spectral information of the PGs. Polf et al. [2013] measured the PG emission
spectra for di�erent tissue-equivalent solutions with a high-purity germanium detector.
The results showed a linear relationship between the weight of the 16O emission line and
the amount of oxygen within the irradiated target (cf. �gure 3.4). This information is
valuable, for instance when the level of tumour hypoxia is monitored during the treatment.
Furthermore, spectroscopy measurements on an active-scanning proton beam-line have
been performed by Verburg et al. [2013], who was able to clearly resolve the discrete lines
at 4.44, 5.2 and 6.13 MeV in terms of energy and time.

Clinical application of PG range veri�cation requires an optimised detector capable of
measuring high energy gammas at high count rates. The neutron background rejection
also plays an important role as well as the adaptation of the system to the beam time
structure. Dedicated groups have developed several approaches in order to build a suitable
prototype, which can be used in treatment scenarios.

3.2 Interactions of radiation with matter

3.2.1 Interactions of photons with matter

Compton e�ect

The Compton e�ect (Compton scattering) describes the interaction between a photon of
certain initial energy with a loosely bound orbital electron. The �rst measurements of this
e�ect were made by Compton [1923], who demonstrated a relation between the scatter
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Figure 3.4: Spectrum of PGs emitted during the irradiation with a 48 MeV proton pencil beam
for four di�erent samples: H2O (black line), H2O + 25 g of C12H12O11 (red), H2O + 75 g of
C12H12O11 (blue) and H2O + 130 g of C12H12O11 (green). The prompt gamma emission, single
and double escape peaks for 16O(1, 1′, 1′′), 15O(2, 2′, 2′′) and 12C(3, 3′, 3′′) are depicted. The line
for the positron annihilation gamma peak is labelled as 5 [Polf et al., 2013].

angle and the initial and �nal wavelength of the photon. The theory assumes that the
photon interacts with a free and stationary electron. A scheme of a typical Compton
scattering interaction is shown in �gure 3.5. The scattering angle θ is de�ned as the angle
between the incident photon direction ~ri and the scattered photon direction ~rg, taking
values in the range [0 ≤ θ ≤ 180]. The recoil electron angle φ is the angle between the
incident photon direction ~ri and the direction of the recoil Compton electron ~re ranging
between [0 ≤ φ ≤ 90].

The kinematics of Compton scattering are derived by using the relativistic relationships
for the total energy and momentum conservation (assuming a �free electron� at rest):

Ei +mec
2 = Eg + Ee

~pi = ~pg + ~pe
(3.1)

where Ei and Eg are the energy of the incident and scattered photon, respectively. mec
2

is the rest energy and Ee is the total energy of the recoil electron. ~pi, ~pg and ~pe are the
momentum of the incident photon, scattered photon and recoil electron, respectively.

The total energy of the recoil electron is given by Ee =
√

(mec2)2 + p2
ec

2, applying the
relativistic energy-momentum relation; the energy of the scattered photon is correlated with
its momentum by Eg = pgc. The well-known Compton equation results after combining
the di�erent relations:

cos θ = 1 +mec
2

(
1

Eg + Ee
− 1

Ee

)
(3.2)

Compton was awarded with the Nobel Prize in Physics for his discovery in 1927.
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Figure 3.5: Schematic representation of the Compton e�ect and notation of the di�erent quanti-
ties being used throughout this work. An incident photon with energy Ei is scattered in a certain
material along its path with a scattering angle θ. Due to energy conservation, the di�erence
between the incident and the scattered photon energy is given by the kinetic energy of the recoil
electron Ee. The recoil electron φ and the total scattering ϑ angles are also shown.

Equation 3.2 puts some restrictions to the energy of the scattered gamma and the recoil
electron to get physically meaningful scattering angles (the domain of arccos is [-1, 1]):

mec
2Ei

2Ei +mec2
< Eg < Ei

0 < Ee <
2E2

i

2Ei +mec2

(3.3)

The limits of equation 3.3 correspond to forward scattering, i.e., scattering angle θ= 0 and
electron recoil angle φ = 90◦ and photon backscattering i.e., scattering angle θ = 180◦ and
electron recoil angle φ = 0◦. Likewise, expressions for the recoil scatter angle and the total
scattering angle can be obtained:

cosφ =
Ee(Ei +mec

2)

Ei
√
E2
e + 2Eemec2

(3.4)

cosϑ =
Ee(Eg −mec

2)

Eg
√
E2
e + 2Eemec2

(3.5)

Klein and Nishina [1929] derived an expression for the electronic cross section of Comp-
ton interaction per unit solid angle given in [(cm2/electron)/steradians]:

deσ
KN
c

dΩ
=
r2
e

2

(
Eg

Ei

)2{
Eg
Ei

+
Ei
Eg
− sin2 θ

}
(3.6)

where Re is the classical radius of the electron (2.82 fm). For most materials, the afore-
mentioned equation 3.6 remains an approximation because it assumes unbound electrons
at rest.
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The di�erential Compton electronic cross section versus the scattering angle in polar
coordinates is plotted in �gure 3.6a for di�erent incident photon energies. For low energies,
the probabilities for forward (θ = 0) and backscattering (θ = π) are equal. When the
incident energy increases, the scattering becomes more forward peaked and backscattering
drops o� even though the forward scattering probability remains constant.

The directional distribution of the scattered photons and the recoil electrons provides
practical information about the overall Compton scattering behaviour in terms of the cross
section per unit scattering angle (eq. 3.7) and per unit recoil angle (eq. 3.8):

deσ
KN
c

dθ
=
deσ

KN
c

dΩ

dΩ

dθ
(3.7)

deσ
KN
c

dφ
=
deσ

KN
c

dΩ

dΩ

dφ
(3.8)

Figure 3.6b shows how these cross sections are varying with the angles for four di�erent
incident energies. deσKNc

dθ
and deσKNc

dφ
for low energies exhibit curves with two maxima:

θ= 55◦ and θ= 125◦, which correspond to φ= 62.5◦ and φ= 27.5◦ in the electron curve,
respectively. The curves become asymmetrical with increasing energy and the maximum
is pushed to smaller angles in both cases.

(a)

(b)

Figure 3.6: Di�erential electronic cross section given by the Klein-Nishina equation as a function
of the incident energy (3.6a) displayed in the polar coordinate system [Nishio, 2015]. The di�eren-
tial cross section can be expressed in terms of the scattering angle θ and the recoil electron angle
φ as depicted in the Cartesian representation in �gure 3.6b for di�erent values of ε = hν/mec

2.
deσKNc
dθ vs. θ (black solid line) and deσKNc

dφ vs. φ (red line) are plotted for four values of ε [Podgorsak,
2010].
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The Compton e�ect becomes slightly less likely in high Z materials, because as the
atomic number rises, the density of electrons falls slowly. Additionally, incoherent scat-
tering decreases with energy making this interaction more relevant as photon energies rise
above the K-shell binding energies of the orbital electrons [Podgorsak, 2010].

Doppler broadening in the measured Compton spectra due to the velocity distribution
of the orbital electrons was introduced by Mond [1929]. A modi�cation of the Klein-
Nishina cross section was introduced by Ribberfors [1975] to take into account this e�ect
by including an additional function SIi that depends on the scattering material and the
incident energy of the photons:(

deσc
dΩ

)
bound

=

(
deσ

KN
c

dΩ

)
unbound

SIi (Ei, θ, Z) (3.9)

Several aspects have to be considered when the assumption of the free-electron at rest
is no longer valid [Zoglauer and Kanbach, 2003]. For low energy photons, the event dis-
tribution and the detector sensitivity change because the cross sections are slightly higher
than the values predicted by the Klein-Nishina equation (cf. equation 3.6). Furthermore,
small variations in the scattering angle distribution can appear. The signi�cant impact on
the performance of CC detectors (because photons of several MeV are a�ected) is due to
the disagreement between the measured scattering angle and the computation of equation
3.2, which causes a broadening of the lines in the energy spectra and decreases the image
resolution.

Photoelectric e�ect (Photoelectric absorption)

In this interaction the energy of the incident photon Ei is transferred entirely to a bound
electron of an absorber atom followed by its ejection with kinetic energy Ek. In contrast
to Compton scattering, the photoelectric e�ect occurs when the electron is tightly bound
having a binding energy EB. Subsequently, the vacancy in the K-shell (85% of the times)
is �lled with a higher orbit electron and the transition energy is emitted either in form
of characteristic photons (�uorescence) or Auger electrons. The kinetic energy Ek of the
ejected photo electron is the incident photon energy minus the binding energy of the orbital
electron:

EK = hν − EB (3.10)

This energy may be insu�cient to eject the photo electron from the atom, so-called atomic
ionization process, although it may be su�cient to raise it into a higher orbit by atomic
excitation.

The atomic cross section for the photoelectric e�ect is a function of both the incident
photon energy and the atomic number of the target material. The energy dependence
is approximately proportional to 1/(hν)3 at low energies and to 1/(hν) at higher photon
energies. On the other hand, the atomic cross section changes as Zn, where n ranges ap-
proximately from 4 to 5. Figure 3.7 depicts the attenuation coe�cient for the photoelectric



36 3. Prompt Gamma monitoring

absorption of the di�erent materials used for the CC detectors in this thesis. The particu-
lar sharp discontinuities, called absorption edges, arise when the photon energy coincides
with the binding energy of a particular electron shell.

Pair production

Pair production describes the conversion of an incoming photon with an energy exceeding
2mec

2 (twice the rest energy of the electron) into an electron-positron pair. The e�ect has
to ful�l energy, charge and momentum conservation simultaneously. Since the production
in free space does not satisfy the momentum conservation, the interaction can only occur
in the presence of the Coulomb �eld of an atomic nucleus or an orbital electron.

In the standard pair production, the excess of momentum is taken by the nucleus.
2mec

2 of the initial photon energy is spent in the electron-positron pair production; the
rest is shared as kinetic energy between the two particles leaving the interaction site. The
positron releases all of its kinetic energy and quickly recombines with a nearby electron.
The annihilation typically results in two photons of energy mec

2=0.511 MeV moving in
opposite directions (at nearly 180◦) ensuring energy, momentum and charge conservation.
The probability of pair production (cf. �gure 3.7) is evidently zero at very low photon
energies. Above the threshold, it increases rapidly with the incident photon energy but
then saturates. Furthermore, the pair creation cross section varies roughly with Z2 of the
absorber material.

Triplet production is a special case of pair production which occurs in the electric �eld
of an atomic electron, therefore recoiling with su�cient energy to be ejected from the
atomic shell. Three electrons appear as result of the interaction. Triple production has
an energy threshold at 4mec

2 (2.04 MeV) and approximately varies as Z although the Z
dependence becomes weaker with higher atomic numbers due to screening of the electric
�elds of the target entities by the surrounding atomic electrons [Mayles et al., 2007].

3.2.2 Interactions of electrons with matter

Molière multiple elastic scattering

Molière scattering [Moliere, 1955] refers to the process experienced by an electron moving
through an absorber material that results in many small-angle scattering events. The
interactions are characterized by their random nature being roughly Gaussian for small
de�ection angles but at larger angles those events can be described by Rutherford-type
Coulomb interactions.

An approximation (generally used for experimental purposes) for the standard deviation
δo of the angular distribution projected on a scattering plane is given by [Beringer et al.,
2012]:

δo =
13.6MeV

βcp
z
√
x/X0 [1 + 0.038 ln(x/X0)] (3.11)
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Figure 3.7: Attenuation coe�cients as a function of photon energy for the materials used in this
work. Data were plotted from NIST 2010.

Here βc, p and z are the velocity, the momentum and the charge of the incident electron,
respectively. x/X0 is the thickness of the scattering medium in radiation lengths (i.e.,
the mean distance over which a high-energy electron loses all but 1/e of its energy by
bremsstrahlung). The value of δo according to equation 3.11 is accurate to 11% or better
for 10−3 < x/X0 < 100 [Beringer et al., 2012].

Multiple scatter interactions have additional consequences for measuring the tracks.
Since the electron loses energy along the track and consequently δo increases with de-
creasing energy, the average recoil angle becomes larger along the path. Furthermore, the
angular distribution approximation assumes that the electron will pass the material layer
completely. This is not thoroughly accurate for the interaction in the layer where the
Compton scattering occurs. Consequently, the e�ect of the Molière scattering is reduced
by up to 50% for the electron emerging from the conversion layer [Zoglauer, 2005] .

Inelastic collisions

Inelastic interactions de�ect electrons from their original path transferring energy to an
orbital electron mostly at low energies or emitting radiation in form of bremsstrahlung
that dominates above a few tens of MeV in most materials. When an electron undergoes a
collision with an orbital electron, the Coulomb interactions result in ionisation and excita-
tion of the absorber atoms. The incident electrons can transfer a considerable amount of
energy to an inner-shell electron. Subsequently, the electron is ejected. The mass collision
stopping power can describe the energy losses due to these inelastic interactions:
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Scol
ρ

=
1

ρ

(
dEk
dx

)
col

(3.12)

here, dEk
dx

represents the kinetic energy lost by the electron per unit path length.
Bremsstrahlung is emitted due to the acceleration caused by the electrostatic �eld of the

atoms. The electron, while passing near a nucleus, may su�er de�ection and acceleration,
which result in velocity changes. Therefore, the electron may lose all or part of its kinetic
energy in the form of X-rays with a continuous spectrum from zero to the maximum kinetic
energy of the incident electron. The acceleration is proportional to Z/m, where m is the
mass of the moving particle, while the intensity of the produced radiation is proportional to
(Z/m)2. The direction of photon emission depends on the energy of the incident electron.
As the kinetic energy increases, the direction becomes increasingly forward peaked.

3.3 Prompt gamma detection devices

PG detection systems can be divided in PG collimated and integrated yields counting
devices [Krimmer et al., 2018].

3.3.1 Integrated yields counting systems

Prompt gamma timing

PG timing is based on the physical fact that particles traversing tissue require a �nite
transit time (about 1-2 ns) until stopping in the target. This time is range dependent
causing a measurable e�ect, which can be used for range assessment. The idea was origi-
nally proposed by Golnik et al. [2014] being experimentally tested in the irradiation of a
graphite target with a 150 MeV proton beam. Shifts in the PG timing spectra were visible
using a cylindrical GAGG:Ce (cerium-doped Gd3Al2Ga3O12) scintillator for di�erent target
positions (c.f. �gure 3.8). Similar results were obtained for varying the proton beam range
from 2.0 to 17.0 cm. Based on MC studies, the feasibility of PG timing in inhomogeneous
targets was also con�rmed [Golnik et al., 2014].

Range di�erences of 2.0 mm were resolved in the �rst experimental test with heteroge-
neous phantoms based on the timing distributions of 1010 protons. For less statistics the
minimum detected range shift was not exceeding 5.0 mm [Hueso-González et al., 2015].
Regardless of these promising results, PG timing encountered some considerable limita-
tions. First, the radio frequency signal (used as a time reference) was found to be unstable
on a long-term time scale causing drifts in the same order of magnitude as the proton
range shift. Moreover, the detector must be capable of handling the high acquisition rates
expected in a clinical treatment fraction and accurate models should be implemented to
obtain a quantitative measurement of the particle range [Pausch et al., 2016]. Nevertheless,
many of these obstacles can be overcome and several e�orts are ongoing to improve the
method and translate it to clinical scenarios.
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Figure 3.8: A graphite target (ρ = 1.7 g/cm3) was irradiated with a 150 MeV proton beam at
three di�erent positions as depicted on the left. The measured PG timing spectra at A, B and C
are shown together with the corresponding modelled data (solid line) on the right [Golnik et al.,
2014].

Prompt gamma peak integral

The peak integrals of PG time-of-�ight (TOF) distributions were exploited by Krimmer
et al. [2017] to detect deviations in proton therapy treatments. An a�ordable and inde-
pendent monitoring system was implemented in order to retrieve the TOF information
providing a reliable way to discriminate the PGs produced in the beam line from those
generated in the target [Krimmer et al., 2017].

Test experiments were performed by irradiating a homogeneous PMMA phantom with
65 MeV protons at a clinical cyclotron. Cerium-doped LaBr3 and BaF2 scintillator detectors
measured the PG rays using a dedicated data acquisition readout. External signals (as the
accelerator radio frequency or a beam monitor) were established as the time reference for
the TOF determination and the modulator wheel was used to modify the proton range
inside the target [Krimmer et al., 2018]. Measurements showed that PG peak integrals
are sensitive to variations in the registered prompt gamma ray counts. This fact can be
translated in the detection of 3.0 mm range shifts in PMMA for 108 incident protons with
detectors covering a solid angle of 25 msr. However, the prediction of the expected PG
signal must be integrated into the treatment planing system and improved and fast MC
techniques able to calculate the distributions for real patient data are required [Krimmer
et al., 2017].

Prompt gamma spectroscopy (PGS)

The PG spectroscopy technique veri�es the proton beam range by comparing the mea-
surements of discrete PG emission lines with a model, which uses experimental nuclear
reaction cross sections [Verburg et al., 2012]. Di�erential cross section measurements were
performed by Verburg and Seco [2014] using a cerium-doped LaBr3 crystal actively shielded
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with BGO crystals. Additionally, the scintillator detector is placed behind a lead shield-
ing. Di�erent phantoms were irradiated at a clinical cyclotron and shifts in the range were
introduced by adding plastic slabs in the beam path. The detection system is capable of
performing energy- and time-resolved PG ray measurements as depicted by the histogram
in �gure 3.9a [Verburg and Seco, 2014]. In addition, �fteen di�erent PG emissions from
proton-nuclear interactions with 12C and 16O were measured and �tted to modelled yields
from optimized cross sections (cf. �gure 3.9b). With this information, the target composi-
tion can be retrieved. A proper correlation between the measured gamma counts and the
proton beam range enables an accurate method for the detection of relative range shifts
[Verburg and Seco, 2014].

(a) (b)

(c)

Figure 3.9: Measured energy- and time- resolved PG emission histogram for a H2O phantom
irradiation (�gure 3.9a). Data measured for the cross section optimization is depicted in �gure
3.9b for the same scenario and the lines represent the �tting to model calculations. For the
detection of relative range shifts, the total PG counts around the position of the Bragg peak are
measured with and without plastic slabs along the beam path. The range di�erence is identi�ed
as the shift between the two curves (�gure 3.9c) [Verburg and Seco, 2014].
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3.3.2 Collimated systems

Pinhole/knife edge cameras

High energy PGs can be detected applying the same principle as an optical pinhole camera.
A proof of principle study was performed by Jong-Won [2009] using a CsI(Tl) scintillation
detector behind a pinhole aperture located at the end of the range of a 50 MeV proton beam
hitting a water target. Since for range monitoring the meaningful information is contained
in the PG distribution pro�le, a relatively simple detector combining a gamma camera and
a knife-edge-shaped slit placed perpendicular to the beam direction might provide one- or
two-dimensional information about the PG production inside the target [Bom et al., 2012].
The �rst knife-edge camera prototype consisted of the HiCam gamma camera and a 1.0 cm
thick LYSO crystal with a slit collimator [Smeets et al., 2012]. The system was built by the
company IBA in collaboration with Politecnico di Milano. The geometry was optimised
by performing an extensive MC study. The �rst test for homogeneous targets established
the feasibility to detect 1.0-2.0 mm range deviations with doses around 25 cGy for 100
and 160 MeV protons [Smeets et al., 2012]. In order to improve the counting statistics
and the photon-detection e�ciency, a second generation of the prototype was built using
LYSO scintillator slabs read by silicon photomultipliers. For PG pro�les measured for
homogeneous targets, a precision of 4.0 mm (2σ) was achieved applying an energy window
of 3-6 MeV [Perali et al., 2014]. In contrast, low-density regions inside inhomogeneous
tissue-equivalent targets required at least 7.0 mm penetration depth beyond the air cavity
for reliable detection [Priegnitz et al., 2015]. The knife-edge shaped slit camera operation
is based on a spot by spot range measurement and the feasibility for detecting range mixing
whilst traversing lateral inhomogeneities was demonstrated in high weighted spots (∼ 108

protons) by analysing the distal edge slope of the PG pro�les [Priegnitz et al., 2016].
The �rst clinical implementation of this PG monitoring technique was using a proto-

type of the knife-edge shaped slit camera during a proton treatment of a head and neck
tumour at OncoRay in Dresden, Germany [Richter et al., 2016]. Although the camera
was originally designed for pencil beam scanning, the measurements were performed using
passively scattered proton therapy. PG pro�les were measured during the course of the
treatment, i.e., seven consecutive fractions, detecting inter-fractional global range varia-
tions in the order of ±2.0 mm, which was in agreement with the information of control
CTs [Richter et al., 2016]. Figure 3.10 shows a picture of the camera trolley during the
proton treatment along with the (smoothed) measured PG pro�les for each one of the frac-
tions after background subtraction. A second clinical implementation was conducted by
Xie et al. [2017] in pencil beam scanning proton therapy for a brain cancer patient at the
University of Pennsylvania. The average shift was 1.0 to 2.0 mm, which is below the clin-
ical �xed distal margin of 5.0 mm. However, the retrieved measurement is sensitive to the
camera positioning, which means that the alignment should be performed with respect to
the patient along the beam direction rather than the beam isocenter. Clinical application
for more complex targets, which increases the di�culty of the spot by spot analysis and
the neighbouring pencil beam aggregation, remains to be explored. On the other hand, the
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technique still faces challenges, for instance device positioning, strength of the measured
signal and the data post-processing, which need to be overcome in order to acquire a key
role during the clinical treatment work-�ow [Xie et al., 2017].

(a)

(b)

Figure 3.10: Placement of the slit camera trolley during patient treatment (�gure 3.10a). The
net sum PG pro�les before (upper panel) and after (lower panel) background subtraction and
smoothing are depicted in �gure 3.10b. The grey area was used for automated shift detection
and fraction one was excluded due to the high grade of non-uniformity in the region of maximum
count rate [Richter et al., 2016].

Multi-slit camera

The multi-slit con�guration (cf. �gure 3.11) is based on detectors behind parallel slit colli-
mators placed perpendicular to the proton beam direction. Gammas produced in the target
should pass through the corresponding collimator slit for the counts to be registered. The
acquired PG distribution is correlated with the distal dose fall-o� location and knowing
the entrance position the proton range is obtained [Min et al., 2012; Krimmer et al., 2015].
Measurements of PG yields as a function of depth in the target have been conducted by
Pinto et al. [2015] using crystal scintillators and by Kelleter et al. [2017] using semiconduc-
tor detectors. Among the advantages of multi-slit cameras are the possibility to enlarge
the �eld of view to encompass the complete beam path in the target, good spatial resolu-
tion (allowing to retrieve the sharp distal fall-o�) compared with other detection systems
and no need of a reconstruction algorithm. However, inter-detector scattering might occur
causing blurred signals [Pinto et al., 2014].

Optimization techniques have been proposed in order to reduce the neutron background
and the e�ect of scattered prompt gammas in the detector system. The use of TOF
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[Biegun et al., 2012] enhances the performance of the technique by increasing the signal-
to-background ratio, which translates into an improved precision to resolve range shifts by
a factor equal to the square root of the background reduction [Roellingho� et al., 2014].

Figure 3.11: Schematic set-up of an array-type PG detection system using CsI(Tl) scintillation
detectors. The measured gamma distributions for proton beams of 80, 150 and 220 MeV are shown
on the right. The probability of neutron production increases with the energy of the protons.
However, the good correlation between the PG distribution and the proton dose is con�rmed [Min
et al., 2012].

3.4 Compton camera detectors

A Compton camera (CC) system is an assembly of two or more detectors capable of mea-
suring position and energy deposition for each interaction. By means of the Compton
kinematics, the direction of an incident gamma is restricted to the surface of a cone with
an aperture equal to the Compton scattering angle. The vertex of the generation is obtained
by intersecting multiple cones from the detector acquisition. A CC for medical imaging was
�rst proposed by Todd et al. [1974] and later investigated by Everett et al. [1977] using a
simpli�ed detector prototype with two segmented semiconductor layers. Simulations were
performed to study the sensitivity and resolution e�ects. CCs have emerged as a suitable
alternative for PG in vivo range veri�cation. In principle, 3D photon emission information
can be retrieved and the detection of gammas in the MeV range is favourable, because
Compton scattering is the dominant interaction process. Compared to collimated detec-
tors, the interaction probability is potentially improved by two orders of magnitude [Knopf
and Lomax, 2013] whilst the design can be much more simpli�ed due to the omission of
bulky collimators. The three basic con�gurations of CC detectors are presented in �gure
3.12.

A two-stage system is built with a low Z scatterer detector (cf. �gure 3.12a), where the
Compton scattering is intended to take place, and a high Z absorber detector, where the
gamma should be fully absorbed. Events can be discriminated by a coincidence time mea-
surement due to the clear separation of the individual interactions. However, ambiguities
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(a)
(b) (c)

Figure 3.12: Basic con�gurations of CC detectors. A classic two-stage CC con�guration (�gure
3.12a): a scatterer and an absorber component. Full absorption of events is required in order
to retrieve the complete information of the Compton interaction. An extension of this classical
concept (�gure 3.12b), where di�erent layers register multiple Compton scattering interactions for
one single gamma. On the other hand, the electron tracking con�guration (�gure 3.12c) consists
of several thin layers able to register the path of the recoil electron. Ideally, the original gamma
interacts in a thicker detector component and its initial direction may be completely determined
(θ represents the photon scattering angle, ϑ represents the total scattering angle).

in the calculation of the incident direction arise from the unknown initial gamma energy.
These limitations can be overcome using high photo-absorption cross section materials,
high statistics measurements and applying image reconstruction techniques. Two-stage
devices rely on the complete absorption of the gamma to determine its initial energy. This
lack of additional information to retrieve Compton events is translated in a poor intrinsic
measurement performance for gamma rays above 2 MeV [Takada et al., 2005] reducing
the applicability in range monitoring for proton therapy treatments. Therefore, medical
applications of two-stage CCs are limited to the localization of radioisotopes.

A second group of CC detectors consists of at least three stages, which may detect more
than one Compton interaction per incident gamma (cf. �gure 3.12b). Redundant informa-
tion can be used and full absorption is no longer required for the image reconstruction. A
detailed explanation of how the events are retrieved with this approach is given in chap-
ter 4. Di�erent research groups have proposed three-stage CCs to measure secondary PG
radiation during proton therapy treatments, for example Richard et al. [2009] and Solevi
et al. [2016].

In contrast, detectors designed as depicted in �gure 3.12c are additionally capable of
measuring the direction of the recoil electron. This provides information about the total
scattering angle that, combined with the photon scattering angle, restricts the origin of the
incoming gamma to an arc segment (details on the calculation are presented in chapter 4).
The segment length is going to be determined by the accuracy of the track reconstruction.
For proton range veri�cation, gaseous detectors developed for the detection of cosmic and
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atmospheric gamma rays have been tested [Takada et al., 2005] with 140 MeV protons
impinging on a water target. Despite the good correlation of the measured PGs with the
Bragg peak [Kurosawa et al., 2012], this approach is limited by the low e�ciency. Among
other alternatives, tracking detectors combining semiconductor and scintillation materials
have also been investigated.

3.4.1 Investigated detector con�gurations

Two di�erent CC con�gurations are studied and discussed in this thesis. The LMU proto-
type, a project pursued within the MAP (Munich-Centre for Advanced Photonics) Cluster
of Excellence, was designed as electron tracking con�guration in order to build a tool for
proton range veri�cation. The detector is still in a development stage; therefore, aspects
related to a better understanding of the design, the involved physical processes and the
potential imaging capabilities are assessed in the next chapters. In contrast, the Polaris-J
CC, which has been developed by H3D Inc. for the group of Prof. Polf at University of
Maryland, retrieves events by means of the gamma tracking con�guration. The detector
includes four di�erent stages allowing the detection of double and triple scatter events.
Di�erent experimental scenarios have been tested ([McCleskey et al., 2015; Polf et al.,
2015; Draeger et al., 2018]) proving the feasibility to detect secondary PGs for proton
range veri�cation in potential clinical scenarios. The patent of the detector is currently
pending [Polf et al., 2017] and clinical implementation is envisaged in the near future. A
quantitative comparison study involving the two CC con�gurations is presented in chapter
6 including also di�erent image reconstruction algorithms in order to evaluate the proton
range veri�cation capabilities in di�erent irradiation scenarios.

LMU prototype

The CC prototype was designed based on previous simulation studies [Lang, 2015] in order
to achieve a con�guration that allows electron tracking capabilities. The tracker consists
of a stack of six double-sided silicon strip detector (DSSSD) (cf. �gure 3.13 left) with each
layer having an active area of 5.0×5.0 cm2 and a thickness of 0.05 cm. Individual layers
are separated by 1.0 cm. In addition to the suitability of low Z materials for Compton
scattering and reduced Doppler-broadening, good energy and position resolution of the de-
tector components are required. Each layer has 128 orthogonal strips corresponding to p-
and n- side (0.39 mm pitch size), which determines the interaction position. Furthermore,
the detector is characterized by a high resistivity (>10 kΩ) maximising the detection of
low-energy depositions due to the small leakage current. A detailed explanation of the ex-
perimental characterisation and performance of the strip detectors is presented in Liprandi
[2018]. In the standard con�guration a monolithic LaBr3:Ce scintillator with an active area
of 5.0×5.0 cm2 and 3.0 cm thickness acts as the absorber component of the CC (cf. �gure
3.13 right). The signal is read out by a 256-fold segmented multi-anode photomultiplier
tube (H9500 PMT, Hamamatsu 16×16 segments, each one 3.0×3.0 mm2) providing a sum
signal, extracted via the �sum dynode� output. LaBr3:Ce exhibits advantageous proper-
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ties with respect to other commonly used scintillators in terms of energy resolution and
timing with a decay time of τ = 17 ns and a light yield of LY=63000 ph/MeV. The time
resolution was determined as 273 ps (FWHM) and 536 ps (FWHM) with re�ective and
absorptive coating, respectively, using a 60Co source and the relative energy resolution is
∆E/E ∼ 3.8 % (FWHM) at 662 keV [Aldawood et al., 2015]. The possibility to �le several
modules increasing the �eld-of-view at larger sizes is an additional justi�cation for future
implementations at a real clinical scale. Intrinsic radioactivity of the lanthanum halide
scintillator family is a priori one of the major drawbacks of the detector. In this case,
the measured activity was 1.6 Bq/cm3 becoming a limiting factor in low background mea-
surements; even though the e�ect can be exploited for energy calibration purposes. The
interaction positions within the detector and the overall spatial resolution is determined
through the k-Nearest-Neighbor (kNN) algorithm, which uses previous calibration mea-
surements to derive the coordinate of an interaction. The good performance achieved in
monolithic crystals is hampered by the high computational cost and the need of extensive
calibration measurements. The complete description and commissioning of the absorber
component for our CC can be found in Aldawood [2017].

Figure 3.13: Components of the LMU CC detector prototype. The left side shows the scatterer
array consisting of six DSSSDs separated by a distance of 1.0 cm with the connectors attached
to the side in order to read out the electrical signals of the p and n sides. The LaBr3 scintilla-
tor attached to a 256-fold multi-anode photomultiplier (PMT) is shown on the right side, four
neighbouring segments are combined to form 64 output signals. Courtesy of Silvia Liprandi, LMU.

Polaris-J

Four cadmium zinc telluride (CZT) detector stages make up the CC prototype Polaris-J
(cf. �gure 3.14 left). The material was selected due to its high cross section for Compton
scattering and photo-absorption in the �rst and second interaction, respectively [McCleskey
et al., 2015]. Each detector module contains four pixelated (11×11) CZT blocks (cf. �gure
3.14 right): two stages have an active volume of 2.0×2.0×1.5 cm3 and the other two
2.0×2.0×1.0 cm3. The achievable spatial resolution is 1.5 mm in the xy plane and less
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than 1.0 mm in depth using a pulse height and shape analysis of the anode signals [Polf
et al., 2015]. The detector con�guration is coupled by a synchronization coincidence timing
module and the events are registered within a �xed time window of 1.5 µs [McCleskey
et al., 2015]. Triggering all the read-out and resetting all stages of the CC takes about 100
µs. However, since the read-out does not discriminate between single and multiple pixel
events, an acceptance �ltering is applied to the measured data. First experimental studies
[McCleskey et al., 2015] showed a relative energy resolution of ∆E/E ∼ 1.5 % (FWHM)
for the 662 keV line from 137Cs and the position resolution for the reconstructed point
source was about 2.0 mm. The raw e�ciency (interaction registered in the measurement)
was 2.2×10−5 for double and 5.8×10−7 for triple scatter events, using measurements of
gammas from a 60Co source.

Figure 3.14: Polaris-J set-up. Modules are labelled from 1 to 4 and the coincidence module ap-
pears as SCT. The black square indicates the position of the CZT crystals inside the aluminium
housing. On the right, a close up of the interior of one detector module attached to the mother-
board by �ne pitch connectors is shown. The total sensitive area is 4.0×4.0 cm2. Adapted from
McCleskey et al. [2015] and [Zhang et al., 2007].
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�The nature of the human mind is such that unless it is

stimulated by images of things acting upon it from without,

all remembrance of them passes easily away.�

Galileo Galilei

4
Data acquisition & Image reconstruction

The CC measurement acquisition is just the �rst step of the PG imaging work-�ow. Since
most PG detectors are still in development stage facing di�erent challenges, the amount of
available experimental data is limited. In order to study and optimize the design as well
as to evaluate the imaging capabilities of a speci�c con�guration extensive MC simulations
are required. In this work, Geant4 [Agostinelli et al., 2003] (standing for GEometry ANd
Tracking) was used to simulate not only the PG generation but also the detection process
due to the capabilities of the algorithms within the platform to model the passage of
particles and photons through matter. Moreover, information from the detection process
(either measurements or simulations) requires methods to convert initial raw data (energy
depositions and positions) into physical Compton event representations. Data analysis and
�ltering have been performed with the software package MEGAlib [Zoglauer et al., 2006],
which facilitates the use of a variety of independent routines in each step of the PG image
generation chain.

This �rst part of this chapter includes the description of the computational tools used
for the MC studies of the two di�erent CC con�gurations. Furthermore, a detailed expla-
nation of the reconstruction methods implemented to retrieve Compton events from the
raw data registered with the detectors is given. The second part is dedicated to the image
reconstruction algorithms, which are needed in PG imaging to invert the detection process
(experimental measurements or MC simulations) in order to determine the 3D distribution
of the PG emission. The state-of-the-art MLEM algorithm for CCs (section 4.3.1) is pre-
sented. Besides, an overview of a novel approach [Mackin et al., 2012] based on the SOE
method is reviewed in section 4.3.2.
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4.1 Monte Carlo simulations of Compton camera detec-

tion set-ups

Simulations were carried out using the object-oriented tool-kit Geant4 [Agostinelli et al.,
2003]. The code is written in C++ and the algorithms are based on the MC approach
consisting of the repetition of processes with randomised starting conditions or events.
Geant4 is characterised by the �exibility to work with various materials, geometries, physics
lists, event generators, visualisation and analysis. For the di�erent irradiation scenarios
presented in this study, the simulations were conducted with the version 10.02.p01 using
the QGSP-BIC-HP and Livermore physics lists for hadronic and electromagnetic processes,
respectively. For hadrons, this includes the use of the Geant4 Binary cascade for primary
protons of energies below ∼ 10 GeV, which better describes the production of secondary
particles in interactions of protons and neutrons with nuclei [Geant4, 2018]. On the other
hand, the electromagnetic physics list covers the low-energy gamma and electron interaction
processes including Doppler-broadening e�ects [Geant4, 2018]. The LMU prototype and
the Polaris-J CCs were modelled in Geant4 including the experimentally determined spatial
and energy resolutions.

The implemented in silico LMU detector geometry shown in �gure 4.1 consists of the
monolithic LaBr3(Ce) scintillation absorber crystal preceded by the array of DSSSDs, which
have a separation of 1.0 cm. The distance between the �rst layer of the tracker and the
centre of the absorber crystal is 10.0 cm. Each silicon layer has an active area of 5.0×5.0
cm2 and 0.05 cm thickness. The strip pitch size is 390 µm for a total of 128 strips per
side allowing for the determination of the x-y position for any interaction on the detector.
The relative energy resolution is set as ∆E/E = 5% (FWHM) at 140 keV for all layers
as a conservative value, since no experimental measurement was available. Trigger and
noise threshold are both 50 keV. For the LaBr3(Ce), on average, the position resolution is
0.30 cm for energy depositions of few MeVs (experimentally determined) and the energy
resolution was set as ∆E/E = 3.5% (FWHM) at 662 keV and ∆E/E ∼ 2% (FWHM) at
1.5 MeV [Aldawood, 2017]. Furthermore, the multi-anode PMT was not included in the
MC simulation; instead, an Anger system model was used to retrieve the position of the
interaction within the absorber detector module.

The Polaris-J geometry de�nition in Geant4 is depicted in �gure 4.2. Four aluminium
boxes containing the detector modules are aligned along the direction of the irradia-
tion. Each one includes an array of 2×2 CZT crystals. Two stages have crystal sizes
of 2.0×2.0×1.5 cm3, while the other two have 2.0×2.0×1.0 cm3, that are pixelated 11 x
11 on the anode side with a planar cathode. The position resolution is 0.15 cm for the
x- and y- directions and 0.10 cm in depth [McCleskey et al., 2015]. A Gaussian smearing
with σ=(0.006 + 0.15

√
(Edep)/2.3548) is applied to the energy depositions [Mackin et al.,

2013] in order to model the energy resolution of the CZT crystals.
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Figure 4.1: Implemented in silico detector geometry for the LMU prototype in Geant4. A water
tank is depicted in the target position as a reference. The beam direction is z.

Figure 4.2: Implemented in silico detector geometry for the Polaris-J CC in Geant4. A water
tank is depicted in the target position as a reference. The beam direction is z.

4.2 From hits to Compton events

Processed measured raw data are represented by hits, which contain the position and
energy deposition in the detector world coordinate system. Using the Compton sequence
reconstruction (CSR) algorithm implementation included within the MEGAlib software
package (version 2.31) [Zoglauer et al., 2006], data is combined into Compton events in
order to obtain meaningful data for the image reconstruction phase.

MEGAlib (�Medium-Energy Gamma-ray Astronomy library�) was developed as a tool
for the simulation and data analysis of low-to-medium gamma-ray Compton telescopes
used in astrophysics. The code was built in a very �exible way and designed as a set of
libraries written in C++ providing full functionality of the di�erent data-analysis classes,
separately. The Revan (�Real event analyser�) library [Zoglauer et al., 2008] includes algo-
rithms for the identi�cation of the original interaction process such as Compton scattering
using information of the individual hits. As a result, events with the associated kinematic
parameters are obtained, i.e., energies and directions of the scattered photon and recoil
electron. Additionally, the probability that the event actually happened is calculated.
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4.2.1 Compton sequence reconstruction

The classical approach of the CSR algorithm retrieves the true origin of the initial photon
by analysing all possible permutations of the recorded detector interactions. A quality
factor (probability) is assigned to each permutation, and the best one is chosen as the event
sequence; afterwards, the kinematic parameters are computed. Measurements registered
by CCs are distinguished in three event types:

Two site interactions -single photoabsorption-

Two hits in two separated detector planes due to a single Compton scattering are registered
with their corresponding energy deposition and position. The available information only
allows the retrieval of fully absorbed events, where Ei = E1+E2 being E1 and E2 the energy
losses in the detectors. From the positions, the direction of the scattered gamma can be
obtained, and the Compton angle is computed according to equation 3.2.

Multiple Compton scattering events -Gamma tracking-

Gamma tracking takes advantage of the redundant information measured in the CC de-
tector during a single event to determine the most likely sequence and total energy of the
interaction. A photon with initial energy Ei interacts at N di�erent sites of the detector
depositing energy at each position ~ri. In general, N-1 interactions assumed to be Compton
events followed by an Nth �nal photo-absorption cause N ! possible paths, which have to
be evaluated. In principle the photo-absorption is not required, because three or more
interactions are enough to compute the energy of incompletely absorbed events.

For the triple Compton scatter events in the Polaris-J, six permutations of interactions
must be evaluated to identify the correct sequence. The incident energy of the photon
must be determined [S.E Boggs and P. Jean, 2000]:

Ei = E1 + E2

√
(E2)2 + 4E2mec2

1−cos θ2

2
(4.1)

where E1 and E2 are the energy depositions for the �rst and the second interactions, re-
spectively. θ2 is the scattering angle of the second Compton event, which can be calculated
via geometry (θgeo2 ) or energies (θkin2 ):

cos θkin2 = 1 +mec
2

(
1

E2

− 1

E2 + E3

)
(4.2)

cos θgeo2 =
~rg1 · ~rg2
| ~rg1| | ~rg2|

(4.3)

here E2 and E3 are the energy depositions for the second and the third interaction, ~rg1 is
the vector between the position of �rst and the second interaction and ~rg2 is the vector
between the position of the second and the third interaction.
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Using the Compton equation 3.2, the expression for the photon scatter angle (via kine-
matics and geometry) is as follows:

cos θ = 1 +mec
2

(
1

Ei
− 1

Ei − E1

)
(4.4)

A correct permutation, in an ideal scenario, exhibits identical values of θgeo and θkin.
However, uncertainties due to the �nite energy and spatial resolution of the detectors as
well as Doppler broadening determine the e�ective width of the event annulus [S.E Boggs
and P. Jean, 2000]:

δθ = θkin − θgeo (4.5)

The value of δθ establishes a selection criteria for the determination of the correct sequence
using the redundant Compton scatter information.

A generalised χ2 approach was applied in order to �nd the correct order of the sequences
[Zoglauer, 2005]. Thus, the calculated quality factor Qc,classic (�gure-of-merit) describes the
plausibility of a particular sequence as an accurate and ordered Compton event:

Qc,classic =
(cos θkin − cos θgeo)2

∆ cos2 θkin + ∆ cos2 θgeo
(4.6)

where ∆ cos θkin and ∆ cos θgeo are the measurement uncertainties modelled using a Gaus-
sian error propagation. Small values of Qc,classic represent sequences which are more likely
corresponding to actual Compton events for completely absorbed photons, although the
incomplete absorption arises the quality factor. A good event selection accepts events be-
low a certain Qc,classic value, providing a method for e�ective discrimination between the
real events and background measurements.

Two site events with track -electron tracking-

Electron tracking events rely on the measured path of the recoil electron to calculate the
incident direction of the original photon exploiting the redundant information given by the
total scatter angle. A desired downward tracked event in the LMU CC prototype consists
of at least two interactions in the tracker stack (DSSSD layers) (by the recoil electron) and
a subsequent interaction in the absorber component (by the scattered gamma). The total
scatter angle, which is the angle between the direction of the scattered gamma and the
direction of the recoil electron is determined by kinematics:

cosϑkin =
(
∑6

i=1Ei)(EAB −mec
2)

EAB

√
(
∑6

i=1 Ei)
2 + 2(

∑6
i=1Ei)mec2

(4.7)

where Ei is the energy deposited in layer i and EAB the energy deposition in the LaBr3.
The geometrical computation of the total scatter angle is given by the electron track ~re
and the direction of the scattered gamma ~rg:
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cosϑgeo =
~rg · ~re
|~rg| |~re|

(4.8)

The calculation of ~re is not straightforward and involves a two-step process: �rst, the
identi�cation of all possible tracks and second, a selection of the one that is most likely.
A detector-independent �gure-of-merit approach developed by Zoglauer [2005] was imple-
mented for the retrieval of the LMU CC tracking events. The method suggests the use of
the covariances for Edep (�rst energy deposition by the recoil electron) and ∆α (angular
deviation from layer to layer) with the hit ID i along the track [Zoglauer, 2005]:

cov(Edep, i) = Edep · i− Edep i (4.9)

cov(∆α, i) = ∆α · i−∆α i (4.10)

The correct sequence corresponds to positive values of both covariances indicating that
an increase in the hit number is correlated with an increase of the scatter angle α or the
energy deposition Edep. The �gure-of-merit used in this work for combining the covariances
into a dimensionless quantity is the Spearman-Rank correlation, which assumes a mono-
tone association between the variables [Zoglauer, 2005]. The Spearman-Rank correlation
coe�cient is de�ned as follows:

rrank = 1− 6D

N3 −N
(4.11)

where D is the sum of the squared di�erences of the ranks of Edep and ∆α with i respec-
tively:

D(Edep, i) =
N∑
n=1

(Rank(Edep)−Rank(in))2 (4.12)

D(∆α, i) =
N∑
n=1

(Rank(∆α)−Rank(in))2 (4.13)

When rrank has a value of 1, the relation between associated values is valid. In contrast,
zero describes a very weak correlation. The quality factor based on the probability of a
particular track sequence is given by [Zoglauer, 2005]:

Qe,Rank = 1− 2 + rRank(Edep, i) + rRank(∆α, i)

4
(4.14)

Good tracks have quality factors around zero due to the normalization of the values. The
di�erence between the total scatter angle ϑ as calculated by kinematics and geometry can
establish a selection criterion in order to discriminate badly reconstructed events:

δϑ = ϑkin − ϑgeo (4.15)

Since δϑ > 0 even for correct sequences due to the e�ects of Molière scattering, a reasonably
large tolerance in this value may be allowed.
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4.2.2 Event statistics

Simulations give access to information about statistics of the real interactions, which are
undergone in the detectors. The trigger conditions for true events are de�ned by at least
one recorded hit in the tracker and the absorber (LMU prototype) or at least two hits in
di�erent detector stages (Polaris-J). Point-like gamma sources within the expected energy
range of PGs emitted during a proton beam irradiation were considered and placed at the
origin of the coordinate system. Figure 4.3 depicts the distribution of interactions in the
detectors as a function of the incident photon energy.

Figure 4.3: Event type distribution as a function of the incident gamma energy for the interac-
tions where the primary particle is involved for the LMU CC (left) and the Polaris-J CC (right).
The label -First- refers to the �rst interaction of the inicident gamma and the label -All- includes
all the interactions occuring in the detectors.

Most detector interactions are Compton scattering even though the fraction decreases
with increasing incident photon energy. In contrast, the pair production cross section
increases (cf. �gure 3.7). The contribution of gammas undergoing photo-e�ect as �rst
interaction is negligible. For the studied energy range, the probability that original gammas
experiencing a Compton scattering event will eventually deposit all their energy within the
detector con�gurations is considerably low as shown by the fraction of all photoelectric
interactions (Photoelectric -All-). This could lead to ambiguities in the determination of the
total energy of those events. Perfect event retrieval was considered by using the interaction
information provided by the MC simulation and keeping the same trigger conditions as
previously introduced. Figure 4.4 shows the statistics of events relative to the total number
of triggers registered with the CCs presented in section 3.4.
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Figure 4.4: Distribution of perfect retrieved events with the LMU (left) and Polaris-J (right)
CCs. For the LMU prototype, Compton with track refers to events whose �rst and last interaction
in the tracker module belong to the recoil electron. On the contrary, for Compton w/o track events,
the electron track may not be retrieved. Double and triples interactions with the Polaris-J CC are
counted in di�erent detector stages. The percentages are calculated relative to the valid number
of triggers registered.

LMU prototype events are valid when the �rst hit (of the at least two hits ful�lling the
trigger condition) is within the tracker module. For energies from 2 to 6 MeV, around 35%
of the registered triggers correspond to interactions starting in one of the scatterer layers,
while the remaining fraction is due to gammas impinging �rst on the absorber module. A
breakdown of information relative to Compton interactions in the tracker exhibits a fraction
of untracked electrons that falls o� whilst increasing the energy of the initial gammas (from
24% at 2 MeV to 7% at 6 MeV). In contrast, the number of events with electron tracking
remains around 8% within the exploited energy range. This number was expected to be
higher, since the fraction of energy that is transferred to the recoil electron is increasing
with the photon energy and then most likely two hits in di�erent layers of the tracker are
registered. However, this e�ect is compensated by an overall decrease of the Compton
scattering probability. Valid events registered with the Polaris-J CC can be discriminated
as either two or three energy depositions, which correspond to a single mother particle.
The fraction of ideal double interactions, de�ned as a Compton scattering followed by a
full photo-absorption, is around 20%, while the fraction of triple interactions is higher but
decreasing for increasing energies.

In order to assess the performance of the CCs detector con�gurations in more complex
PG emission scenarios, a set-up using a reference proton beam irradiation was assumed.
It includes a water target irradiated by a 150 MeV proton pencil beam. A single spot of
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1×109 primaries was considered. The �eld-of-view of both detection devices was enlarged
for acquiring more data along the beam axis. The LMU modules and the individual stages
of the Polaris-J were simulated considering an increased �eld-of-view (three measurements
at di�erent camera locations along the beam axis) with a total area of 5×15 cm2 and
4×12 cm2, respectively. The detector devices were placed parallel to the proton beam
and centred at the isocenter, which is de�ned along the beam axis at the position of 5.0
mm proximal to the 80% distal dose fall-o�. The relative distances correspond to the
arrangements depicted in �gures 4.1 and 4.2. The absolute trigger e�ciency for the LMU
prototype was 5×10−4 and for the Polaris-J 3×10−3.

The bar plots shown in �gure 4.5 depict the statistics of a perfect event retrieval. For
the LMU prototype, Compton interactions are classi�ed into the tracked (electron) and
untracked categories and the fractions observed in �gure 4.5a are relative to the total
number of triggers. For the PG emission derived from the proton irradiation, the ideal
scenario indicates that mostly Compton interactions without electron track are measured.
Two e�ects can explain this. First, the triggered events consist of only two hits (one in
any of the layers of the tracker and one in the absorber component), which results in a
lack of information to generate electron tracks. Secondly, high energy gammas undergoing
Compton interaction result in high energy recoil electrons, because the fraction of energy
transferred from the photons to the Compton recoil electrons increases with the incident
energy. For instance, the mean energy of the recoil electron for an incident photon with
Ei= 4.44 MeV is Ee ∼ 0.6Ei. Consequently, a signi�cant fraction of electrons have su�cient
energy to pass through all the scatterer layers and interact with the LaBr3 crystal. These
interactions may cause ambiguities in the reconstruction of the electron track and a lack
of information to correctly retrieve not fully photo-absorbed events.

On the other hand, the events retrieved with the Polaris-J CC correspond to double
(Compton-Photoelectric) or triple (Compton-Compton-Anything) interactions originated
by the original gamma as observed in �gure 4.5b. The signi�cant fraction of two-interaction
Compton events might be explained by the low energy gammas (< 2 MeV) being detected.
Since the thick CZT detectors have depth resolution, the probability of photoelectric ab-
sorption in this energy regime is enhanced [Kroeger et al., 2002]. The fraction of three-
interactions events is around half of the double interactions due to the size of the detector
and the capability to produce three or more detectable interactions. If those events are cor-
rectly identi�ed, the total energy absorption is not required and the associated kinematic
parameters may be correctly computed.

4.3 Image reconstruction algorithms

Image reconstruction has been a considerable challenge since CCs were proposed for medical
applications. First attempts consisted solely of back-projecting event cones into a binned
image space with no additional considerations or data processing. While point-like sources
can be well located with back-projection methods, PG imaging for proton range veri�cation
requires a more sophisticated approach, which accounts for variations in the response of the
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Figure 4.5: Fraction of perfectly retrieved events for the virtually measured PG emission during
a proton beam irradiation of a water target with the LMU prototype in �gure 4.5a and the
Polaris-J in �gure 4.5b. The percentages are relative to the valid number of triggers in each of
the con�gurations and the error bars are estimated at 3σ around the mean value.

imaging system to more complex emission patterns and the uncertainty of the scattering
angle from event to event. Therefore, analytical or iterative algorithms have been proposed
for CC imaging.

Analytical methods mainly involve data projected onto spherical virtual detectors. Cree
and Bones [1994] developed an inversion formula which shows that by collecting all scat-
tering angles, the 3D source distribution can be recovered as the spatial extent of the
detector tends to in�nity. When using detectors of �nite extent, only limited-angle to-
mography is achievable. The methods described by Parra [2000] and Basko et al. [1998]
consider each element of the �rst detector to be at the centre of a spherical second de-
tector. The back-projected data is later expressed as spherical harmonics and the image
can be reconstructed using the inverse 3D transform. Despite the development of analyt-
ical inversion methods, they faced signi�cant limitations during the implementation, e.g.
drawbacks dealing with incomplete data. The photon attenuation cannot be incorporated
within the image. Furthermore, the existence of an analytical inverse does not guaran-
tee computational e�ciency, and the existence of a fast transform is mandatory. Finally,
some approaches encountered di�culties in constrain the reconstruction to lie within a
function space, which is appropriate to point-source distributions. Since realistic cases are
characterised by low counting statistics, extended sources of signal and incomplete angular
sampling, the analytic methods will perform de�ciently; therefore, the image reconstruc-
tion algorithms used in this work are restricted to iterative methods based on statistical
models of image formation.

Data space storage uses the list-mode representation [Barrett et al., 1997], i.e., the
measured attributes (for CCs: positions and energy depositions) are saved as a simple
list of individual events. This reduces the number of bins for each attribute making post-
processing of the data much more e�cient without any loss of information. However, the
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disadvantage is that the complexity and storage increases with the number of collected data.
Nevertheless, it currently represents the more advantageous approach for representing CC
data, hence the algorithms hereafter mentioned have list-mode capabilities.

4.3.1 Maximum-likelihood reconstruction algorithm

The application of the MLEM algorithm for the reconstruction of CC scattering images
was �rst proposed by Wilderman et al. [1998]. The goal of the method is the estimation
of the origin fj of the photons given the measurement yi from the CC detector.

Maximum-likelihood step

Since random coincidences (i.e., sequences in the same time window but corresponding to
more than one event) are ignored, the events are presumed to be independent and the time
between them is exponentially distributed. Thus, the detection process follows Poisson
statistics and the probability of observing yi for a given event index i is given by:

yi ∼ Poisson(yi)⇒ p(yi|f) =
yi
yi

yi!
e−yi (4.16)

where yi is the mean value of coincidence events. By simplicity yi can be expressed as the
mean number of photons emitted from the pixels j of the image times the probability that
this emission is measured with the parameters of the event i (the so-called response matrix
tij):

yi =
J∑
j=1

fjtij (4.17)

Assuming that every combination of measurements is independent, the likelihood func-
tion is described by:

L(y|f) =
N∏
i=1

p(yi|f) =
N∏
i=1

yi
yi

yi!
e−yi (4.18)

and the log-likehood is given by:

lnL(y|f) =
N∑
i=1

(
yi ln

(
J∑
j=1

tijfj

)
−

J∑
j=1

tijfj − ln(yi!)

)
(4.19)

The maximization of the likelihood is equivalent to �nding the maximum of the log-
likelihood function, which is obtained by setting the partial derivative (with respect to fj)
to zero:

∂ lnL
∂fj

= −
N∑
i=1

tij +
N∑
i=1

yitij
J∑
j=1

tijfj

(4.20)
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The sensitivity sj =
N∑
i=1

tij is the probability that a photon emitted from pixel j would

be detected. For the sake of simplicity, sensitivity values were assumed equal to 1 ∀ j in
this work.

Expectation maximization step

The expectation maximization step is an iterative procedure to compute the maximum
likelihood of f . The formulation of the expectation of the likelihood function is obtained
in terms of complete data, given the measurements yi and the image estimation f (l) from
the previous iteration l. Then, the likelihood is maximized with respect to f to obtain
f (l+1). The iterative procedure is performed until the algorithm converges.

A random variable zij, representing the emission at voxel j detected by the list-mode
entry i, is introduced in order to ful�ll the requirement of a complete data set for the ex-
pectation maximization step. The zi elements contain a single non-zero element, since one
emission can be detected by no more than one event. The relation between the detection
and the completed data is given by the response matrix tij.

Substituting the complete data in the log-likelihood expression 4.19, the expectation
of the likelihood is given in terms of the actual measurements and the current estimate of
the image f (l):

E
[
zij|yi, f (l)

]
= yi

tijf
(l)
j

J∑
j=1

tijf
(l)
j

(4.21)

Finally, the maximization step estimates the image f (l+1) and the reconstruction algo-
rithm results in the following iterative equation [Wilderman et al., 1998]:

f
(l+1)
j =

f l

sj

∑
i

tijvi∑
k tikfk

(4.22)

The initial guess f (0) is the back-projection of the acquired events. Compared to
the original formulation, equation 4.22 includes a visibility term vi, which represents the
probability that an event comes from the selected image space. For example, for small
image spaces and large cone sections, the only fraction of an event seen in the image is vi
[Zoglauer, 2005].

Response matrix for Compton camera imaging reconstruction

The response matrix tij (or system matrix) must model the detector geometry, the intrinsic
uncertainties of the measurement process as well as the physical phenomena of the interac-
tions. As described by Wilderman et al. [1998], the probabilistic description of the process
includes the following variables:

• E : Event detected by the CC
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• Ẽ : Real event (energy and position of interactions)

• M : Emission point of the photon

Thus, tij can be expressed as:

tij = p(yi|fj) =

∫
V

p(yi|M)p(M)χf (M)dV (4.23)

where p(M) is the probability of emission in the point M , χf = δ(M − M ′) is a delta
function which indicates if M is contained in the voxel fj and V is the de�ned image
volume.

If the resolution of the detector or intrinsic e�ects as Doppler-broadening were previ-
ously taken into account, p(yi|M) can be expressed as the sum of the probabilities of all
real events that can result in the measurement yi:

p(yi|M) =

∫
Ẽ

p(yi|ẽi)p(ẽi, |M)dẼ (4.24)

where p(yi|ẽi) is the probability that the measured yi corresponds to the real event ẽi.
Errors in the energy measurements, Doppler-broadening and spatial resolution of the

detectors lead to uncertainties in the Compton scatter angle θ. Furthermore, errors in the
electron path and recoil electron energy measurements are correlated with uncertainties in
the total scatter angle ϑ. Consequently, the probability p(yi|ẽi) was formulated as:

p(yi|ẽi) = p(∆θ)l(∆ϑ) (4.25)

here the probability density functions p(∆θ) and l(∆ϑ) follow a Gaussian distribution as
presented by Zoglauer [2005]:

p(θmeaskin , Emeas
i ) =

1√
2πσθ

e
−
(

1√
2σθ

)2

(4.26)

l(ϑmeaskin , Emeas
e ) =

1√
2πσϑ

e
−
(

1√
2σϑ

)2

(4.27)

The standard deviations σθ and σϑ were calculated using the energy depositions (Eg,
Ei) and the actual resolution of the detectors (∆Eg, ∆Ei):

σθ =
mc2

sin θ

√(
1

E2
g

− 1

(Ee + Eg)2

)2

(∆Eg)2 +
1

(Ee + Eg)4
(∆Ee)2 (4.28)

σϑ = cos−1((~rg × ~ri) ◦ (~rg × ~re)) (4.29)

A visual representation of the image response is depicted in the �gure 4.6. The pro�le
of the cone section (shown in �gure 4.6a) and for electron tracked events the length of
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the arc segment (shown in �gure 4.6b) represent the distribution of all possible true cones
and scatter planes for the measured event and/or electron track. The conical shapes were
normalized in such a way that the sum of all intensities contained in the image volume is
one.

(a) (b)

Figure 4.6: Measurement process modelling for the response matrix for CC image reconstruction.
The ring shape of the cone depends mainly on the energy measurements and the arc segment shape
on Molière scattering of electrons.

Computation of the second part of equation 4.24 has to consider the variables that
describe the complete photon path through the detector con�guration. A simpli�cation of
the model proposed by Wilderman et al. [1998] was implemented following the expression:

p(ẽi, |M) = K(θ, Ei)
cos(θg)cos(θM)

|−→rg |2|−→ri |2
δ

(
arccos

( −→rg−→ri
|−→ri ||−→rg |

)
− θ
)

(4.30)

where K(θ, Ei) is the Klein-Nishina coe�cient accounting for Compton scattering cross
section given by the equation 3.6, θM is the incident angle of the photon emitted at M , θg
is the polar angle of the Compton cone axis and the Dirac function takes into account that
the emission point M lies on the surface of the Compton cone de�ned by the event E .

4.3.2 Stochastic origin ensembles algorithm

The SOE algorithm is a MC Markow chain method that uses the Metropolis-Hastings
algorithm, which was �rst implemented for CC imaging by Andreyev et al. [2011]. The
method uses a set of origins of detected events, and the image is reconstructed considering
only a single representative point of the cone surface that is initially randomly selected
within the volume where the emission is produced.

Following the implementation of Mackin et al. [2012], every state s in the ensemble
Y is generated as a set of origins ~ri (representative points) of photons detected during
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the acquisition process. Those points are randomly selected on the surface of the cones
generating for each iteration an ensemble transition Ys→ Ys+1 governed by the acceptance
probability, where Ys and Ys+1 are subsequent states in the Markov chains. The algorithm
work-�ow is schematically described by the pseudo-code of �gure 4.7. This implementation
di�ers from the original algorithm of Andreyev et al. [2011], because the contribution of
the current representative point is removed from the probability density estimate for the
computation of p(~ri). Final images are generated by binning the 3D coordinates according
to the desired image resolution providing a way of ensuring a reliable comparison with the
reconstructions performed using the MLEM algorithm. Therefore, the resolution of the
�nal images was determined by the size of the voxels in the image volume.

The performance of the MLEM and SOE algorithms in the context of prompt gamma
imaging for range veri�cation is demonstrated through the reconstructions obtained for a
variety of irradiation scenarios in Chapter 6.
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Data: List-mode measured data
Result: 3D coordinates of expected prompt gamma emission
/* initialization arbitrary starting state Yo */

for i = 1 to N do
Picks a random origin ri on the surface of backprojected cones within the
image volume;
Fill 3D histogram to compute the probability density estimate Hj = p(x);

end
for n = 0 to max Iterations do

/* generate state Ys+1 */

for i = 1 to N do
event k = random event i in the list;
while event is equal to k do

new locations for state Ys+1 ;
random position within its own cone surface = βi ;
/* estimation of density probabilities */

p(βi) ← H;
p(ri) ← H;
/* acceptance probability */

A(Ys → Ys+1) ≈ min
(

1,
(
p(βi)+1
p(ri)

))
;

if event density increases then
/* new position is accepted */

ri = βi ;
/* probability density is updated */

p(ri) - 1/N ← H;
else

/* new position is rejected */

ri = ri ;
event k == 0;

end

end

end

end
/* save representative points and produce the image */

H is discarded;
image generation;

Figure 4.7: Pseudocode for the stochastic origin ensembles
reconstruction implementation [Mackin et al., 2012].
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LMU Compton camera performance





�There are two possible outcomes: if the result con�rms

the hypothesis, then you've made a measurement. If the

result is contrary to the hypothesis, then you've made a

discovery.�

Enrico Fermi

5
LMU prototype performance and imaging

properties

5.1 Spectral response

Energy or spectral response de�nes the capability of CCs to detect and identify photons in
the energy regime of interest. The detector prototype in our department was developed in
order to detect multi-MeV PG; in consequence, a benchmarking scenario in this energy re-
gion was generated taking into account the available experimental data. The measurements
were taken at the Tandetron accelerator of the Helmhotz-Zentrum Dresden-Rossendorf,
which allows for the generation of point-like emissions of mono-energetic gammas via the
proton capture reaction 15N(p, αγ4.439)12C by irradiating a TiN target with a low energy
(∼ 0.9 MeV) proton beam. Details of the measurement campaign and the description of
the experimental set-up are given in Aldawood [2017].

As in the experimental scenario, the detector acquisition for a mono-energetic point-
like gamma source of 4.44 MeV was simulated. For the LaBr3 absorber component, energy
resolution values were chosen in agreement to the extrapolation model obtained by mea-
surements at low photon energies (calibration sources) [Aldawood, 2017]. On the other
hand, the tracker module readout electronics were not able to provide a trigger signal at
the time of this measurement; thus, the simulation recorded as valid events those with at
least a deposition of energy in the absorber. Furthermore, these limitations made it di�-
cult to establish a calibration of the deposited energy in the DSSSD layers [Liprandi, 2018].
Therefore, the simulation results were used to provide a correlation between the channel
information and the actual energy deposition for the di�erent tracker layers. The experi-
mental detector response (energy deposition in the scatterers and the absorber component)
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is compared to the simulation results in �gure 5.1. Overall the measured spectral response
of the CC components was consistent with the simulation results. Well-distinguished high
energy peaks in the LaBr3 spectra (cf. �gure 5.1a) are associated with the 4.44 MeV photo-
peak of the 12C and the corresponding single and double escape peaks having a relative
energy resolution between 2.4% and 2.2% (FWHM), respectively.

(a)

(b) (c)

Figure 5.1: Spectral response of the LMU CC prototype for a 4.44 MeV point-like photon source.
The simulated and measured data are depicted together for the absorber component in �gure 5.1a:
photo-peak, single and double escape peaks are labelled as 1, 1′ and 1′′, respectively. For improved
visibility, the measured calibrated (�gure 5.1b) and the simulated energy deposition (�gure 5.1c)
in each layer of the tracker module are plotted separetely.



5.1 Spectral response 71

The calibrated measurements for the DSSSDs are depicted in �gure 5.1b. These values
were computed assuming a linear relation between the energy deposition E given by the
simulation and the channel number CH of the minimum and maximum value in the peak
region of the measured spectra:

E = m · CH + Eo (5.1)

with m=0.25 keV/channel and Eo= 86.1 keV. The comparison of simulated and calibrated
experimental data for the di�erent layers of the tracker component is shown in �gure 5.2.
The proposed calibration based on the spectral response of the �rst and the last layer is
consistent with the simulation results for all layers. However, a more sophisticated model,
which includes the measurement of calibration sources and considers the experimentally
determined energy resolution of the DSSSDs is required.

Figure 5.2: Energy deposition distributions for each layer of the tracker module for an incident
gamma energy of 4.44 MeV.

The energy deposition in the tracker shown in �gures 5.1b and 5.1c exhibits an incre-
ment of intensity towards the last layers due to the sequential chain of energy deposition
after the scattering of the primary photon. Nevertheless, the most likely deposition of
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energy per incident electron in each layer is around 140 keV. This behaviour is related to
the dependence of the energy deposition in the silicon layer on the energy of the recoil
electron. Most of the low energy electrons (below 500 keV ) are stopped within the silicon
layers depositing all their energy. At medium energies (0.5-2 MeV), a notable increment
in the energy deposition is observed; however, at higher energies the minimum ionising
character of the electrons begins to appear and the ionisation losses are becoming weakly
dependent of the momentum. Bremsstrahlung also contributes to the energy loss of elec-
trons. The so-called critical energy is the energy for which the loss rates (ionisation and
bremsstrahlung) are equal and it is approximated 53 MeV for electrons in silicon [Berger
and Seltzer, 1964].

5.2 Angular resolution measurement

The angular resolution measurement (ARM) of a CC detector is given by the di�erence
between the geometrical scattering angle (angle between the initial direction and the scat-
tered gamma) and the Compton scattering angle computed via kinematics (equation 3.2):

ARM = arccos(~ri ◦ ~rg)− θkin (5.2)

The calculation is based on the actual direction of the incident photon ~ri and the
direction of the scattered gamma ~rg that is determined from the position of �rst and
second interaction in the detectors. In other words, the ARM is considered as the smallest
angular distance between the known origin of the gamma and the Compton cone. If the
real origin lies inside the cone, the ARM value is negative, meaning that the photon was
not fully absorbed, while positive values are an indication of incompletely absorbed recoil
electrons [Zoglauer, 2005].

A large data sample of Compton events is statistically required to obtain a meaningful
distribution of ARM values in order to characterise the directional accuracy of the recon-
structed events. The FWHM of this distribution determines the average uncertainty in the
opening angle of the cone for retrieved Compton events.

In order to characterise the angular resolution of the LMU CC prototype, the ARM
distributions of �ve di�erent point-like sources with energies between 2 and 6 MeV were ob-
tained using MC simulations. For the computation, kinematically correct Compton events
were selected assuming a known source energy Ei, i.e., the initial energy of reconstructed
events must correspond to an energy window of ±5% around the known source value. Ad-
ditionally, at least 50000 events were included in the calculation of the distribution in order
to guarantee statistically signi�cant results. A Voigt �t [Takeda et al., 2007] was used to
determine the FWHM of the distribution. This consists of a convolution of a Gaussian
and a Lorentzian pro�le. The corresponding ARM distributions are shown in �gure 5.3.

In general, the obtained ARM distributions tend towards positive values and the peak
is slightly moved by ∼ 0.2◦ out of the centre, which may be caused by the inherent detec-
tor position resolution. A strong background contribution beyond 10◦ becomes visible for
increasing energy due to incorrectly reconstructed events. Incomplete absorption of recoil
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electrons could explain this e�ect in events retrieved by the CSR approach. At higher
energies the fraction of energy transferred to the recoil electron increases from ∼0.5Ei for
2 MeV to ∼0.65Ei for 6 MeV and as the electron is not completely stopped inside the
tracker, the event reconstruction has limitations recovering the correct kinematic param-
eters. Therefore, the ARM values (FWHM of the Voigt �t) summarised in table 5.4 are
degraded for high energy photons despite the slightly better position and energy resolution
of the detector. In contrast, considering the perfect event retrieval, the ARM value is 2.8◦

± 0.2◦ and it is almost independent of the incident energy, since the determined position
and energy resolution are roughly constant.

Figure 5.3: ARM distributions of reconstructed events for point-like sources from 2 MeV to 6
MeV obtained from MC simulations of the LMU prototype detector. Knowing the position of the
initial source, the ARM values are mainly determined by the performance of the CSR algorithm.
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Figure 5.4: Angular resolution measurement as function of the photon source energy obtained
via the MC simulation framework.

5.3 Compton sequence reconstruction performance

Data obtained from the simulation model of the LMU CC prototype, which includes the
experimentally determined detector energy and position resolutions, were evaluated using
the event reconstruction approach previously introduced in section 4.2.1. Interactions from
the MC simulation were compared with the events retrieved by the CSR in order to quantify
the error in the estimation of the initial photon energy and the Compton (scattering) angle.
Therefore, two di�erent set-ups were investigated.

Point-like source reference set-up

A mono-energetic gamma source of 4.44 MeV is placed 5.0 cm from the surface of the
�rst DSSSD layer. Gamma rays were isotropically emitted. The detection e�ciency was
2×10−2 without any selection other than the trigger condition, i.e., at least one deposition
of energy in the tracker and one in the absorber. The CSR algorithm retrieved 64% of
events of the total number of Compton interactions. However, 20% of the retrieved events
were false positive. The analysis of the quality of reconstructed (real) Compton events was
performed by computing the di�erence between the estimated kinematic parameters and
the actual interaction values. The obtained absolute error distributions are shown in �gure
5.5. It seems that most kinematic parameters are underestimated by the reconstruction
method. In fact, only a small portion of events is retrieved with the corresponding known
source energy. The di�erence is caused by an underestimation of the recoil electron energy
while the energy of the scattered gamma is mostly overestimated. Table 5.1 summarises
the mean and median values of the absolute error distributions depicted in �gure 5.5. The
recovered energy of the recoil electron is visibly smaller than the actual value, thus a notable
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impact on the calculation of the scattering angle can be observed. This suggests that high
energy electrons are not stopped inside the tracker, causing an incorrect energy prediction.
A closer look at the particle trajectories of real interactions reveals that a considerable
fraction of recoil electrons reaches the LaBr3 detector and the algorithm associates this
energy deposition with the corresponding scattered gamma.

Figure 5.5: Comparison of the absolute error distributions of the estimated kinematic parameters
for a 4.44 MeV point-like gamma source. The scattering angle (θ) was computed via the Compton
kinematics using the corresponding energies. For normalization, the area under the histogram is
equal to one. Median and mean values are marked by a vertical line and the cross inside the box,
respectively. The box encloses the �rst and the third quartile.

Parameter µ x̄

∆ Ei −1.75 MeV −1.55 MeV
∆ Eg +0.99 MeV +1.12 MeV
∆ Ee −2.75 MeV −3.03 MeV
∆ θ −45.0 deg −38.0 deg

Table 5.1: Mean (µ)and median (x̄) values of the absolute error distributions for a 4.44
MeV point-like gamma source.
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Nevertheless, prior information can be included in the CSR in order to optimize the
performance. An energy window �ltering was applied by selecting retrieved events, which
have initial energy within±5% of the known source energy. The absolute error distributions
when applying the aforementioned selection criteria can be found in �gure 5.6 and table
5.2 summarises the corresponding mean and median values. The retrieval of the Compton
kinematic parameters was noticeably improved in comparison with the values reported in
table 5.1, despite the limited amount of events for the image reconstruction. Furthermore,
80% of the events within the selected energy window correspond to electrons, which were
stopped before reaching the scintillator crystal.

Figure 5.6: Comparison of the absolute error distributions of the estimated kinematic parameters
for 4.44 MeV point-like gamma source applying an energy selection �lter of ±5%. For normal-
ization, the area under the histogram is equal to one. Median and mean values are marked by a
vertical line and the cross inside the box, respectively. The box encloses the �rst and the third
quartile.

H2O phantom reference set-up

The CSR reconstruction analysis was performed on the data virtually acquired by the
LMU detector for the reference proton beam irradiation set-up introduced in section 4.2.2.
The detection e�ciency was 1.8×10−3 assuming the same trigger condition as for the
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Parameter µ x̄

∆ Ei −0.11 MeV −0.05 MeV
∆ Eg +1.21 MeV +0.04 MeV
∆ Ee −1.29 MeV −0.18 MeV
∆ θ −13.0 deg −13.2 deg

Table 5.2: Mean (µ) and median values (x̄) of the absolute error distributions for a 4.44
MeV point-like gamma source applying an energy selection �lter of ±5%.

mono-energetic point-like source. An additional energy window of [2.0 MeV, 6.5 MeV]
was applied to the reconstructed events. This selection has been shown to provide a good
correlation between the distal dose fall-o� and the PG pro�le by rejecting 511 keV photons
and secondary neutron interactions in the CC [Polf et al., 2015]. The fraction of triggers
identi�ed and retrieved as Compton events by the CSR was around 10% even though one
third of them did not correspond to real Compton interactions.

Absolute error distributions depicted in �gure 5.7 suggest that to some extent the
inferred events do not correspond to the correct kinematic parameters. Consistent with
the mono-energetic point-like scenario, Eg (energy of the scattered gamma) is overestimated
while the initial Ei and recoil electron energy Ee are underestimated with respect to the
real interactions. Compton scattering angle error estimations are appreciably high (in
some cases up to 100◦), which can be associated to poor quality image reconstructions
due to errors in the aperture of conical sections. Table 5.3 lists the mean and median
values of the absolute error distributions. As anticipated by the results of the mono-
energetic source (without energy selection), the energy of the recoil electron is noticeably
smaller for the reconstructed Compton events. The mean absolute error µ∆Ee= -2.76 MeV
is nearly equal to the mean energy transferred to recoil electrons (as deduced from MC
simulation). It is evident that in this scenario many electrons may have su�cient energy
to escape the DSSSD stack and interact with the LaBr3. Indeed, around 40% of the
reconstructed events correspond to interactions where recoil electrons deposit a fraction
of their energy in the absorber module. For these events, the kinematics are consistent
and the CSR algorithm tends to associate the corresponding energy depositions with the
scattered gamma; consequently, the energy deposition in the tracker (around 140 keV per
layer) is assigned to the recoil electron.

Those results indicate that modi�cations of the trackers as well as in the electron
tracking retrieval algorithm must be considered in order to correctly identify high-energy
electron tracks. Moreover, the fraction of Compton interactions among the triggers has
to be increased by improving the detector e�ciency. A potential upgrade must demand
a high Compton scattering probability for the tracker component; furthermore, it should
guarantee that electrons will be capable of passing through enough layers to measure
the direction, but eventually being stopped before further interactions with the absorber
module. An investigation and discussion about possible modi�cations of the current LMU
CC design can be found in chapter 7. Additionally, a comparison of the CSR algorithm
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performance for the di�erent con�guration designs is presented.

Figure 5.7: Comparison of the absolute error distributions of the estimated kinematic parameters
for the PG emission during a proton beam irradiation (150 MeV). Median and mean values are
marked by a vertical line and the cross inside the box, respectively. The box encloses the �rst and
the third quartile.

Parameter µ x̄

∆ Ei −1.09 MeV −0.87 MeV
∆ Eg +1.62 MeV +1.70 MeV
∆ Ee −2.71 MeV −2.72 MeV
∆ θ −53.0 deg −46.0 deg

Table 5.3: Mean (µ) and median (x̄) values of the absolute error distributions for the PG
emission during proton beam irradiation.
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5.4 Detector imaging capabilities

Point-like sources

Reconstructed events obtained for the point source scenarios presented in section 5.2 were
sorted as list-mode data to assess the imaging capabilities of the LMU detector prototype.
The image reconstruction was performed with the MLEM algorithm introduced in section
4.3. The �nal 2D images after the 50th iteration, which ensure a good trade-o� between
convergence and noise can be observed in �gure 5.8. The number of valid events included
in the reconstruction was ∼ 100000 and at least 30000 with energy window (i.e., an initial
energy within ±5% of the known source energy) in order to ensure statistically signi�cant
results. The image volume was set from −2.0 cm to +2.0 cm for the lateral extension (x-
and y- directions) and −1.0 cm to 1.0 cm along the z-axis. For all energies, the voxel size
was de�ned as 0.04×0.04×2.0 cm3 (i.e., one voxel in the direction perpendicular to the CC
surface). The quantitative analysis was performed by calculating the position resolution
for the xy-plane by �tting the normalized intensity pro�le using a 2D Gaussian. From the
�t, the FWHM can be computed as the spatial resolution of the reconstructed position.
Table 5.4 presents the obtained parameters for the images shown in �gure 5.8.

A strong impact of the energy selection is observed in the reconstructed images, due to
the rejection of incorrectly retrieved low energy Compton events that leads to sharper point
sources. The spatial resolution is improved by 70% and 50% for the 2 and 6 MeV sources,
respectively. However, the measured source location, in both scenarios, is resolved with
submillimetre accuracy. Since the angular resolution is highly dependent on the incident
energy due to the performance of the CSR algorithm (cf. �gure 5.4), the spatial resolution
of the reconstructed image is also degraded for increasing energy.

Energy
[MeV]

Energy window
[MeV]

FWHM
(no window)

[mm]

FWHM
(window)
[mm]

2 [1.90-2.10] (13.0, 12.6) (2.9, 2.9)
3 [2.85-3.15] (12.9, 12.9) (3.2, 3.2)
4 [3.80-4.20] (13.4, 13.3) (3.8, 3.8)
5 [4.75-5.25] (13.5, 13.5) (4.7, 4.7)
6 [5.70-6.30] (13.4, 13.1) (5.8, 5.8)

Table 5.4: Fitting parameters of the 2D Gaussian model for images shown in �g-
ure 5.8 of mono-energetic point-like sources. The position resolution is computed as
FWHM=2

√
2 ln 2σ.

Extended sources

Reconstructed events obtained for the water phantom irradiation scenario introduced in
section 5.3 were used to evaluate the imaging capabilities of the LMU prototype in a more
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(a)

(b)

Figure 5.8: Images of reconstructed point sources without (�gure 5.8a) and with (�gure 5.8b)
energy selection for the simulations with the LMU CC prototype. The true origin (0.0, 0.0, 0.0)
is indicated by the white circle. The intensity is normalised to have 1 as a maximum.

complex and realistic scenario. The image reconstruction was performed with the MLEM
algorithm. Around ∼100000 valid events were used for the reconstruction and the number
decreases to ∼20000 applying an energy window of 2.0 to 6.5 MeV. 2D images obtained
for the 20th iteration are shown in �gure 5.9. In this case, fewer number of iterations
were required comparing to the point source scenario to obtain a reconstruction closer to
the true beam emission shape. Moreover, MLEM algorithm tends to become noisy as the
number of iterations increases therefore the reconstructed image quality for more complex
irradiation scenarios may be degraded after the 30th iteration. For both images, the image
volume had a lateral extension (x- and y- directions) from −5.0 cm to +5.0 cm and the
range along the beam axis (z-direction) was from −25.0 cm to +25.0 cm and the voxel
size was de�ned as 0.2×10×0.05 cm3. The camera was placed along the y-axis and the
z-axis corresponds to the proton beam direction (cf. �gure 4.1). The number of events and
iterations are su�cient to reproduce the beam emission shape. Qualitatively, the image
exhibits a higher contribution of background noise without the energy selection. This e�ect
broadens the lateral distribution of the emission and blurs the fall-o� region. Furthermore,
the selection reduces the negative in�uence of low energy photons and enhances the proper
reconstruction of the line-like emission. The following chapter (6) aims at quantifying the
performance of PG imaging in range veri�cation.
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(a) (b)

Figure 5.9: Images of the reconstructed PG emission without (�gure 5.9a) and with an energy
selection (�gure 5.9b) for the irradiation of 150 MeV proton pencil beam in water with the LMU
prototype. The red line depicts the entrance of the phantom. The intensity is normalised to have
1 as a maximum.





Part IV

Proton range veri�cation through

prompt gamma imaging





�One never notices what has been done; one can only see

what remains to be done.�

Marie Curie -Letter to her brother (1894)-

6
Quantitative comparison of reconstructed

prompt gamma emissions using two di�erent

Compton camera detection systems and

image reconstruction algorithms

In this chapter, the ability of two CC devices to measure PGs emitted during proton pencil
beam irradiation in di�erent scenarios is evaluated. Additionally, a comparison between
the MLEM and SOE reconstruction algorithms is presented.

2D images were reconstructed with events obtained from combining the interactions by
means of Compton kinematics. Subsequently, one-dimensional pro�les were extracted in
order to be compared with the known depth-dose curves. The proton beam range is de�ned
as the position of the 80% distal dose fall-o�, because it coincides with the mean projected
range and is thus independent of the beam's energy spread [Paganetti, 2012]. Then, the
PG range obtained by �tting the distal end of the reconstructed pro�le with a sigmoidal
function [Tian et al., 2018] can be correlated with the proton beam range. Detection of
shifts in the position of the Bragg peak as small as 3 mm were also studied. Relative
di�erences between the calculated PG ranges were compared with the expected range
shifts, which were introduced by slightly changing the beam energy or adding material in
the beam path.

Additionally, a proof of concept study for small animal PG imaging was conducted by
simulating low energy proton beams impinging on water phantoms in order to qualitatively
evaluate the range monitoring capabilities in preparation of future applications in pre-
clinical research.
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6.1 Imaging of prompt gamma distributions

6.1.1 Water phantom irradiation

The PG emissions during the irradiation of a water phantom with a proton pencil beam
of 150 MeV and 180 MeV were simulated for the LMU prototype and the Polaris-J CCs
(cf. �gure 6.1). Acquisition of the PG emission was simulated at three di�erent camera
locations along the beam axis in order to cover a larger �eld-of-view. The total number of
primary protons was 1×109 in both cases. The interactions in the detector were combined
into events using the CSR presented in chapter 4 by means of the Compton kinematics.
Additionally, an energy cut was applied to only keep Compton events with total energy in
the relevant range of 2.0 to 6.5 MeV. Subsequently, the data were incorporated into the
image reconstruction algorithms. The orientation of the coordinate system is as shown
in �gure 4.1. In both cases, the voxelized (0.2×1.0×0.1 cm3) image volume had a lateral
extension (x- and y- directions) from −5.0 cm to +5.0 cm and the range along the beam
axis (z-direction) was from −25.0 cm to +25.0 cm.

Figure 6.1: Schematic of the simulation set-up for the imaging of PG emissions during the irradi-
ation of a water phantom showing the proton beam (red arrow) incident on the phantom from the
negative z-direction. The grey boxes schematically represent the two di�erent CC con�gurations.
Acquisitions were registered in three di�erent positions (P1, P2, P3) along the beam path.

Displayed in �gure 6.2a and �gure 6.3a are the PG emissions obtained for the 20th

iteration with the MLEM algorithm for the irradiation of 150 MeV and 180 MeV proton
pencil beams, respectively. For the 150 MeV irradiation scenario, the PG reconstructions
were performed using two-site events (no electron tracking, two energy measurements and
one angle) as well as including electron tracking events in order to evaluate the impact
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of the redundant information in the retrieval of the total scatter angle. For the two cam-
eras, a similar number of valid events is used for the image reconstruction in order to
investigate the imaging performance independently from the e�ciency. The LMU proto-
type image contains 7100 events without electron tracking whereas the electron tracking
and the Polaris-J images contain 20000 valid events. For the 180 MeV case, the LMU
electron tracking image contains 20000 and the Polaris-J 37900 valid events. In general,
a marked decrement in the PG emission can be correlated with the �nite proton beam
range; even though, some background signal may be caused by an incorrect retrieval of
Compton events around the downstream and o�-axis beam regions in the image volume.
1D PG pro�les were extracted from the reconstructed 2D images by integrating over a
central region (∆x = 1 cm). The reconstructed PG pro�le, the corresponding depth-dose
pro�le and the PG reference emission obtained from the MC simulations are shown in �g-
ures 6.2b and 6.3b. As expected, the PG pro�les follow the trend of the depth-dose curve.
Especially, the PG fall-o� is lined up very well with the distal dose fall-o� and there is a
good agreement with the reference emission, which leads to a possible correlation between
the detectable emission and the proton beam range in the target.

As mentioned previously in the introductory section, the proton beam range RD is
de�ned as the position of the 80% distal dose fall-o�. The PG range (RPG) is obtained
by �tting the reconstructed fall-o� region with a sigmoidal function using the two-step
method of Tian et al. [2018]. First, the fall-o� region is identi�ed within the reconstructed
signal; afterwards, the �t is applied following the function:

f(z) = a+ (1− a) erf[b(z − c)] (6.1)

where z is the depth in the target and a, b and c are �tting parameters. The parameter
c, which corresponds to the in�ection point of the sigmoidal �t, is de�ned as RPG. The
steepness of the �t given by b (expressed in cm−1) [Schmid et al., 2015] is used to provide
an error estimation of RPG due to variations of the PG signal. Therefore, the reported
error values hereafter assumed changes of 2% and 5% in the PG signal at the position of
the in�ection point. This �tting method provides a reliable and robust quanti�cation of
RD using the reconstructed PG due to the strong correlation between the aforementioned
in�ection point and the proton range determined from the depth-dose curve [Janssen et al.,
2014]. Table 6.1 summarizes the PG range values deduced from the reconstructed 1D
pro�les in comparison to the proton beam range. For both energies, the correlation was
consistent and independent of the detector con�guration, the distances between RD and
RPG are within 3.0 mm.

PG emissions and the corresponding 1D pro�les reconstructed by using the SOE algo-
rithm are shown in �gures 6.4 and 6.5 for 150 MeV and 180 MeV, respectively. Consistent
with the MLEM results, the distal fall-o� of the PG pro�les aligns well with the distal
dose fall-o� in both cases. Reconstructed images are noticeably di�erent in the entrance
region of the phantom. The LMU signal arises just ∼2 cm after the front face, whereas for
the Polaris-J a sharp increase of the signal can be seen before the phantom entrance. This
may be due to an increased amount of overlapping cones in this region for the Polaris-J,
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(a)
(b)

Figure 6.2: Reconstructed 2D images for the LMU (�gure 6.2a, panel 1-2 without and with
electron tracking) and Polaris-J (�gure 6.2a, panel 3) detectors using the MLEM algorithm for
the simulation scenario with a proton beam energy of 150 MeV. The red line indicates the entrance
of the phantom and the z-axis depicts the beam direction. Intensity units are normalised. One-
dimensional pro�les (�gure 6.2b) were extracted from the reconstructed 2D images integrating
over a central region with ∆x =1 cm and compared to the depth-dose pro�le given by the MC
simulation.

Energy

[MeV]

RD

[cm]

RPG−g

[cm]

RD-RPG−g

[cm]

RPG

[cm]

RD - RPG

[cm]

150 15.67 15.33±0.00
±0.01

* +0.34

LMU 15.48±0.02
±0.05 +0.19

LMU (tracked) 15.67±0.02
±0.05 0.00

Polaris-J 15.46±0.02
±0.05 +0.21

180 21.60 21.25±0.01
±0.03 +0.35

LMU 21.42±0.02
±0.04 +0.18

Polaris-J 21.32±0.02
±0.04 +0.28

* Error estimation < 0.01 cm.

Table 6.1: Proton beam range for 150 MeV and 180 MeV in comparison with the fall-o�
position of the corresponding reconstructed PG pro�le (MLEM algorithm), determined by
the sigmoidal �tting method. As reference RPG−g (MC) is also listed. The reported error
values correspond to 2% (superscript) and 5% (subscript) changes in the PG signal at the
position of the in�ection point.
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(a)

(b)

Figure 6.3: Reconstructed 2D images for the LMU (�gure 6.3a, panel 1 with electron tracking)
and Polaris-J (�gure 6.3a panel 2) detectors using the MLEM algorithm for the simulation scenario
with a proton beam energy of 180 MeV. The red line indicates the entrance of the phantom and
the z-axis depicts the beam direction. The extracted one-dimensional pro�les (�gure 6.3b) are
compared to the depth-dose pro�le given by the MC simulation.

originating from the larger �eld-of-view given by the lateral o�set between stage 2 and 3
(cf. �gure 4.2). Table 6.2 presents the proton beam range values in comparison with the
obtained RPG values. The correlation between the RD and RPG was within 2 mm using
the SOE reconstruction. Moreover, the obtained PG pro�les are shallower compared to
the MLEM reconstruction, which is also re�ected by the increased estimated �tting errors.

Energy

[MeV]

RD

[cm]

RPG−g

[cm]

RD-RPG−g

[cm]

RPG

[cm]

RD - RPG

[cm]

150 15.67 15.33±0.00
±0.01

* +0.34
LMU 15.50±0.02

±0.05 +0.17

Polaris-J 15.50±0.05
±0.12 +0.17

180 21.60 21.25±0.01
±0.03 +0.35

LMU 21.30±0.04
±0.10 +0.30

Polaris-J 21.40±0.04
±0.11 +0.20

* Error estimation < 0.01 cm.

Table 6.2: Proton beam range for 150 MeV and 180 MeV in comparison with the fall-o�
position of the corresponding reconstructed PG pro�le (SOE algorithm) determined by
the sigmoidal �tting method. As reference RPG−g (MC) is also listed. The reported error
values correspond to 2% (superscript) and 5% (subscript) changes in the PG signal at the
position of the in�ection point.
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(a)

(b)

Figure 6.4: Reconstructed 2D images for the LMU (�gure 6.4a, panel 1 without electron tracking)
and Polaris-J (�gure 6.4a, panel 2) detectors using the SOE algorithm for the simulation scenario
with a proton beam energy of 150 MeV. The red line indicates the entrance of the phantom and
the z-axis depicts the beam direction. The extracted one-dimensional pro�les (�gure 6.4b) are
compared to the depth-dose pro�le given by the MC simulation.

(a)

(b)

Figure 6.5: Reconstructed 2D images for the LMU (�gure 6.5a, panel 1 without electron tracking)
and Polaris-J (�gure 6.5a, panel 2) detectors using the SOE reconstruction for the simulation
scenario with a proton beam energy of 180 MeV. The red line indicates the entrance of the phantom
and the z-axis depicts the beam direction. The extracted one-dimensional pro�les (�gure 6.5b)
are compared to the depth-dose pro�le given by the MC simulation.
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Experimental data

Experimental proton beam irradiation data were exploited in order to compare the per-
formance of the di�erent reconstruction approaches using the Polaris-J CC detector. The
experiment was conducted at the University of Pennsylvania Roberts Proton Therapy Cen-
ter, irradiating under real conditions a water target with a proton pencil beam of 150 MeV
delivered at clinical dose rates. The estimated dose was 5 Gy at the position of the Bragg
peak, which corresponds to 8.9×108 primary protons. The CC stages were aligned parallel
to the beam axis and measurements in three di�erent locations were performed to mimic
a larger �eld-of-view. The experimental set-up can be found in �gure 6.6 and more details
on the measurement campaign are reported in Polf et al. [2015].

Figure 6.6: Experimental set-up for the PG measurement during the water phantom (a) irradi-
ation using the Polaris-J (b) with respect to the treatment nozzle (c). The inset shows the four
CC stages and the synchronization coincidence time (SCT) module [Polf et al., 2015].

Reconstructions of the PG image were performed by using the MLEM and SOE algo-
rithms following an identical de�nition of the image volume (lateral extension from −1.5
cm to +1.5 cm and −25.0 cm to +25 cm along the beam direction). The reconstructed
images shown in �gure 6.7a were obtained by using 56000 valid events for the MLEM and
51300 for the SOE algorithm in the 2.0 - 6.5 MeV energy range. A smoother distribu-
tion of the events is obtained for the MLEM image. This can be explained by the way
in which each algorithm samples the Compton cone within the image volume. Whereas
the MLEM approach backprojects the whole cone with a �nite width determined by the
angular resolution of the detector, the SOE method evaluates one representative point on
the surface of the cone. As a result, fairly coarse images are obtained when the number
of origins (events) is limited. However, the retrieved PG emission for both algorithms are
comparable regarding the range and the position of the maximum intensity. The measured
depth-dose pro�le (ionisation chamber measurements) and the 1D PG pro�les extracted by
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integrating over a central region with ∆x = 1 cm are compared in �gure 6.7b. Consistent
with the previously presented simulation results, the distal dose fall-o� lines up accurately
with the fall-o� of the PG pro�le for both reconstruction algorithms. The measured RD

and the calculated RPG (sigmoidal �tting method) values are listed in table 6.3.
Di�erences between the positions of the PG fall-o� position and RD are within 5 mm.

As for the previously presented simulation results, the MLEM reconstruction is slightly
steeper than the SOE one. Overall, the reconstructed pro�les exhibit slightly broader fall-
o� regions (compared to MC simulations of the PG under similar conditions), which causes
a small misalignment with the distal dose fall-o�. The signal background may be caused
by gammas created beyond the beam range due to neutron interactions. Furthermore,
incorrectly reconstructed events either originating from other interactions or having an
incorrectly retrieved initial energy can cause an overall worsening of the image quality. In
addition, the correlation between RD and RPG might not be strictly the same for each
set-up, but can have variations depending on the detection process, the irradiated target
medium and the energy of the proton beam [Janssen et al., 2014].

(a)

(b)

Figure 6.7: Reconstructed PG emission for a 150 MeV proton beam irradiation measured with
the Polaris-J CC for a H2O phantom. XZ projection images (�gure 6.7a) are obtained by MLEM
(panel 1) and SOE (panel 2) algorithms. The red line indicates the entrance of the phantom and
the z-direction corresponds to the beam direction. The one dimensional pro�les (�gure 6.7b) are
compared to the depth-dose pro�le measured with an ionization chamber (IC) [Polf et al., 2015].

6.1.2 Heterogeneous phantom

In order to evaluate the performance of PG imaging with the considered CC prototypes
in more complex irradiation scenarios, MC simulations were performed for a proton beam
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RD

[cm]
Algorithm

RPG

[cm]

RD-RPG

[cm]

15.73
MLEM 16.06±0.03

±0.09 −0.33

SOE 16.24±0.04
±0.11 −0.51

Table 6.3: Measured proton beam range for the 150 MeV experimental irradiation set-up
compared with the fall-o� position of the corresponding reconstructed PG pro�les for the
Polaris-J CC. The reported error values correspond to 2% (superscript) and 5% (subscript)
changes in the PG signal at the position of the in�ection point.

irradiation (180 MeV) of a water phantom including a bone insert and an air gap (cf. �gure
6.8).

Figure 6.8: Schematic of the simulation set-up for the imaging of PG emissions during the
irradiation of a water phantom with a bone insert and an air region showing the proton beam
(red arrow) incident on the phantom from the negative z-direction. The grey boxes schematically
represent the two di�erent CC con�gurations. Acquisitions were registered in three di�erent
positions (P1, P2, P3) along the beam path.
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LMU prototype

The simulated scenario for the LMU CC prototype considered 3×1010 primary protons.
The cut in the total energy (2.0 - 6.5 MeV) of the reconstructed Compton events for the
water phantom scenario was also applied in this case. Around 70000 Compton events
were retrieved by the CSR and the image reconstruction was performed using a voxel
size of 0.2×1.0×0.05 cm3. The image obtained by the MLEM algorithm after the 20th

iteration is shown in �gure 6.9a. As it can be observed, changes in the PG emission due
to the target composition are imperceptible. The maximum intensity coincides with the
position of the bone slab, whereas the air region is blurred by wrongly reconstructed events.
Therefore, variations in the ground truth emission cannot be distinguished. Besides, the
pencil beam shape of the source emission is not retrieved because of missing gammas
in the front face region of the phantom due to the limited �eld-of-view of the detector
con�guration. Assessing the information of the MC simulation, perfect retrieval of the
events was considered in order to understand the impact of limitations in the CSR method.
A perfect Compton event ensures that for every triggered interaction, �rst and second hit
are originated from the initial gamma ray. As a result, 13900 valid events were found
among the interactions. The reconstructed image using these events as input is shown in
�gure 6.9b. Clearly, the source distribution is better retrieved despite the reduced amount
of valid events and changes in the PG emission intensity are visible at the end of the beam
range. The level of background noise (80% of the CSR events were wrongly retrieved) was
decreased. Visually, the blurring of the signal due to heterogeneities along the proton beam
path is reduced. The amount of valid events in each of the images (∼70000 and ∼14000
for �gures 6.9a and 6.9b), respectively, indicates the large amount of incorrect events that
cannot be rejected by applying the CSR method.

The 1D pro�les are compared in �gure 6.9c. As reference, the true PGg origin distribu-
tion given by the MC simulations is plotted. A poor PG pro�le reconstruction is obtained
by applying the CSR method despite the considerable amount of presumed valid events
within the image volume. Background signal caused by either incorrect or false Compton
interactions tends to have a non negligible impact on more sophisticated irradiation sce-
narios. Limitations faced during the event retrieval using the information of the detector
(explained in chapter 5) are assumed to cause the degraded image quality. The pro�le
obtained from the perfect retrieval more closely follows the true PG origin distribution.
Distances between the RPG and RD are listed in table 6.4. The relation given by the
reconstructed PG pro�le (perfect retrieval) is within 2.0 mm, while the result using CSR
events leads to ambiguities in the correct RPG estimation (the positions were identical),
since the relation between RD and the PGg range value (RPG−g) (in�ection point of the
fall-o� region of the reference PG) is actually 3.0 mm.

Polaris-J detector

The simulated scenario for the Polaris-J CC considered 1×109 protons. The images were
reconstructed by the MLEM and SOE algorithms using comparable parameters. Valid
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(a) (b)

(c)

Figure 6.9: XZ projection images using the CSR algorithm (�gure 6.9a) and considering perfect
event retrieval (�gure 6.9b) for the LMU camera. Solid red lines depict the entrance of the phantom
and the dashed red lines mark the boundaries of the bone and air regions. One-dimensional
pro�les given in 6.9c were plotted relative to the entrace point. The PGg distribution and the
dose correspond to the information given by MC simulation.

RD

[cm]

RPG−g

[cm]

RD-RPG−g

[cm]

RPG

[cm]

RD - RPG

[cm]

21.78 21.53±0.01
±0.03 +0.25

CSR 21.84±0.06
±0.15 −0.06

Perfect 21.57±0.02
±0.05 +0.21

Table 6.4: Distal dose fall-o� position compared to the PG range for the LMU prototype
for a proton beam of 180 MeV impinging on an heterogeneous phantom. As reference
RPG−g (MC) is also reported. The reported error values correspond to 2% (superscript)
and 5% (subscript) changes in the PG signal at the position of the in�ection point.

events within the image volume were 50000 exploiting the CSR method (cf. �gure 6.10),
whilst the perfect retrieval found among the interactions 35000 events (cf. �gure 6.11).
For the CSR scenarios, both image reconstruction algorithms showed similar performance
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in the PG fall-o� region. This can be con�rmed by comparing the RPG estimations in
table 6.5. Nevertheless, changes in the emission due to the phantom heterogeneities are not
distinguishable in the reconstructions by neither of the algorithms. For the perfect retrieval,
consistent with the previous results for the LMU prototype, the PG pro�les obtained by
both reconstructions visually line up better with the true PG origin. Furthermore, the
bone insert and air gap close to the Bragg peak can be clearly identi�ed although the
MLEM reconstruction is overestimating the signal in the region upstream of the bone
insert. Compared to the LMU prototype, the improved e�ciency of the Polaris-J detector
is re�ected in the increase amount of valid events contained in the �nal image. The perfect
retrieval found 3 times more valid events for this detector even when the number of primary
protons is by one order of magnitude lower. This can be explained by ambiguities in the
electron track retrieval due to the large fraction of high energy electrons being not stopped
in the tracker module and the worse angular resolution of tracked events compared with
the non tracked ones. The correspondence between the RD and RPG (cf. table 6.5) varies
between +2.0 mm (MLEM) and +4.0 mm (SOE).

(a)
(b)

Figure 6.10: XZ projection images (CSR retrieval) obtained with the MLEM (1) and SOE (2)
algorithms (6.10a) for 180 MeV proton irradiation of an inhomogeneous target with the Polaris-
J camera. Solid red lines depict the entrance of the phantom and the dashed red lines mark
the boundaries of the bone and air region. One-dimensional pro�les given in 6.10b were plotted
relative to this point. The PGg distribution correspond to the information given by the MC
simulation.
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(a)
(b)

Figure 6.11: XZ projection images (perfect retrieval) obtained with the MLEM (1) and SOE
(2) algorithms (�gure 6.11a) for 180 MeV proton irradiation of an inhomogeneous target with the
Polaris-J camera. Red lines depict the entrance of the phantom and the red dashed line marks
the boundaries of the bone and air region. One-dimensional pro�les given in �gure 6.10b were
plotted relative to this point. The PGg distribution correspond to the information given by the
MC simulation.

RD

[cm]

RPG−g

[cm]

RD-RPG−g

[cm]
Events

RPG

[cm]

RD - RPG

[cm]

21.78 21.53±0.01
±0.03 +0.25

CSR
MLEM 21.67±0.02

±0.05 −0.11

SOE 21.35±0.02
±0.04 +0.43

Perfect
MLEM 21.55±0.02

±0.06 +0.23

SOE 21.43±0.02
±0.04 +0.35

Table 6.5: Distal dose fall-o� position compared with the PG range obtained from the
Polaris-J during irradition with a proton beam of 180 MeV impinging on a heterogeneous
phantom. As reference RPG−g (MC) is also listed. The reported error values correspond
to 2% (superscript) and 5% (subscript) changes in the PG signal at the position of the
in�ection point.
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6.2 Range shifts evaluation

As a range veri�cation tool, the reconstructed PG emissions must allow for resolving rel-
ative shifts in the proton beam range during treatment delivery using a consistent and
quantitative correlation between the measurement and the depth-dose pro�le. Following,
these capabilities are evaluated for both CC con�gurations.

Water phantom

For the water target scenario, taking 120 MeV as reference, shifts of 3 mm and 6 mm
were emulated in the MC simulations by slightly increasing the energy of the proton beam
(122 MeV and 124 MeV). The number of primary protons in each case was 7×109 and
the acquisition was simulated in three di�erent locations along the beam axis. As in
previous studies, interactions in each of the CC detector con�gurations were combined
to Compton events based on the CSR algorithm. Images were reconstructed using an
image volume which ranges along the beam axis (z-direction) from −15 cm to +15 cm.
The voxel size was set to 0.2×1.0×0.05 cm3. Shown in �gure 6.12 are the XZ projection
images reconstructed with the MLEM algorithm after the 20th iteration. Independent of
e�ciency, 25000 valid events were selected to be contained in the reconstructed images for
both detector con�gurations. It can be recognised, that the PG emission is shifted with
respect to the reference as the beam energy is increased. Incorrectly reconstructed events
contribute to a broadening of the pencil beam source emission as previously encountered
for the inhomogeneous target scenarios in section 6.1.2. On the other hand, the Polaris-J
acquisition yields a steeper fall-o� with a marked high-intensity value close to the position
of the Bragg peak. The noise background in the images is also reduced. The corresponding
1D pro�les are depicted in �gure 6.13. The proton beam range (RD), the ground truth
PG range (RPG−g), the estimated PG range (RPG) and the calculated and predicted shifts
relative to the 120 MeV reference are summarised in table 6.6. Consistent with previous
results, the distance between the proton beam range and RPG at the reference beam energy
(120 MeV) is within 5 mm in all cases. Furthermore, by using the in�ection point of the
sigmoidal �tting in the fall-o� region of the reconstructed PG pro�les, shifts in the proton
range as small as 3.0 mm could be resolved calculating the relative di�erence between
the obtained RPG values in each case. These variations in the proton pencil beam range
were quanti�ed with 2.0 mm accuracy for the LMU and Polaris-J CC simulations. The
aforementioned �ndings are consistent with the studies conducted by Polf et al. [2015] for
the SOE reconstruction using experimental data.

High density polyethylene phantom

The ability to detect shifts in the proton beam range during the irradiation of a tissue-
equivalent plastic phantom (HDPE, (C2H4, ρ= 0.96 g cm−3)) with a proton pencil beam of
120 MeV was tested exploiting MC simulations for the LMU prototype and experimental
data for the Polaris-J detector.
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(a) (b)

Figure 6.12: Comparison of the XZ projection images reconstructed for the LMU (�gure 6.12a)
and the Polaris-J (�gure 6.12b) detectors using CSR. The PG images for the beam range shifted
by 3 mm and 6 mm are also shown. The dashed white line represents the position of RD for the
reference and the dashed red line depicts the entrance of the phantom.

As for the water phantom evaluation, the LMU CC simulation scenario emulated range
shifts by varying the proton beam energy. Acquisition of the PG emission was obtained
at three di�erent camera locations along the beam-axis in order to cover a larger �eld-
of-view. The number of primary protons was set to 1.5×1012 in order to ensure 15000
valid events in the image after applying a selection in the initial energy of the gammas
around 4.44 MeV, which is the most intense PG emission from 12C* [Draeger et al., 2018].
Due to this selection combined with the e�ciency shortcoming of the LMU prototype and
the computational limitations, the reconstructed 2D projection images shown in �gure
6.14a contain 60% less valid events than for the subsequent experimental scenario with
the Polaris-J CC. Since the aforementioned energy selection reduces the number of events,
the overall image quality is much noisier than for previously studied scenarios. This likely
leads to an increased number of incorrect Compton events causing artefacts in the �nal
image. However, compared with the water phantom range shift scenario (cf. �gure 6.12a),
the applied energy window seems to improve the lateral broadening of the pencil beam
emission. 1D central axis pro�les are depicted in �gure 6.14b. Qualitatively, the distal end
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(a) (b)

Figure 6.13: 1D pro�les extracted from the PG images for the 120 MeV (reference), 122 MeV
(3 mm shift) and 124 MeV (6 mm shift) proton beam. The depth-dose pro�le (for 120 MeV) in
the water phantom is obtained from MC simulation for the LMU (�gure 6.13a) and the Polaris-J
(�gure 6.13b) CCs.

RD

(120 MeV)

[cm]

RPG−g

(120 MeV)

[cm]

RD-RPG−g

(120 MeV)

[cm]

RPG

[cm]

RD - RPG

[cm]

Expected

shift

[cm]

Calculated

shift

[cm]

10.65 10.34±0.01
±0.02 +0.31

LMU (120 MeV) 10.48±0.04
±0.11 +0.17

- -
Polaris-J (120 MeV) 10.27±0.02

±0.04 +0.38

LMU (122 MeV) 10.72±0.05
±0.11 −0.07

+0.30
+0.24

Polaris-J (122 MeV) 10.70±0.02
±0.05 −0.05 +0.43

LMU (124 MeV) 11.28±0.03
±0.08 −0.63

+0.60
+0.80

Polaris-J (124 MeV) 10.93±0.02
±0.05 −0.28 +0.66

Table 6.6: Reference distal dose fall-o� position compared to the PG range for di�erent
energies to emulate 3 mm and 6 mm shifts in the position of the Bragg peak in a water
target. A positive sign of the range shift value corresponds to a longer range compared
to the reference. The value RPG−g (MC) is reported in order to compare the accuracy of
the correlation that has been found using the reconstructed pro�les. The reported error
values correspond to 2% (superscript) and 5% (subscript) changes in the PG signal at the
position of the in�ection point.

of the PG pro�les shifts to larger depths as the energy of the protons increases, even though
the reconstructed PG pro�les are wider than the true PG distribution. The accuracy in
resolving the correlation between RD and RPG for the reference energy is within 3.0 mm
(compared with the value given by the ground truth PG emission). Additionally, range
values listed in table 6.7 demonstrate the feasibility of range shift detection as little as 3.0
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mm with the LMU prototype for homogeneous targets di�erent from water.

(a)

(b)

Figure 6.14: Comparison of PG emissions for the reference, 3 mm and 6 mm shifts for the HDPE
target irradiation (6.14a) with the LMU prototype and using the MLEM recontruction. Solid red
lines indicate the entrance of the phantom and the dashed white lines represent the position of
RD for the reference (120 MeV) scenario. The central axis pro�les in 6.14b are compared to the
depth-dose pro�le and the PG ground truth obtained via MC simulations.

Experimental measurements were made with the Polaris-J CC placed at three di�erent
locations along the proton beam path. A single pencil beam of 120 MeV was delivered under
clinical-like conditions to an HDPE phantom. The number of protons for the delivery of
2 Gy was determined as 6.29×108. Measurements were conducted for the full beam range
and introducing shifts of 3 mm and 5 mm by placing plastic slabs in front of the phantom.
More details of the set-up and the experimental campaign can be found in [Draeger et al.,
2018]. Images in �gure 6.15a were reconstructed using the MLEM algorithm for an image
volume of 10.0 cm in the x and y dimensions and 30.0 cm in the z dimension being the beam
direction. Around 40000 Compton events are contained in each of the images. In general,
the PG emission can be clearly visualized and the lateral pro�le is not severely smeared
by the background noise. However, a considerable signal can be observed in the entrance
of the phantom and beyond the Bragg peak. The background contribution may have been
due to gammas scattered inside the phantom and gammas created by secondary neutron



102 6. Prompt gamma imaging using CCs detection systems

RD

(120 MeV)

[cm]

RPG−g

(120 MeV)

[cm]

RD-RPG−g

(120 MeV)

[cm]

RPG

[cm]

RD - RPG

[cm]

Expected

shift

[cm]

Calculated

shift

[cm]

11.06 10.66±0.01
±0.03 +0.40

11.19±0.03
±0.07 −0.13 -

11.39±0.03
±0.07 −0.33 +0.30 +0.20

11.91±0.03
±0.07 −0.85 +0.60 +0.72

Table 6.7: Reference distal dose fall-o� position compared with the PG ranges for three
di�erent energies to emulate 3 mm and 6 mm shifts in the position of the Bragg peak inside
of an HDPE phantom for the LMU prototype. The reported error values correspond to 2%
(superscript) and 5% (subscript) changes in the PG signal at the position of the in�ection
point.

interactions. Additionally, the statistical nature of the reconstruction process can cause
a misidenti�cation of the correct origin of some PGs. Those e�ects can be also observed
in �gure 6.15b, where the depth-dose curve is inaccurately resembled by the PG pro�les.
Shifts in the proton beam range are clearly a�ecting the distal end of the PG pro�les and
the relation between RD and RPG is strongly in�uenced by the intense background signal
in the downstream region of the phantom, which challenges the evaluation based on a
sigmoidal �t. The quanti�cation of the predicted ranges obtained by manually selecting
the peak region is listed in table 6.8. For this set of data, the smallest correctly retrieved
shift is around 5.0 mm, since the 3.0 mm pro�le yields a shift of 1.0 mm, which is within
the error estimation of the RPG value. This is most likely due to the very strong signal
at the entrance of the phantom that is not compensated in the Bragg peak region causing
also problems with the signal intensity normalization.

RD

(120 MeV)

[cm]

RPG

[cm]

RD - RPG

[cm]

Expected

shift

[cm]

Calculated

shift

[cm]

10.57

11.02±0.05
±0.13 −0.45 -

10.90±0.07
±0.18 −0.33 −0.30 −0.12

10.61±0.04
±0.11 −0.04 −0.50 −0.41

Table 6.8: Reference distal dose fall-o� position compared with the PG ranges for the range
shifts evaluation using an HDPE phantom. Experimental campaign reported in Draeger
et al. [2018]. A negative shift of the range shift value corresponds to a shorter range
compared to the reference. The reported error values correspond to 2% (superscript) and
5% (subscript) changes in the PG signal at the position of the in�ection point.
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(a)

(b)

Figure 6.15: Comparison of PG emissions for the full range, 3.0 mm and 5.0 mm shifts for the
Polaris-J during the experimental irradiation of an HDPE target (�gure 6.15a) reconstructed with
the MLEM algorithm. The solid red line depicts the entrance of the phantom and the dashed
white line represents the position of RD for the full range (120 MeV) measurement. The pro�les
depicted in �gure 6.15b are compared to the depth-dose pro�le obtained via calculations within
the treatment planning system.

6.3 Prompt gamma imaging for small animals: a proof

of concept study

Small animal imaging plays a crucial role in the modelling of human diseases being an
important component of pre-clinical and translational biomedical research. Investigations
in this �eld do not only lead to a better understanding of the disease mechanisms, but
�ndings in di�erent imaging modalities can be translated to technologies used in clinical
scenarios. It is foreseen that the LMU CC will be used for pre-clinical research with laser
driven proton irradiation at the Centre of Advanced Laser Application (CALA) [CALA,
2018]. Regarding PG imaging, detection and image reconstruction are challenging because
of the limited emission yields during low energy proton irradiation. Since the cross section
for PG emission due to 16O and 12C (most relevant emission lines) increases to a maximum
between 10-20 MeV and then drops o� sharply as the protons completely lose their energy,
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the detection rate can be considerably reduced compared to conventional clinical beam
energies [Polf et al., 2014].

This proof of concept study for the use of PG imaging in small animals was performed
by simulating 100, 50 and 35 MeV proton pencil beams irradiating a water phantom for
both CCs con�gurations. The MC simulations were conducted with the Geant4 version
10.02.p01 using the QGSP-BERT-HP physics list for hadronic processes. Simulations using
the BIC (Binary Cascade) model for this energy regime resulted in discontinuities in the
PG pro�le that may come either from transitions in the simulation models, resonances or
disagreement in the employed cross sections as encountered in Verburg et al. [2013] and
Jeyasugiththan and Peterson [2015]. The number of primaries (1×1010 for the LMU CC
simulation and 1×109 for the Polaris-J) was selected independently of the e�ciency in
order to ensure the reconstruction of images with at least 20000 events with initial energies
between 2 and 6.5 MeV. Perfect event retrieval was considered in order to evaluate and
compare solely the imaging capabilities for low energy proton beams (ranges between 1.2
and 7.7 cm). The image reconstruction was performed by using the MLEM algorithm. The
voxel size was set as 0.1×1.0×0.02 cm3 and the �nal image was obtained after 20 iterations
in order to ensure a proper convergence that is still not strongly a�ected by the intrinsic
noise of the data.

Qualitatively, the 2D images shown in �gure 6.16 illustrate the variation of the PG
emission due to changes in the proton beam range for the three di�erent simulated scenar-
ios. The pencil-like source distribution is visible for 100 and 50 MeV, whereas the retrieved
PG emissions for 35 MeV protons result in a point-like source due to the narrow Bragg
peak (σRS=0.03 cm) and the short range inside the phantom. The 1D pro�les of the re-
constructed PG emissions in �gure 6.17 were extracted from the 2D images by integrating
over a central region with ∆x = 1 cm. The pro�les obtained by both CC con�gurations
resemble to some extent the depth-dose curves for the considered low energy scenarios. For
ranges of 1.2 cm (cf. �gure 6.17c), the PG emission that evokes a Gaussian distribution
could be still correlated with the steep true PG emission. The reliability of the sigmoidal
�tting previously employed to quantify the correlation between RPG and RD was investi-
gated. The results summarised in table 6.9 demonstrated a ground truth correspondence
between RD and RPG−g of better than 1.0 mm for proton beam energies even as low as 35
MeV.

The correlation between RD and RPG appears still valid despite the very sharp Bragg
peak due to reduced straggling. However, broader fall-o� regions of the reconstructed
PG pro�les mostly give rise to a ∼0.1 cm overestimation of the correlation. Bearing
in mind that the presented results were obtained using the perfect event retrieval, the
achieved accuracy can be a�ected by the background noise due to the non-valid events,
which is translated into broader fall-o� regions if the CSR is used. Indeed, PG pro�les
depicted in �gures 6.17b and 6.17c poorly resemble the ground truth distribution as a
result of the intrinsic angular resolution limitations of the di�erent detector con�gurations.
Although this proof of concept study was limited to evaluate the validity of the correlation
between RD and the reconstructed RPG given by the in�ection point of the sigmoidal �t
(cf. section 6.1.1) without the impact of the uncertainty introduced by the CSR method,
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the preliminary �ndings might o�er an understanding of the challenges for the envisaged
pre-clinical application.

(a) (b) (c)

Figure 6.16: XZ projection images of the PG emission for a 100 (�gure 6.16a), 50 (�gure 6.16b)
and 35 MeV (�gure 6.16c) proton beam irradiation of a water target for the LMU (upper panel)
and Polaris-J (lower panel) CCs considering perfect event retrieval. The white dashed line depicts
the position of RD and the images are shown relative to the phantom entrance.

Energy

[MeV]

RD

[cm]

RPG−g

[cm]

RD - RPG−g

[cm]

RPG

[cm]

RD - RPG

[cm]

100 7.70 7.64±0.00
±0.00

* +0.06
LMU 7.50±0.01

±0.02 +0.20

Polaris-J 7.61±0.01
±0.02 +0.09

50 2.29 2.21±0.00
±0.00

* +0.08
LMU 2.21±0.01

±0.02 +0.08

Polaris-J 2.06±0.01
±0.23 +0.23

35 1.16 1.08±0.00
±0.00

* +0.08
LMU 1.21±0.01

±0.02 −0.05

Polaris-J 1.04±0.01
±0.02 +0.12

* Error estimation < 0.01 cm.

Table 6.9: Distal dose fall-o� position compared to the PG ranges for 100, 50 and 35 MeV
proton beams in a water target. The reported error values correspond to 2% (superscript)
and 5% (subscript) changes in the PG signal at the position of the in�ection point.

In order to illustrate the more complex scenario encountered for small animal irradia-
tion, MC simulations were performed using a real mouse CT obtained from the cone beam
acquisition of a SARRP machine (Small Animal Radiation Research Platform, Xstrahl
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(a)

(b) (c)

Figure 6.17: Comparison of the acquired PG pro�les for 100 MeV (�gure 6.17a), 50 MeV (�gure
6.17b), 35 MeV (�gure 6.17c) proton beams in water and the corresponding depth-dose curves.
The pro�les were plotted relative to the phantom entrance.

Limited, Surrey, UK). The voxelized data (0.03×0.03×0.03 cm3) of the mouse anatomy
was imported into Geant4 and the irradiation with a 35 MeV proton beam was simulated.
The number of primaries was set to 1×1010. Figures 6.18a and 6.18b depict the computed
dose as well as the true PG origin distributions. A strong impact of the very short range
(limited amount of gammas) and the target heterogeneities along the beam path can be
clearly observed. The detection process for the foreseen pre-clinical application is tested
by simulating the acquisition with the LMU CC prototype. Even for the perfect event
retrieval assumption, the reliability of the comparison between RD and RPG is limited
by the intrinsic capabilities of the detector con�guration. The current spatial resolution



6.3 Prompt gamma imaging for small animals 107

is similar to the range in the target, which makes it more di�cult to resemble the cor-
rect beam emission from the reconstructed PG pro�le. The spatial variations in the PG
emission, due to target heterogeneities, can cause additional implications when extracting
the 1D pro�le by integrating over a central region. This e�ect seems to cause a further
broadening of the reconstructed Gaussian-like PG pro�le compared to the water phantom
scenario (cf. �gure 6.17c). Additionally, as it was also observed for the heterogeneous
phantom set-up (cf. section 6.1.2), the heterogeneities seem to have a negative impact on
the reconstruction when using the CSR, hence changes in the emission cannot be obtained
from the reconstructed images.

(a) (b)

(c)

Figure 6.18: First study for small animal CT data comparing the simulated 35 MeV proton
pencil beam (�gure 6.18a) and the corresponding PG emission (�gure 6.18b). The reconstructed
PG pro�les with the LMU CC (CSR and perfect retrieval) are compared to the depth-dose pro�le
and the PG ground truth in �gure 6.18c. The pro�les were plotted relative to the mouse surface.

Concluding, the application and feasibility of PG imaging for small animal irradiation
is currently restricted by implications due to limited emission from the short beam range
and ambiguities introduced from the tissue heterogeneities. Both e�ects cannot be com-
pensated by the exploited reconstruction strategies. The detector capabilities (i.e., spatial
and angular resolution) might be an additional limiting factor at the investigated small
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scale scenario. Therefore, a further optimization of the detector design is required as it
will be investigated in chapter 7.



Part V

Outlook for Compton camera detectors

in proton therapy





�It is common sense to take a method and try it. If it

fails, admit it frankly and try another. But above all, try

something�

Franklin D. Roosevelt

7
Towards an improved performance of the

LMU prototype in clinical practice and

alternative detector con�gurations

7.1 Alternatives for the LMU Compton camera proto-

type

The results presented in chapters 5 and 6 suggest that the design of the LMU prototype
detector must undergo modi�cations in order to improve the e�ciency and performance.
These changes should yield interactions in the detectors that the CSR algorithm will be
able to distinguish among gammas of a broad initial energy spectrum.

Thicker silicon detectors may be the most intuitive solution to the e�ciency shortcoming
of the scatterer component. The interaction probability of high energy gammas will rise,
and likely much more correct events can be retrieved because the recoil electrons are
stopped inside the tracker. Even though, this solution has limitations. Silicon detectors
cannot be thicker than few millimetres and conventional manufacturers reach only around
300 - 500 µm [Sadrozinski, 2001]. Furthermore, those thicker detectors would require
higher voltage and the e�ect of scattering and electronic noise should be carefully taken
into consideration. However, even having the possibility to employ the desired thickness,
the recoil electron must interact in more than one layer of the tracker without further
interactions in the absorber component in order to enable the electron tracking capability.

For �nding a good compromise between the detector availability and the electron track-
ing requirements, MC simulations were performed using an increased thickness of 1 mm
for the DSSSD layers for a H2O phantom irradiation with 150 MeV protons. The number
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of primary protons for each simulation run was 1×108. Relative distances between the
detectors of the current con�guration depicted in 4.1 were preserved. Besides, the number
of layers was increased by two and four. Recoil electrons can be very energetic (e.g. the
average electron energy is Ēe− ∼2.4 MeV for the broad emission spectra encountered in
proton therapy), which translates in large ranges. For electrons with energies between 2
MeV and 6 MeV, the projected ranges (Rmf ) obtained from the NIST 2010 CSDA range
values and the detour factors using the semi-empirical formula given by Fernández-Varea
et al. [1996] are summarised in table 7.1. Currently, the silicon material within the tracker
module is able to stop roughly 2.5 MeV electrons i.e., around 40% of the electrons produced
by the broad PG emission during a proton beam irradiation. Therefore, six, eight and ten
layers of thicker DSSSDs were investigated in the simulation study.

Energy
[MeV]

Rmf

[cm]

1 0.10
2 0.23
3 0.38
4 0.53
5 0.68
6 0.84

Table 7.1: Projected range of electrons in silicon using the detour factors given by the semi-
empirical formula of Fernández-Varea et al. [1996] and the CSDA range obtained from the
NIST ESTAR database [Berger et al., 2005].

The average e�ciency for the design with the thicker detectors was improved by almost
100% based on the total number of triggers (i.e., at least one hit in the scatterer and one hit
in the absorber) based on the number of triggers as it can be seen in �gure 7.1. The statistics
of interactions occurring in the detector relative to the total number of triggers are depicted
in �gure 7.2, comparing the current LMU prototype with alternative con�gurations of 1
mm DSSSD thickness. Electron tracking is also improved by the thicker silicon layers and
in principle a track can be associated to around 10% of the Compton interactions for the
ten layers, while it is only 6% for the current con�guration. An evaluation of the track
quality will be presented later on.

Bearing in mind the de�ned trigger condition, the performance of the CSR algorithm
is evaluated applying comparable parameters for each data set for the di�erent detector
con�gurations. Additionally, hereafter only retrieved events with an initial energy between
2 MeV and 6.5 MeV are considered. As shown in �gure 7.3, the fraction of gammas
undergoing Compton interaction in the tracker component is only slightly varying while
the layer thickness is increased or more layers are introduced. The fraction of events
retrieved by the CSR algorithm decreases for the thicker silicon detectors, whereas it stays
roughly constant when more layers are added. It is important to notice that a reduced
amount of obtained events must not necessarily correspond to a degraded CSR or detector
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Figure 7.1: Trigger e�ciency for the di�erent con�gurations of the LMU CC prototype design.
The current con�guration contains six layers but with 0.05 cm DSSSD thickness.
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Figure 7.2: Fraction of Compton events among the triggers for the current LMU CC prototype
and alternative con�gurations using 1 mm thick DSSSD layers. Error bars represent the 3σ
interval obtained from �ve independent MC simulation runs.

performance, since the quality of those events is not yet considered. On the contrary,
exploiting the information of the MC simulations, the fraction of Compton interactions
that could be theoretically retrieved, named as perfect retrieval (i.e., �rst and second hit
are originated from the initial gamma ray), appreciably increases from 3% for the current
design up to almost 9% for the thicker con�guration with ten layers. It can be noticed
that this fraction is lower than the retrieved events by the CSR to perform the image
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reconstruction step. The additional events might cause the considerable background noise
in the images shown in chapter 6.
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Figure 7.3: Event retrieval for di�erent con�gurations of the LMU CC design appliying an
energy window from 2 MeV to 6.5 MeV. The number of Compton interactions in the detector
is expressed relative to the total amount of triggers recorded during the acquisition. Error bars
represent the 3σ interval obtained from �ve independent MC simulation runs.

A detailed analysis of the information retrieved by the CSR is shown in �gure 7.4 in
order to identify the quality of the events contained in a reconstructed image for the dif-
ferent detector con�gurations. The presented fractions are relative to the total number
of triggered events (i.e., they correspond to the green bar in �gure 7.3). The number of
correctly reconstructed events is around 2% for the current detector design being improved
up to 5% when expanding the tracker module. This is because more high-energetic recoil
electrons are completely stopped within the tracker and their energy is accurately retrieved.
False positive events correspond to around 7% of the triggers independent of the detector
con�guration. Mainly those events result from pair production or backscattering from the
absorber. The quality factor (cf. section 4.2.1) derived by the CSR provides a straightfor-
ward tool to reject false positive events. For instance, using Qc,classic ≤ 0.8 rejects 18% of
these events in the current con�guration and around 25% in the upgraded design. How-
ever, this selection also compromises the amount of correctly retrieved events. In all cases,
around 10% of the valid and correctly retrieved source gammas would be rejected. The
third category of obtained events are Compton events retrieved with incorrect kinematic
parameters (i.e., they do not correspond to perfect events). Those events are most likely
associated with very energetic recoil electrons reaching the absorber module. The CSR
algorithm fails in rejecting this type of events causing errors in the determination of the
opening angle of the Compton cone. As the probability of stopping electrons is increased
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due to the thicker trackers, the amount of incorrectly retrieved events is reduced by 5% for
the thicker layer con�gurations.
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Figure 7.4: Classi�cation of the events obtained by the CSR algorithm for di�erent con�gurations
of the LMU CC design. The fractions are relative to the total number of triggered events. Correctly
retrieved refers to events matching with Compton interactions as known from the underliying data
of the MC simulation. The incorrectly retrieved events are divided in Compton interactions with
incorrect kinematic parameters and false positives. Error bars represent the 3σ interval obtained
from �ve independent MC simulation runs.

A comparison of the perfect events with the CSR results reveals that not all of them
are retrieved (i.e., events which are contained in the brown bar in �gure 7.3 but not in
the correctly retrieved bar in 7.4) and therefore this information is lost for the image
reconstruction. Three di�erent types of interactions can be distinguished among the data
of missing Compton events as it can be seen in �gure 7.5. Mainly, the CSR algorithm is not
capable of assigning a track despite having associated hits of the same electron in di�erent
layers. This is a consequence of scattered electrons leaving the detector con�guration,
additional triggered hits due to bremsstrahlung or Compton interactions in the LaBr3
detector. Future work could be done in the identi�cation of these tracks. This becomes
even more important if the detector is upgraded with thicker DSSSD layers due to marked
improvement of the track measurements. Therefore, the track retrieval will be improved
but is limited by the performance of the current CSR algorithm implementation. Finally,
two hit events and others in which the algorithm fails in identifying the correct Compton
interactions correspond to less than 0.5% of the triggers registered by the detector. All the
aforementioned e�ects impact the overall performance of the PG imaging work�ow.

Findings suggest that more Compton interactions could be potentially retrieved by an
upgraded con�guration design. Furthermore, the performance of the CSR retrieval would
be enhanced: the fraction of correct Compton events increases, whereas the false positive
and incorrectly retrieved events are reduced. This will be favourable in terms of the �nal



116 7. Outlook for Compton camera detectors

Curre
nt

6 l
ay

ers

8 l
ay

ers

10
 la

ye
rs

Relative counts %

0 1 2 3 4 5

No track retrieved Two hits events Others

Figure 7.5: Missing information of events not retrieved by the CSR algorithm although they
could be theoretically obtained. The results are shown for di�erent LMU CC con�gurations. The
fraction is relative to the total number of triggers. Error bars represent the 3σ interval obtained
from �ve independent MC simulation runs.

image quality. However, an unexpected but small rise in the fraction of perfect events that
are not retrieved by the CSR is observed for the thicker DSSSD layers. Therefore, future
work could be done in the electron tracking algorithm in order to guarantee the reliability
of the event reconstruction method.

An analysis of the quality of the reconstructed (real) Compton interactions was per-
formed by comparing the estimated kinematic parameters with the corresponding interac-
tion values from the MC simulation. This also quanti�es the discrepancies in the deter-
mination of the opening angle of the Compton cone due to incorrectly retrieved events.
The absolute error distributions (di�erence between estimated and interaction value) for
di�erent con�gurations of the LMU design are shown in �gure 7.6. An improvement in the
accuracy of the mean recoil electron energy and the mean Compton angle of ∼1 MeV and
∼20◦ is observed, respectively. In contrast, for the other kinematic parameters changes are
relatively small (< 0.3 MeV). All mean and median values of the absolute error distributions
are summarised in table 7.2.

As mentioned above, a thicker tracker will provide improved e�ciency and track prob-
ability for retrieving Compton interactions in the proton beam irradiation scenario. How-
ever, the potential tracks acquired using alternative con�gurations may not be retrieved by
the current CSR implementation. Thus, a trade-o� between the desired number of tracks
and the quantity of missing information for the image reconstruction should be consid-
ered in order to improve the overall performance of the LMU prototype. The presented
results demonstrated the importance of upgrading the tracker component and how this
could improve the quality of the events retrieved by employing the CSR approach. For this
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(a)

(b)

(c)

(d)

Figure 7.6: Comparison of the absolute error distributions of the estimated kinematic parameters
for di�erent tracker con�gurations of the LMU CC design (label �current� refers to 6 DSSSD layers
of 0.05 cm thick while for the other con�gurations the thickness is 0.1 cm). For normalization,
the area under the histogram is equal to one. Median and mean values are marked by a vertical
line and the cross inside the box, respectively. The box encloses the �rst and the third quartile.
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scenario, the electron tracking must be further studied and optimised. Possible sources of
errors in the electron track estimation such as U-turns in�uenced by Molière scattering,
the identi�cation of the start point and the need of having a tracker with excellent spatial
resolution, high e�ciency and capable of stopping the high energy recoil electrons must be
considered but are beyond the scope of this thesis.

Con�guration Parameter µ x̄

Current

∆ Ei −1.09 MeV −0.88 MeV
∆ Eg +1.62 MeV +1.70 MeV
∆ Ee −2.71 MeV −2.72 MeV
θ −53.0 deg −46.0 deg

6 layers

∆ Ei −1.04 MeV −0.84 MeV
∆ Eg +1.06 MeV +0.96 MeV
∆ Ee −2.08 MeV −2.21 MeV
θ −40.0 deg −30.0 deg

8 layers

∆ Ei −1.00 MeV −0.79 MeV
∆ Eg +0.81 MeV +0.23 MeV
∆ Ee −1.80 MeV −1.75 MeV
θ −33.0 deg −15.0 deg

10 layers

∆ Ei −0.97 MeV −0.77 MeV
∆ Eg +0.71 MeV 0.01 MeV
∆ Ee −1.66 MeV −1.39 MeV
θ −30.0 deg −9.0 deg

Table 7.2: Mean (µ) and median (x̄) values of the absolute error distributions for alterna-
tive tracker con�gurations of the LMU CC detector of �gure 7.6.

7.2 Compton camera set-up for low gamma energies us-

ing a two-stage design

For investigating the performance of di�erent CC detector designs more tailored to ra-
dioisotope imaging, a two-stage (cf. �gure 3.12a) con�guration was investigated. It is
assembled as the combination of a segmented array of GAGG (Gd3Al2Ga3O12) scintillator
crystals acting as a scatterer and the LaBr3(Ce) scintillator of the LMU prototype as an
absorber component. A scheme of the CC set-up is shown in �gure 7.7. The scatterer
module consists of 22×22 individual crystals (0.9×0.9×6.0 mm3) read out by a MPPC
(Multi-Pixel Photon Counter) SiPM (Silicon Photomultiplier) 64 channels array. The de-
tector was developed by collaborators at the National Institute of Radiological Sciences in
Chiba, Japan [Takyu et al., 2017]. Customized electronics provides four outputs and a sum
signal enabling the processing by Anger logic calculation for the position determination of
the interactions.
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Figure 7.7: Schematic representation of the two-stage CC con�guration. The source distance
from the GAGG module was 4.5 cm. The distance d is varied between 5.0 and 20.0 cm in order
to evaluate its e�ect on the performance. Adapted from Liprandi et al. [2018].

Experimental data from a 137Cs and a 60Co calibration sources were acquired in order to
investigate the performance and imaging capabilities of this two-stage CC device in di�erent
energy regimes [Liprandi et al., 2017, 2018]. The source distance from the scatterer module
was 4.5 cm. Results of the experimental campaigns were benchmarked in this work with
MC simulations, using a comparable geometrical con�guration and the experimentally
determined spatial and energy resolution.

Caesium-137 source

Three di�erent distances (d= 5, 10 and 20 cm) between the two detector stages were
evaluated in terms of angular resolution. The spatial resolution for the LaBr3 was calcu-
lated as 0.5 cm (for a collimated source) and the energy resolution was found to be 9%
and 5% at Eγ= 662 keV for the GAGG and LaBr3, respectively [Liprandi, 2018]. The
reconstructed events for simulated and experimental data were selected within an energy
window of ±5% around 662 keV. Using around 21000 valid events, the computed ARM
(cf. section 5.2) varied from 5◦ to 7◦ for the simulated data and from 11◦ to 22◦ for the
experimental measurements. In both cases, the best performance corresponds to d= 20.0
cm. The increased distance between the photon interactions is translated into a decreased
uncertainty in the cone axis determination. Hereafter, the studies are based on the d=
20.0 cm set-up con�guration.

Since the ARM value di�ers by more than 5◦ for the simulated (5◦ ) and experimen-
tal data (11◦), the comparison of the corresponding energy depositions and interaction
positions may provide information about their impact on the detector resolution and the
resulting image quality. Energy deposition in the CC components and the Compton scatter
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angle calculated via kinematics (θkin) are depicted in �gure 7.8. Ensuring a proper com-
parison of the data, the simulated number of events was equal to the amount of measured
decays. Overall the simulated and experimental spectral response agree well. Di�erences
are appreciably for very low energy (Ee) recoil electrons (energy in the GAGG), which
correspond to high energy (Eg) scattered gammas (energy in LaBr3). Figure 7.8c shows
the high degree of similarity between the computed opening angle of the Compton cone
(θkin).

(a) (b) (c)

Figure 7.8: Energy deposition in the GAAG (�gure 7.8a) and the LaBr3 (�gure 7.8b) crystals
with a relative separation distance of 20 cm for the 137Cs source. Compton scatter angles (�gure
7.8c) are calculated according to equation 3.2 assuming full absorption of the events.

On the other hand, the interaction positions are represented by the measured hit maps
in �gure 7.9. The spatial distributions on the GAGG detector are somewhat consistent
except for few hot spots towards the central region, whilst the results for the LaBr3 are
markedly di�erent. The hit pattern of the measurements, which is obtained by the kNN
algorithm [Liprandi, 2018] is pushed towards the outer region of the detector where the
area exceeds the projected dimensions of the GAGG. The pattern observed in the LaBr3

for the simulation data coincides with the smaller area of the GAGG scatterer, which is
expected due to the obtained Compton scatter distribution (cf. �gure 7.8c).

From the known origin of the gammas, the Compton scatter angle can be calculated
via the interaction positions (θgeo). This computation provides information regarding the
Compton cone direction which can be compared to the angle derived via Compton kine-
matics in order to evaluate the impact of aforementioned uncertainties in position and
energy determination. The experimental data in �gure 7.10a exhibit a shift between the
angular distributions along with a considerable contribution of small angles compared to
the simulated scenario shown in �gure 7.10b. It seems likely that the high peaks in the θkin
distribution (cf. �gure 7.8c) also contribute as background noise to the �nal image. The
discrepancies might explain the di�erence in the ARM value between the measurements
and the simulations.

Since events corresponding to large ARM values result in a signi�cantly degraded image
quality, the measured events were restricted to those with ARM values between 0◦ and 5◦ for
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(a) (b)

(c) (d)

Figure 7.9: Measured hit position maps of the GAGG and the LaBr3 crystal detectors (�gures
7.14a and 7.14c) in comparison to the simulation results (�gures 7.14b and 7.14d) for the 137Cs
source. The GAGG data is binned using the center of each individual crystal (size of 0.9×0.9
cm2) and for the LaBr3 the bin size is given by the experimentally determined position resolution
of 0.5 cm.

the image reconstruction, according to the ARM value obtained for the simulated data. The
selection was based on the known source position in order to purely evaluate the imaging
performance of the detector device. Nevertheless, such a selection is meaningless when
the position of the source is intended to be determined. Figures 7.11 (experimental) and
7.12 (simulation) present the reconstructed images of the 137Cs source placed at di�erent
locations in the xy plane. The images were obtained after the 30th iteration of the MLEM
algorithm. Compared to the point source images in chapter 5, the convergence of the spatial
resolution value is reached earlier because of the applied angular selection. Each image
contains ∼10500 events and the size of the image volume was 20×20×1.0 mm3 divided in
100×100×1 voxels. Table 7.3 summarises the FWHM values of the 2D Gaussian �ttings
and the estimated location of the source given by the mean position of the �t. For the
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(a) (b)

Figure 7.10: Comparison of the Compton scatter angle calculated via kinematics (θkin) and
via interactions geometry (θgeo) for the

137Cs acquisition with experimental (�gure 7.10a) and
simulated (�gure 7.10b) data.

experimental data, the same angular selection was applied in all data sets, which results in
50% of the triggered events used by the reconstruction algorithm. In contrast, the images
for the simulated scenario were reconstructed without the ARM assumption. Despite the
sub-millimetre accuracy of the position retrieval, the source distribution becomes distorted
in both scenarios as the lateral o�set with respect to the origin increases. The image
becomes angularly non-uniform and scatter events in speci�c directions increase, which
may be a combined e�ect of the projected position (xy plane) of the source with respect
to the border of the GAGG detector and the source-detector distance. This creates an
artefact due to the geometrical distortion in the �nal image.

(a) (b) (c)

Figure 7.11: Reconstructed images for the experimental data of the 137Cs source using the
MLEM algorithm. The true source position is (0.0 mm, 0.0 mm) (�gure 7.11a), (4.0 mm, 4.0
mm) (�gure 7.11b) and (8.0 mm, 8.0 mm) (�gure 7.11c) and indicated with the white circle. As
a reference a red cross indicates the origin for the shifted position.
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(a) (b) (c)

Figure 7.12: Reconstructed images for the simulated data of the 137Cs source using the MLEM
algorithm. The true source position is (0.0 mm, 0.0 mm) (�gure 7.12a), (4.0 mm, 4.0 mm) (�gure
7.12b) and (8.0 mm, 8.0 mm) (�gure 7.12c) and indicated with the white circle. As reference the
red cross indicates the origin coordinates for the shifted positions.

Original position
[mm]

Reconstructed position
[mm]

FWHM
[mm]

(0.0, 0.0)
Experimental (0.0, 0.0) (3.0, 2.6)
Simulation (0.0, 0.1) (2.5, 2.5)

(4.0, 4.0)
Experimental (3.6, 4.2) (3.5, 3.0)
Simulation (4.2, 4.1) (2.4, 2.5)

(8.0, 8.0)
Experimental (7.4, 8.0) (3.8, 2.9)
Simulation (8.2, 8.1) (2.7, 2.6)

Table 7.3: Experimental and simulated source position and position resolution (FWHM)
for the reconstructed images of the 137Cs source in comparison to the true source position.

Cobalt-60 source

In this scenario, the two detector components were placed at a relative distance of 5.0 cm.
The spatial resolution for the LaBr3 was measured as 0.3 cm and the energy resolution was
6.9% and 3.5% at 1.17 and 1.32 MeV for the GAGG and the LaBr3, respectively [Liprandi,
2018]. MC simulations were performed to benchmark the overall detector response. Since
the incident photon energies (1.1715 and 1.336 MeV) are known, the reconstructed events
were selected within an energy window of ± 5% around each of the mentioned values. Using
∼ 27000 events, the obtained ARM value is 7◦ for the simulated data and 13◦ for the exper-
imental measurements. As expected, the angular resolution is improved compared with the
identical scenario for the 137Cs source (being 22◦ for d= 5.0 cm) due to the better position
and energy resolution of the detectors for higher energies [Aldawood, 2017; Liprandi, 2018].
In order to identify the cause of the di�erence between the simulated and experimental
ARM value, the experimental energy deposition and the Compton scatter angle calculated
via kinematics (θkin) are compared with the MC simulations. The distributions can be
seen in �gure 7.13. As for the 137Cs source, the simulation results for the recoil electron
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(Ee, energy in the GAGG) and the scattered gamma (Eg, energy in the LaBr3) energies
are generally in good agreement with the experimental measurements. A small portion of
events corresponding to energetic electrons (>400 keV) and low energy photons (<800 keV)
observed in the simulation were not measured. Since the Compton scatter angle compu-
tation directly depends on the energy measurements, the angular distributions agree well
except for a small fraction of events with very small and large angles.

(a) (b) (c)

Figure 7.13: Energy deposition in the GAAG (�gure 7.13a) and the LaBr3 (�gure 7.13b) crystals
of a con�guration with a relative separation distance of 5 cm for the 60Co source. The Compton
scatter angle (�gure 7.13c) is calculated using equation 3.2 assuming full absorption of the events.
As reference the red cross indicates the origin coordinates for the shifted positions.

The ARM also depends on the interaction positions. Hit position maps of both de-
tector components can be found in �gure 7.14 for simulated and experimental data. The
agreement in the position information of the GAGG detector is generally good, while for
the LaBr3 considerable discrepancies are observed. For the GAGG detector, the changes
in the hit distribution compared to the 137Cs scenario are due to the closer source location
(cf. �gure 7.9). As shown in �gure 7.14d the gammas are scattered towards the centre of
the absorber, which produces the high intensity region in the area covered by the scatterer
module. In contrast, the experimental hit distribution for the monolithic LaBr3 crystal
exhibits clusters with a signi�cant portion of hits at the upper border of the crystal.

Errors in the interaction positions in�uence the direction of the Compton cone and
consequently the quality of the image. Compton scatter angles derived via kinematics
and via interaction geometry are compared in �gure 7.15. A similar trend as for the
137Cs source is observed suggesting the presence of a systematic error in the interaction
position retrieval of the LaBr3. The angular distribution (experimental) is slightly shifted
towards larger angles, which might explain the di�erences in the angular resolution between
experimental and simulated data.

For the image reconstruction, the measured events were again restricted to those having
0◦ ≤ARM≤7◦. In contrast, no selection was applied for the simulated data. Reconstructed
images of the 60Co source shown in �gures 7.16 and 7.17 were obtained by the MLEM
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(a) (b)

(c) (d)

Figure 7.14: Measured hit position maps of the GAGG and the LaBr3 crystal detectors (�gures
7.14a and 7.14c) in comparison to the simulation results (�gures 7.14b and 7.14d) for the 60Co
source. The GAGG data is binned using the center of each individual crystal (size of 0.1 cm) and
for the LaBr3 the bin size is given by the experimentally determined position resolution of 0.3 cm.
As reference the red cross indicates the origin coordinates for the shifted positions.

algorithm for 30 iterations. The image volume was de�ned in the same way as for the
137Cs reconstruction. Table 7.4 summarises the estimated source location and the spatial
resolution given by the FWHM values of the 2D Gaussian �tting. The image performance is
enhanced compared with the 137Cs measurements, which is in agreement with an improved
ARM value. Additionally, the uniformity of the reconstructed sources (experimental and
simulated scenario) is preserved for the 8 mm o�set image due to the proximity between
scatterer and absorber modules. Even though, the overall accuracy remains unchanged.

Summarising, the feasibility of a two-stage CC consisting of a segmented array of
GAGG acting as scatterer and a monolithic LaBr3 crystal as absorber component was
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(a) (b)

Figure 7.15: Comparison of the Compton scatter angle calculated via kinematics and via inter-
actions geometry for the 60Co acquisition with experimental (7.15a) and simulated (7.15b) data.
As reference the red cross indicates the origin coordinates for the shifted positions.

(a) (b) (c)

Figure 7.16: Reconstructed images for the experimental data of the of the 60Co source using
the MLEM algorithm. The true source position is (0.0 mm, 0.0 mm) (7.16a), (4.0 mm, 4.0 mm)
(7.16b) and (8.0 mm, 8.0 mm) (7.16c) and indicated with the white circle. As reference the red
cross indicates the origin coordinates for the shifted positions.

demonstrated1. The imaging capabilities were investigated for point-like sources of di�er-
ent incident energies such as 137Cs (662 keV) and 60Co (1.173 MeV and 1.332 MeV). The
dedicated simulation benchmarking study conducted in this thesis revealed a generally
good agreement in the spectral response of the detectors, whereas some di�erences in the
interaction position distributions were encountered. In order to overcome the shortcomings
in the experimental data, reconstructed images were obtained by applying an angular se-
lection based on the ARM value calculated from the simulated scenarios. All reconstructed
sources (i.e., experimental and simulated data) correctly retrieved the true source positions

1Thanks to Silvia Liprandi for providing the experimental data-set used for this study
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(a) (b) (c)

Figure 7.17: Reconstructed images for the simulated data of the 60Co source using the MLEM
algorithm. The true source position is (0.0 mm, 0.0 mm) (7.17a), (4.0 mm, 4.0 mm) (7.17b) and
(8.0 mm, 8.0 mm) (7.17c) and indicated with the white circle. As reference the red cross indicates
the origin coordinates for the shifted positions.

Original position
[mm]

Reconstructed position
[mm]

FWHM
[mm]

(0.0, 0.0)
Experimental (0.5, 0.7) (3.2, 3.2)
Simulation (0.0, 0.0) (2.8, 2.9)

(4.0, 4.0)
Experimental (4.5, 4.5) (3.1, 3.1)
Simulation (4.1, 4.0) (2.8, 3.0)

(8.0, 8.0)
Experimental (8.3, 8.5) (3.2, 3.2)
Simulation (8.1, 8.1) (2.9, 2.6)

Table 7.4: Experimental and simulated position resolution (FWHM) and source position
for the reconstructed images of the 60Co source in comparison to the true source position.

with submillimetre accuracy. As expected, the spatial resolution is slightly better for the
simulated images. Improvements in the performance of the kNN algorithm for position
determination of the monolithic LaBr3 detector are expected to reduce uncertainties in the
position estimation and further enhance the spatial resolution (without angular selection)
in future experimental campaigns.
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Nikola Tesla

8
Conclusions and perspective

The clinical potential of hadron therapy mainly relies on the high dose delivery precision,
longitudinally and transversally, which can be achieved due to the characteristic relation
between initial energy and energy deposition of protons inside matter. However, nowadays
there are still challenges to face in order to exploit the full clinical potential and overcome
the economical burden. The control and monitoring of the beam delivery is one of the re-
search areas receiving currently increased interest. The high ballistic precision of protons
makes the treatment more prone to any source of deviation with respect to the treatment
planning. As protons stop inside the patient, an intuitive way to access the range informa-
tion is by means of secondary radiation produced by nuclear interactions along the proton
path. Henceforth, in vivo range veri�cation plays a key role in order to overcome the peril
of range uncertainty in proton therapy treatments.

Positron emission tomography is the most thoroughly investigated technique in clinical
practice for range veri�cation. Since the method still faces di�erent limitations, this thesis
explores the feasibility of monitoring the proton beam range by measuring the high-energy
photons promptly emitted in the de-excitation stage of nuclei following nuclear interactions.
Theoretically, those gammas may provide a more direct measurement of the proton range
without being a�ected by washout e�ects and having a much more favourable production
cross section. The accomplished investigations in this work studied the use of two di�erent
CC detector con�gurations to produce 2D images of PGs emitted during proton irradiation.

The studies carried out can be divided between the performance evaluation and opti-
mization of the LMU CC prototype, the quanti�cation of the correlation between the PG
pro�le and the depth-dose curve for two di�erent reconstruction approaches and the study
of a two-stage CC tailored to radioisotope imaging.
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LMU Compton camera performance

An extensive MC simulation study was performed in order to benchmark the spectral re-
sponse of the detector using experimental data from a point-like emission of 4.44 MeV
gammas. For both components (scatterer and absorber) good agreement between the sim-
ulated and experimental data was found; however, a more sophisticated energy calibration
for the DSSSD layers must be implemented based on experimental data. In order to char-
acterise the imaging performance of the detector prototype, the angular resolution was
computed using MC simulations for energies between 2 MeV and 6 MeV for point sources
placed in the centre of the �eld-of-view. The ARM determined by the FWHM of the
distribution was between 2.9◦ and 6.2◦, being the worst for the 6 MeV source. Since the
determined energy and position resolution for these energies are comparable, the obtained
ARM values are dominated by tails in the ARM distribution as a result of incompletely
absorbed gammas and incorrect Compton events from the CSR method. Theoretically,
the ARM value could be improved to 2.8◦ by enhancing the performance of the CSR al-
gorithm to retrieve Compton events with highly energetic recoil electrons or by preventing
those electrons to reach the absorber. The imaging capability study was concluded with
the characterization of the spatial resolution by computing the width of the point spread
function of the reconstructed sources. The images demonstrated an excellent submillimetre
accuracy for the source location, while the spatial resolution was 2.9 mm and 5.8 mm for
2 MeV and 6 MeV, respectively. As expected, the trend of the ARM is translated in a
degraded spatial resolution at higher energies. A qualitative evaluation of the PG imaging
of extended sources was performed using a reconstructed PG emission for the simulated
irradiation of a 150 MeV proton pencil beam.
Since the imaging resolution is particularly in�uenced by incorrectly retrieved Compton
events, the performance of the CSR algorithm was evaluated for two di�erent simulation
set-ups by quantifying the error of the estimated kinematic parameters. Predominantly,
the values are underestimated except for the energy of the scattered gamma, which was
overestimated in all studied cases. The point-like source (Eγ=4.44 MeV) set-up clearly
revealed the impact of applying a selection window around the known source energy for
improving the image quality. The greatest improvement was observed for the Compton
scatter angle (θ) showing error reductions by around 30%. Among the other kinematic
parameters, the absolute error of the recoil electron energy was reduced by almost 1.5
MeV. For the PG emission during a proton beam irradiation, the in�uence of applying an
energy selection �lter [2-6.5 MeV] was not as noticeable as for the aforementioned scenario,
considering that the rationale of the selection is to improve the correlation with the proton
beam range [Polf et al., 2009a; Verburg et al., 2013]. However, a closer look at the event
statistics allowed to conclude that the disagreement in the kinematic parameters estima-
tion must be caused by high energy recoil electrons interacting with the absorber module.
Expanding prior work, an extensive MC simulation study was developed in order to pro-
vide a framework to assess the detector performance together with the event retrieval
method. While 50% of the triggered events (i.e., at least one hit in the tracker and in
the absorber module) correspond to Compton interactions within the tracker component,
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only a small fraction of them (<5%) could be theoretically correctly retrieved with the
information gathered by the detector. Therefore, it is not surprising that the 18% of the
triggers retrieved as Compton events by the CSR mainly contribute to background noise in
the �nal image (∼80%). Additionally, limitations of the method were corroborated by an
analysis of the correct events not being retrieved, hence missing important information for
the image reconstruction step. These �ndings revealed the need for an improved prototype
design, which is able to yield a better overall e�ciency by �nding a good trade-o� between
the detector capabilities and the event retrieval method. MC simulations were performed
using an increased thickness of 1.0 mm for the DSSSD layers for a water phantom proton
irradiation (150 MeV) in order to �nd a good compromise between an improved detector
e�ciency and the electron tracking capability. The �ndings suggested that the theoretical
fraction of events retrieved by the detector could be improved up to 10% compared to the
current 3%. Furthermore, the quality of events retrieved with the CSR method would be
also enhanced due to a 2% and 5% reduction of false positive and incorrectly retrieved
events, respectively. Despite the considerable improvements, missing information for the
image reconstruction step was slightly increased by 3% compared to the current detector
con�guration. The potential tracks that theoretically could be retrieved using alternative
detector con�gurations will require future work in the CSR implementation for electron
tracking.
In summary, the simulations of the LMU CC prototype demonstrated the potential and
capabilities of the detector to image point-like and beam source emissions. However, the
data analysis and the CSR algorithm performance revealed limitations especially in terms
of the detection e�ciency and the retrieval of events, which correspond to high energy
electrons. For the current detector design, trade-o� considerations between the sensitivity
and the electron tracking capability should be foreseen in order to enhance the applicability
for proton range veri�cation. This includes an optimized thickness of the DSSSD layers
and an improved background rejection by the event reconstruction method.

Quantitative comparison of image reconstruction algorithms using Compton
camera detectors

A quantitative comparison of the PG distributions reconstructed by an MLEM and a SOE
algorithm, exploiting simulated and experimental data from the LMU and the Polaris-J
CC, is presented.

For the investigated detectors, a similar quantity of valid events was used for the image
reconstruction. This ensures a reliable comparison of the range monitoring capabilities
independent of the detector e�ciency. Enlarging the �eld-of-view by virtually measuring
at three di�erent locations along the beam path allows not only to register more events but
also to account for a broader scattering angle distribution su�cient to reproduce the beam
induced emission. The reconstructed PG images resulted from the de�nition of tailored
image volumes, whose extension in the x- and y- direction corresponds to the dimension
of the target and the extension along the beam axis (z-axis) was set to 10 cm larger. Since
data from CCs are inherently noisy, the number of iterations for a beam source emission
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has to be limited in order to avoid artefacts from the noise break-up. Therefore, the MLEM
images for the 20th and the SOE images for the 1000th iteration were used, respectively.
Throughout this work, a strong impact of invalid events not being rejected by the CSR has
been observed. This has been previously reported by Rohling et al. [2017], indicating an
in�uence on the convergence of the implemented MLEM algorithm. Improvements in the
e�ciency and event retrieval could enhance the quality of the images allowing a more reli-
able determination of an appropriate number of iterations, e.g. stopping the reconstruction
when the variance between neighbouring pixels does not change by more than a prede�ned
value.
In order to gradually approach the real patient anatomy, homogeneous and heterogeneous
phantoms were considered and the feasibility of measuring and imaging the PG emission
during proton pencil beam irradiation has been shown. The PG pro�les were evaluated
using a sigmoid �t applying the two-step method of Tian et al. [2018]. A strong correla-
tion between the in�ection point of the curve �t in the fall-o� region of the reconstructed
pro�les (RPG) and the proton beam range (RD) was observed. For the baseline water
phantom study, the distance between RD and RPG was within 3.0 mm for the 150 MeV
and 180 MeV proton beams. These results are consistent with the ground truth distance
(3.5 mm) calculated by using the real PG emission information from the MC simulation.
For the experimental scenario (150 MeV), the distance between the proton range and the
in�ection point was 3.0 mm and 5.0 mm using the MLEM and SOE reconstruction algo-
rithms, respectively. In inhomogeneous targets, including a bone insert and an air gap
close to the Bragg peak region, the spatial changes in the PG emission due to the di�erent
materials cannot be resolved from the reconstructed pro�les by neither of the cameras nor
the algorithms due to the background caused by incorrect Compton events that the CSR
method is not capable of rejecting. For the LMU CC, establishing an accurate proton
beam/PG range correlation using aforementioned pro�les led to ambiguities because of the
degraded fall-o� retrieval. Consequently, the image reconstruction was performed using
only perfect events in order to evaluate the impact of non-valid events in the reconstructed
image. As comparison, the same scenarios were considered for the Polaris-J simulations.
Heterogeneities are better visible when perfect retrieval was used for both detector con-
�gurations. Furthermore, the reconstructed PG pro�les qualitatively resemble better the
ground truth emission (MC information). The di�erence between RD and RPG varies from
0.0 mm to 4.0 mm for the reconstructed images using the CSR and from 2.0 mm to 4.0
mm for the perfect retrieval, which is closer to the ground truth correlation (3.0 mm).
The �ndings have suggested a comparable performance of the two image reconstruction
algorithms.
Range monitoring capabilities were evaluated for both detector con�gurations in homo-
geneous targets. The baseline simulation study in water used a 120 MeV proton beam
irradiation as reference and shifts of 3 mm and 6 mm were emulated by increasing the
beam energy. Small variations with respect to the reference Bragg peak position were
noticeable in the reconstructed 2D images. Since the LMU CC data is more a�ected by
incorrect events within the image volume, the acquisition yielded a laterally broadened
pencil beam emission and a slightly blurred fall-o� region. Shifts as small as 3.0 mm in
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the proton beam range could be resolved by calculating the relative di�erence between the
RPG values for each scenario, even though the absolute shift di�ers by ∼ 1.5 mm respect
to the expected value. The proton beam range correlation with RPG was found within
±1.0 mm for the reference beam energy. Moreover, range assessment was also investigated
for the irradiation of a tissue-equivalent plastic phantom (HDPE) with a 120 MeV pencil
beam exploiting simulated (LMU) and experimental (Polaris-J) data. The energy selec-
tion around the most intense PG emission considerably reduced the number of valid events
having an unwanted e�ect on the overall quality of the reconstructed images. Since a clear
maximum of intensity cannot be retrieved, changes in the Bragg peak position could be
barely noticed especially for the experimental data. Shifts of 3.0 mm and 5.0 mm in the
proton beam range could be resolved by calculating the relative di�erence between the
estimated RPG values. The absolute value of the shifts are underestimated by 1.0 mm
with the Polaris-J CC while the 6.0 mm shift is overestimated by 2.0 mm with the LMU
prototype.
Finally, a proof of concept study of PG imaging for small animal irradiation is presented.
MC simulations were performed for three di�erent low energy proton beams (100, 50 and
35 MeV) irradiating a water phantom using both CC con�gurations. Reconstructed images
corresponding to 100 MeV and 50 MeV protons somewhat resembled the pencil beam shape
of the PG emission whereas the 35 MeV resulted in a narrow Gaussian-like distribution
due to the limited range of the proton beam in the target. A correlation of better than
3.0 mm between RD and the reconstructed RPG has been demonstrated by using perfect
events for the image reconstruction. However, this relationship appears to be slightly over-
estimated (by ∼ 1.0 mm) when the values are compared to the true RPG−g obtained from
MC calculations. In order to assess more complex scenarios, a �rst MC simulation study
attempt was performed using a real mouse CT. The irradiation with a 35 MeV proton
pencil beam yielded an imprecise correlation between RD and RPG for perfect events as
well as for the CSR. Results suggest that further work should be done to overcome the
intrinsic limitations of the detector capabilities and the event retrieval method envisaging
the applicability of PG imaging in preclinical irradiations.
The summarised studies have shown that acquiring the PG emission by means of CC de-
vices in order to correlate the proton beam range with the PG range is feasible. The
functionality of the MLEM and the SOE image reconstruction algorithms was veri�ed for
two di�erent CC con�gurations showing a comparable performance for homogeneous and
heterogeneous targets. The CSR is not able to properly reject the non-valid Compton
events, which seems to have a considerable impact on the overall image quality. Therefore,
the event reconstruction should be further improved to enhance the 3D imaging capabil-
ities. Currently, the large parallax error along the CC axis (i.e., the y-axis) results in a
distorted 3D image pushed towards the front face of the detector. Further investigations
could include an additional CC positioned at di�erent angles around the target [Draeger
et al., 2018; Rohling et al., 2017] or �ltering the data in order to include prior information
regarding the beam axis location [Draeger et al., 2017]. Moreover, the energy window
selection is another important aspect, which modi�es the spatial distribution of the recon-
structed PGs ensuring a correct correlation with the depth-dose curve. The PG emissions
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presented throughout this thesis were reconstructed using valid events with initial energies
from 2 MeV to 6.5 MeV [Polf et al., 2015]; however, this selection is currently debated. Fur-
ther, studies should investigate the impact of the energy window on the distance between
RD and RPG, for instance avoiding the 2.2 MeV line from the neutron-capture at hydrogen,
which is not suitable for the correlation with the depth-dose distribution [Rohling et al.,
2017].

Compton camera set-up for radioisotope imaging using a two-stage design

The feasibility of imaging point-like sources with energies lower than 1.5 MeV using a CC
detector assembled from an array of GAGG crystals [Takyu et al., 2017] and a monolithic
LaBr3 crystal was demonstrated. Experimental data [Liprandi, 2018] for di�erent incident
gamma source energies corresponding to 137Cs (662 keV) and 60Co (1.173 MeV and 1.332
MeV) were acquired in order to investigate the detector performance. A benchmark simu-
lation study, which includes the experimentally determined energy and spatial resolution of
the detector components was also performed. The measured ARM for 137Cs was 11.0◦ and
13.4◦ for 60Co using a relative distance between the detector components of 20.0 cm and
5.0 cm, respectively. Notwithstanding, the simulated data indicated better ARM results.
The values di�ered by more than 5◦ in both cases; therefore, a comprehensive comparison
of the corresponding energy depositions and interaction positions for the experimental and
simulated data was conducted. Appreciably, the major disagreements were encountered in
the hit position maps of the LaBr3 leading to discrepancies between the Compton scatter
angle calculated via kinematics (θkin) and the geometrically derived angle (θgeo). These ef-
fects translated into uncertainties in the estimated source position that result in a degraded
image quality. Hence, an angular selection based on the simulation ARM values (<5.0◦ for
137Cs and <7.0◦ for 60Co) was applied to the experimentally measured data. Reconstructed
images were obtained using the MLEM algorithm. The source positions given by the mean
value of a 2D Gaussian �t were correctly retrieved with submillimetre accuracy for both
cases. The observed spatial resolution (FWHM) is ∼3.0 mm at both energies and becomes
slightly better (by 0.3 mm) for the images reconstructed using simulation data (without
angular selection). The ability to measure shifts in the true source position as small as 4.0
mm has been tested and demonstrated for both energies. Artefacts in the image started
to appear when the o�-axis distances were bigger than 8.0 mm due to a combined e�ect
of the smaller e�ective area of the GAGG detector (compared with the LaBr3) and the
increased distance (20.0 cm) between the scatterer and absorber modules.
Overall, promising results have been obtained for the two-stage con�guration, using a de-
tector combination of GAGG and LaBr3 crystals. The angular resolution is expected to
improve for increasing energies according to the experimentally determined energy and
position resolution in this regime (>1 MeV) [Aldawood, 2017; Liprandi, 2018]. Currently,
shortcomings in the kNN algorithm implementation [Liprandi, 2018] cause uncertainties in
the position estimation of the gamma ray interaction, resulting in a deteriorated angular
resolution, where 50% of the events have major discrepancies (>5◦) between θkin and θgeo.
Future work in the re�nement of the aforementioned method could result in a feasible CC



135

con�guration with acceptable sensitivity for the low energy gamma regime.
Overall, this thesis has contributed to a deeper understanding of the promising poten-

tial but also remaining challenges of PG imaging with CC detection systems for in vivo
range veri�cation in proton therapy. The simulation and image reconstruction framework
here presented will provide guidance for future developments towards a suitable system
overcoming the complexity concerning data acquisition and image reconstruction.
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