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Abstract

Nowadays, semiconductor-based technology is part of everyday lives of many
people around the world. This is most visible in the frequent use of com-
puters and smartphones. By using clouds, messenger services and social
networks among other things, enormous amounts of data are transmitted
globally. For this purpose, laser signals that propagate through fiber-optic
cables are being used. At this, the wavelengths that can be used for trans-
mission, are determined by the absorption and dispersion properties of the
propagation medium [[1]]. Wavelengths in the near-infrared range of the
electromagnetic spectrum are suited for this purpose.
Conventional light-emitting heterostructures that consist of nanometer-thick
semiconductor layers and rely on spatially direct recombination of charge
carriers in the same layer, are not ideally suited for emission in the near-
infrared. This stems from Auger-losses, which increase with increasing wave-
length and are significant for bandgap energies corresponding to wavelengths
in the near-infrared [[2]]. Furthermore, Auger-losses increase with the charge
carrier density and temperature. Hence, alternatives are needed.
Promising alternatives are provided by heterostructures that rely on spa-
tially indirect recombination of charge carriers [[3]]. In such heterostruc-
tures, electrons and holes are confined in layers of different semiconductor
materials. This allows to use semiconductor materials with comparatively
large bandgaps and to still generate light with a wavelength in the near-
infrared of the electromagnetic spectrum. Moreover, using two different
materials for charge carrier confinement increases the number of possible
designs for such structures and thus offers more flexibility.
Generally, the confinement of electrons and holes in different semiconductor
layers is accompanied by lowered electron-hole wavefunction overlap in com-
parison to structures that rely on spatially direct charge carrier recombina-
tions. This leads to lowered optical transition rates and can be compensated
to a certain extent by careful optimization of the optical properties of these
heterostructures.
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This thesis presents research results that contribute to the optimization
of heterostructures that rely on spatially indirect recombination of elec-
trons and holes. For this purpose, it was focused on heterostructures where
(InGa)As was used to achieve electron confinement and Ga(AsSb) was used
to achieve hole confinement. At this, both materials were grown on GaAs
as a substrate. Using GaAs based heterostructures allows one to use mature
(AlGa)As/GaAs-distributed Bragg reflector technologies when building spe-
cific laser devices [[4]].
The results presented in this thesis are either based on calculations using the
reliable many-body theory from the semiconductor Bloch and luminescence
equations in combination with the k·p-theory or on density functional the-
ory calculations. In many respects, the results gained from the calculations
replace the investigative, experimental growth and subsequent experimental
characterization of properties of such heterostructures. In the investigated
heterostructures, charge transfer and recombination processes take place
through internal interfaces. Properties of the internal interfaces can be stud-
ied using interface specific excitations. One of those is the charge-transfer
exciton. This thesis presents certain results from a detailed experiment-
theory investigation of the formation and decay of charge transfer excitons.
The presented results are based on bandstructure calculations with the k·p-
theory and the semiconductor Bloch approach.
The density functional theory calculations carried out in the framework of
this thesis were used to calculate the valence band offsets between GaAs and
Ga(AsSb) in strained heterostructures. This allows for drawing conclusions
on the band alignment in the corresponding heterostructure. Moreover, for
certain experimentally grown heterostructures, the band alignment between
GaAs and Ga(AsSb) was deduced by comparing experimental results to
the ones calculated with the semiconductor luminescence equations and the
k·p-theory. While these results and the obtained valence band offsets are re-
stricted to the investigated heterostructures, the valence band offsets calcu-
lated with density functional theory are not restricted to certain heterostruc-
tures. During the density functional calculations the problem appeared that
the Ga(AsSb) bandgaps vanish at certain Sb concentrations in the ternary
semiconductor compound. Related to this, for Sb concentrations exceeding
a critical value the calculated valence band offsets diverged. These problems
could be resolved by introducing the method of half-occupations [[5, 6]] to
the calculations of the valence band offsets. The presented approach for
the calculation of valence band offsets has the potential to be applicable for
other semiconductor materials as well.



Zusammenfassung

Heutzutage gehört halbleiterbasierte Technologie weltweit zum Alltag vieler
Menschen. Am sichtbarsten ist dies durch die scheinbar allgegenwärtige
Nutzung von Handys und Computern. Unter anderem durch die Nutzung
von Clouds, Messenger Diensten und sozialen Netzwerken werden global
enorme Mengen an Daten verschickt. Übertragen werden diese Daten mit-
tels Elektromagnetischer Wellen. Hierzu werden Lasersignale genutzt, die
durch Glasfaserkabel propagieren. Dabei werden durch die Absorptions-
und Dispersionseigenschaften des genutzten Propagationsmediums die zur
Übertragung praktisch nutzbaren Wellenlängen festgelegt [[1]]. Gut geeignet
sind hierbei Wellenlängen aus dem nahem Infrarot des elektromagnetischen
Spektrums.
In konventionellen Halbleiterheterostrukturen, welche aus nanometerdicken
Schichten verschiedener Halbleitermaterialien bestehen und auf der räumlich
direkten strahlenden Rekombination von Ladungsträgern basieren, nehmen
Auger-Verluste mit größer werdenden Wellenlängen zu und sind im Nah-
Infrarotem betrac̈htlich [[2]]. Hinzu kommt, dass diese Verluste mit höher
werdender Ladunsgträgerdichte und Tempertur zunehmen. Insgesamt lim-
itieren Auger-Verluste somit die praktische Verwendbarkeit solcher Het-
erostrukturen. Deshalb sind alternative Heterostruktur Layouts für eine
effiziente Emission mit Wellenlängen im nahem Infrarot vonnöten.
Vielversprechend sind hierbei Layouts, die die räumlich indirekte strahlende
Rekombination von Ladungsträgern nutzen. In solchen Heterostrukturen
sind die Elektronen und Löcher vor der Rekombination in unterschiedlichen
Halbleiterschichten eingeschlossen, im Gegensatz zu erstgenannten Hetero-
strukturen, in denen Elektronen und Löcher vor der Rekombination in der
gleichen Halbleiterschicht eingeschlossen sind. Dies ermöglicht die Verwen-
dung von Halbleitermaterialien mit relativ großen Bandlücken, mit denen
dennoch durch die räumlich indirekte Rekombination in der Heterostruktur
Licht im Nah-Infraroten Bereich des elektromagnetischen Spektrums erzeugt
wird. Die Verwendung zweier Materialien für den Landungsträgereinschluss
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vergrößert die Anzahl an möglichen Gestaltungen solcher Strukturen und
bietet somit mehr Flexibilität.
Nachteilig ist jedoch, dass bei solchen Heterostrukturen der durch die räum-
liche Trennung verringerte Wellenfunktionsüberlapp von Elektronen und
Löchern, im Vergleich zu Heterostrukturen die eine räumlich direkte Rekom-
bination von Ladungsträgern verwenden, die Wahrscheinlichkeit einer Rekom-
bination von Elektronen und Löchern verringert. Dies kann jedoch durch
die sorgfältige Optimierung der optischen Eigenschaften solcher Heterostruk-
turen in einem gewissen Rahmen kompensiert werden.
Diese Dissertation präsentiert Forschung, die ihren Beitrag zur Optimierung
der optischen Eigenschaften von Heterostrukturen mit räumlich indirekter
Ladungsträger Rekombination leistet. Dabei wurde sich bei den Schichten,
in die die Löcher und Elektronen vor ihrer Rekombination relaxieren, auf die
ternären Halbleiter Ga(AsSb) und (InGa)As konzentriert, welche auf GaAs
gewachsen sind. Hier besteht der Vorteil, dass man für auf GaAs gewachsene
lichtemittierende Schichten beim Fabrizieren eines Lasers auf ausgereifte
(AlGa)As/GaAs-Bragg Spiegel-Technologien zurückgreifen kann [[4]].
Konkret wurden mit der vielfach bewährten mikroskopischen Vielteilchen-
theorie der Halbleiter-Bloch- und Halbleiter-Lumineszenz-Gleichungen kom-
biniert mit der k·p-Theorie bestimmte optische und elektronische Eigen-
schaften sowie die Potentiallandschaft solcher Heterostrukturen vorherge-
sagt und charakterisiert. Darüber hinaus wurde auch mithilfe von Dichte-
funktionaltheorie die für den Ladungsträgereinschluss wichtige Potential-
landschaft in solchen Heterostrukturen untersucht. Die durch die Berech-
nungen gewonnenen Erkenntnisse ersetzen in vielerlei Hinsicht das investiga-
tive, experimentelle Wachstum und die nachfolgende Charakterisierung von
Eigenschaften solcher Heterostrukturen.
Für die räumlich indirekte Rekombination der Ladungsträger sind des Weit-
eren auch Eigenschaften der internen Grenzflächen, durch die Ladungstrans-
fer und Rekombination geschehen, maßgeblich für die Performanz der Laser-
strukturen. Im Hinblick auf den Einfluss der internen Grenzfläche wurden
die Entstehung und der Zerfall von Ladungstransfer-Exzitonen als gren-
zflächenspezifische Anregungen experimentell und mittels des Halbleiter-
Bloch-Ansatzes in Verbindung mit k·p-theoretischen Berechnungen detail-
liert untersucht. Diese Dissertation präsentiert Ergebnisse aus dieser Studie,
die in direkter Verbindung zur Berechnung der elektronischen Bandstruktur
der vermessenen Heterostruktur und Absorptionseigenschaften der Ladungs-
träger und insbesondere der Ladungstransfer-Exzitonen stehen.
Die oben bereits erwähnten Dichtefunktionaltheorie-Berechnungen ermög-
lichten die Berechnung von Valenzbandoffsets zwischen verspannten Schich-
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ten von Ga(AsSb) zu GaAs gänzlich ohne experimentellen Input. Mit den
erhaltenen Valenzbandoffsets ist es möglich, Rückschlüße auf die Anord-
nung der Leitungsbandminima-Energien zwischen Ga(AsSb)- und GaAs-
Schichten in Heterostrukturen zu ziehen. Dies wird in der Fachliteratur
kontrovers diskutiert (siehe [[7]] und Referenzen hierein). Bei den Berech-
nungen verschwand jedoch bei bestimmten Sb Konzentrationen im ternären
Halbleiter die Bandlücke und es war hier keine verlässliche Bestimmung der
Valenzbandoffsets möglich. Beide Probleme konnten durch Einbeziehen der
Methode der halben Besetzungen [[5, 6]], welche auf Slater und Johnsons
Xα-Methode [[8]] basiert, behoben werden. Die so erprobte Methodik der
Valenzbandoffset Berechnung hat das Potential, auch für andere Halbleiter-
materialien anwendbar zu sein.
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beigetragen haben. An erster Stelle möchte ich mich herzlich bei Prof. Dr.
Stephan Koch bedanken, der es mir ermöglichte als Teil seiner Arbeitsgruppe
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Chapter 1

Introduction

Nowadays, large parts of everyday life are influenced by semiconductor-based
technologies, like smartphones or computers, and digitalization is continuing
to progress. Increasingly, people network via the internet. Moreover, this is
currently being reinforced by the pandemic. All this leads to an increasing
amount of data which is transferred via fiber-optics. For the transmission
of the data, semiconductor lasers are a highly suited light source [[1]]. How-
ever, the used lasers must emit at specific wavelengths in the near-infrared
region of the electromagnetic spectrum. This stems from the dispersion and
transmission properties of the used optical fibers.
In case of established laser structures that rely on the spatially direct re-
combination of electron-hole pairs, non-radiative recombination processes
limit their applicability at these emission wavelengths. Hence, alternatives
were needed and research was devoted to heterostructures that rely on the
spatially indirect recombination of electron-hole pairs [[2, 3]].
Generally, the spatial separation of electrons and holes results in a reduc-
tion of the optical transition probability, resulting in lower output pow-
ers (see [[14]] for example). Therefore, further optimization is necessary.
The research presented in this thesis is devoted to the optimization of the
optical properties of laser heterostructures that rely on spatially indirect
recombination and emit in the near-infrared. The investigations are carried
out either by direct calculations of the optical properties of heterostructures
or by investigation of properties that are relevant for the indirect recom-
bination. For this purpose, nanometer-thick layers of suited III-V semi-
conductors grown on GaAs substrates were considered. Such structures are
called quantum well heterostructures. The growth of GaAs-based laser struc-
tures has the advantage that mature growth techniques for (AlGa)As-GaAs
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2 CHAPTER 1. INTRODUCTION

distributed Bragg reflectors are available [[4]]. Moreover, the investigated
(InGa)As, Ga(AsSb) and GaAs based laser structures operate at room tem-
perature and do not need to be cooled down to cryogenic temperatures.
Large parts of the presented research was dedicated to the investigation of
Ga(AsSb)-layers grown on GaAs. The reason for this is that there generally
is no consensus on the potential landscape in strained quantum well het-
erostructures made of these materials.
For the calculation and prediction of the optical properties of these materi-
als the semiconductor Bloch and semiconductor luminescence equations [[15,
16]] in combination with k·p-calculations were used. In addition to these
approaches, density functional theory calculations were used to study the
valence band offsets between GaAs and Ga(AsSb) in strained quantum well
heterostructures. With the results conclusions can be drawn on the band
alignment of these materials in such structures. During the calculations,
up from a critical Sb concentration the Kohn Sham-bandgaps of Ga(AsSb)
vanished. Connected to this, the valence offset results diverged up from a
critical Sb concentration. The problems could be overcome by introducing
the half-occupation technique to the calculations.
In the following chapter, the theoretical methods that were used for the re-
sults presented in this thesis will be shortly introduced. Chapter 3 presents
theoretical and experimental results for light-emitting heterostructures. All
presented heterostructures rely on the spatially indirect electron-hole recom-
bination. While the first part of this chapter deals with calculations for the
optimization of these heterostructures, the second part investigates an in-
terface specific excitation. The subject of Chapter 4 is the determination
of the potential landscape of heterostructures. For this, two fundamentally
different approaches were used. Firstly, results from an approach that uti-
lizes the comparison of calculated and experimental spectra are presented.
Subsequently, an approach independent of experimental results will be in-
troduced and results are presented. In Chapter 5 the results are summarized
and an outlook is given.



Chapter 2

Theoretical framework

A fundamental concept used for the description of the optical and electronic
properties of semiconductors is the bandstructure. Among the methods
for the calculation of a solid’s bandstructure, the two methods used in the
framework of this thesis will be briefly introduced in Section 2.1 and Sec-
tion 2.3. By names, these are the k·p-theory and the density functional
theory (DFT). In the context of theoretically characterizing quantum well
heterostructures, the necessary modifications to the theory from Section 2.1
are briefly introduced in Section 2.2. The possible band alignments in such
heterostructures are introduced in this section as well.
The methods from Section 2.1 and Section 2.3 differ significantly in their
approach. While the k·p-theory represents a perturbative approach which
relies on experimental input, DFT is a so-called ab initio or first principles
method which means that no experimental input parameters are required.
However, once the eigenenergies, wavefunctions, dipole matrix elements and
coulomb matrix elements of a system have been obtained, these quantities
can be used to calculate the system’s optical properties. In Section 2.4.1 and
Section 2.4.2 the microscopic many-body equations used for the calculation
of a quantum well heterostructure’s absorption and photoluminescence will
be introduced.

2.1 k·p-theory

The motion of an electron in a crystal lattice can be described by the corre-
sponding Schrödinger equation. For a semiconductor, this equation repre-
sents a demanding many-body problem and because of this, approximations
are used. One of these is the Born-Oppenheimer approximation. In the

3
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Born-Oppenheimer approximation, the motion of the valence electrons is
separated from the much slower motion of the ions. Ions are nuclei together
with their tightly bound core electrons. This separation is based on the
much larger mass of an ion and the resulting considerably slower time scale
of its motion. In the sense of a mean-field approach we assume that the im-
pact of the nuclei and the other electrons on any single valence electron can
be expressed as an effective periodic lattice potential [[16]]. Under these ap-
proximations, the one-electron Schrödinger equation is defined by the action
of the Hamiltonian H on the electron’s wavefunction ψn,k:

Hψn,k (r) =

(
p2

2m0
+ V (r)

)
ψn,k(r) = εnk ψn,k (r) . (2.1)

H consists of two terms: The first represents the kinetic energy with the
particle’s momentum p and the free electron mass m0, and the second repre-
sents the periodic mean-field potential of the lattice felt by the electron. r is
the positional vector in real space and n and k label the eigenstates param-
eterized by their energy band n and wavevector (or crystal momentum) k.
The electron’s wavevector is a vector in the crystal’s reciprocal lattice where
the primitive cell is called the Brillouin zone (see [[16]] for example). The
single-particle energy spectrum εnk defines the single-particle bandstructure
of the solid. In general, the band energies and eigenstates are also parame-
terized by their spin quantum number. For simplicity, this is not explicitly
addressed in this thesis. For a perfectly periodic solid, Bloch’s theorem [[17]]
can be used for the description of the electronic wavefunctions:

ψn,k (r) =
eik·r

L3/2
un,k (r) , (2.2)

where L is the crystal’s length. Thus, the wavefunction of a crystal electron
can be represented by a plane wave modulated by a lattice periodic function
un,k.
Solving Eq.(2.1) for solids is in generally highly non-trivial and different
approaches have been applied (e.g. [[18, 19]]). One such approach is the
mentioned k·p-theory which is particularly useful in the description of direct
semiconductors.

2.1.1 Bulk semiconductors

The basic idea behind k·p bandstructure calculations is to use the fact that
the bandstructure problem has been solved at a point with high symmetry,
k0, and to calculate the bandstructure in its vicinity with the help of these
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solutions. Since the III-V semiconductors considered in this thesis have a
direct bandgap located at the Γ-point of the Brillouin zone, the point of
high symmetry considered here is exactly this point, k0 = (0, 0, 0).
By inserting Eq. (2.2) into Eq. (2.1) and with p = −i~∇, Eq. (2.1) can be
rearranged to (

H0 +
~
m0

k · p
)
un,k(r) = E n

k un,k(r) . (2.3)

Here H0 =
(
− ~

2m0
∇2 + V (r)

)
and E n

k =
(
εnk −

~2k2

2m0

)
has been used.

Eq. (2.3) is the starting point for k·p-calculations where the term propor-
tional to k · p is treated as a small perturbation.
The eigenstates un,k(r) and eigenvalues in the vicinity of k0 are built by
non-degenerate perturbation theory [[16]] and the expansion is performed
up to the lowest non-trivial order. Due to parity, the first order energy cor-
rection vanishes [[16]]. Hence, for the energy the first non-trivial correction
is the second order correction.
For simplicity, in the following, states will be written in Dirac notation |nk〉,
and k will be dropped from the notation for brevity when k = k0. The real
space representation of the Bloch-functions is obtained by the scalar product
〈r|nk〉 = un,k(r).
The energy corrections are:

εnk = εnk0
+

~2k2

2m0
+

~2

m2
0

∑
m 6=n

(k · 〈n|p|m〉) (k · 〈m|p|n〉)
εnk0
− εmk0

+O(k3) . (2.4)

For the states, the first order corrections are non-vanishing:

|nk〉 = |n〉 +
~
m0

∑
m6=n

k · 〈m|p|n〉
εnk0
− εmk0

|m〉 + O(k2) =
∑
m

cn,mk |n〉 + O(k2) .

(2.5)

Here the expansion coefficients cn,mk are given by

cn,mk = δm,n + (1− δm,n)
~
m0

k · 〈m|p|n〉
εnk0
− εmk0

|m〉 . (2.6)

Since Eqs. (2.4)-(2.6) require knowledge of the bandgap (in the respective
denominator) and dipole matrix elements (in the respective numerator),
these values are usually obtained from experiments.



6 CHAPTER 2. THEORETICAL FRAMEWORK

The energy dispersion from Eq. (2.4) allows for the introduction of the ef-
fective mass [[20]]

1

meff
=

1

m0
+

2

m2
0k

2

∑
m6=n

|〈n|k · p|m〉|2

εnk0
− εmk0

+O(k3) . (2.7)

Identifying the effective mass in Eq. (2.4) we can rewrite this equation as

εnk = εnk0
+

~2k2

2meff
. (2.8)

Not included in the given brief introduction into k·p-theory is the case of
degeneracy. The topmost valence bands in bulk zincblende semiconductors
are degenerate at the Γ-point. In such cases, degenerate perturbation the-
ory needs to be applied, which can be found in various solid state theory
textbooks (e.g. [[16, 20]]).
Furthermore, in order to properly describe the bandstructure of bulk zinc-
blende crystals, spin-orbit interaction needs to enter. Spin-orbit interaction
leads to a twice spin degenerated spin-orbit split-off valence band [[16]].
Additionally, for zincblende crystals solely taking into account the valence
and conduction bands, stemming from the sp3-hybridized orbitals, leads to
a positive curvature of the valence bands and thus positive effective masses.
This is contrary to experimental findings. Therefore, the influence of other
bands need to be taken into account as well.
Luttinger derived a Hamiltonian that solves these problems [[21]] using
empirical data. Luttinger introduced the so-called Luttinger parameters
into this phenomenological Hamiltonian. The Luttinger parameters are con-
nected to the effective masses and ensure correct curvatures of the bands.
The lift of degeneracy by spin-orbit interaction is taken into account by the
introduction of the spin-orbit split-off energy. This energy is usually taken
from experiments.
For the results presented in this thesis, the highest three valence bands and
the lowest conduction band are considered for each spin. The corresponding
bulk 8 × 8-Hamiltonian can be found in Table II in [[22]]. Löwdin renor-
malization (see [[23]]) was applied to the Luttinger parameters to include
coupling to remote bands which were not explicitly included.
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2.2 Bandstructure of quantum well structures

Nowadays, many opto-electronic devices are constructed by the growth of
different nanometer-thick semiconductor layers in such a way that a quan-
tum well heterostructure is formed. A common way to describe the band-
structure of quantum well heterostructures is to use the envelope function
approximation [[24]]. An advantage of this approach is that within a plane
of a layer the bulk bandstructure of the corresponding material is used.
To obtain the continuous bandstructure of a heterostructure, the individual
bandstructures of the layers are connected at the interface. This results in
different types of band offsets between the layers. Band offsets specify how
the bandgap difference of two semiconductor materials is divided between
the locations of the valence band maxima and the conduction band minima
of the corresponding bulk materials. This will be illustrated later in the
text.
In Section 2.2.1, the envelope function approximation for quantum well het-
erostructures will be briefly introduced and the necessary modifications to
the bulk k·p-Hamiltonian for the description of quantum well structures
will be discussed. In Section 2.2.2, different types of band offsets will be
introduced.

2.2.1 Envelope function approximation

In the following, the case of a perfectly abrupt change in quantum well com-
position and quantum well potential, leading to rectangular potential land-
scapes, is assumed. In comparison to bulk materials, the confinement po-
tential in quantum well heterostructures leads to the quantization of quasi-
continuous energy states along the growth direction. Thereby, multiple sub-
bands and confinement levels (or confinement energies) are introduced.[[15]].
This affects the transition energies. In this thesis mostly studies are pre-
sented where a focus is put on the fundamental transitions of heterostruc-
tures. Here, the confinement levels cause the corresponding transition ener-
gies to be shifted upwards in comparison to the differences of bulk valence
band and bulk conduction band maxima.
In this thesis, the x- and y-coordinates are assigned to the layer’s in-plane
direction and the z-coordinate is assigned to the growth direction. While
the motion of charge carriers is restricted in the z-direction by the potential
landscape, in in-plane directions the carriers can move freely.
To take into account the modifications to the wavefunctions caused by the
confinement potential, the plane wave envelope function in z-direction is
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replaced by a quantized standing wave ζλ (z), called the confinement func-
tion. Here, λ labels the quantum well’s state. Overall, the confinement
wavefunctions can be written down as

ψλ,k|| (r) = ζλ (z)
eik||·r||
√
S

uλ,k|| (r) =
eik||·r||
√
S

∑
n

ζn,λk||
(z) un,k0 (r) , (2.9)

where n is the bulk band index, S is the quantization area, k|| is the carrier
momentum in the quantum well-plane and r|| is the spatial coordinate in

the quantum well-plane. ζn,λk||
are expansion coefficients, analogous as in

Eq. (2.5), and are often called confinement functions as well.
In order to calculate a quantum well heterostructure’s bandstructure and
confinement wavefunctions by k·p-theory, the heterostructure’s k·p-matrix
is obtained from the modified bulk one. For this purpose, the confinement
potential is added to the diagonal of the Hamiltonian and kz is replaced by
−i∂z = −i ∂∂z . This is done in the following way and results in a Hermitian
Hamiltonian [[25]]:

kz A→
1

2
{(−i∂z)A(z) +A(z) (−i∂z)} (2.10)

Ak2z → (−i∂z)A(z) (−i∂z) . (2.11)

Here, A represents any bandstructure parameter. In this way, all bandstruc-
ture parameters become dependent on z.
Subsequently, the eigenvalue problem of the heterostructure’s Hamiltonian
is solved to obtain the single-particle energies and confinement wavefunc-
tions [[25]].
In the description of the emission or absorption of light, the probability of an
optical transition can be described by its oscillator strength. The oscillator
strength can be calculated from the corresponding dipole matrix element.
Once the confinement wavefunctions have been calculated, a quantum well’s
dipole matrix element can be calculated as1

dλνk||
=

i~ e
m0(ελk||

− ενk||
)S
∑
n,m

∫ (
ζn,λk||

(z)
)∗

ζm,νk||
(z) ep ·Pn,m dz , (2.12)

where e is the elementary charge, Pn,m = 〈n|p|m〉 is the bulk dipole ma-
trix element and ep is the polarization direction of the light. Moreover, the

1A more general discussion can be found in [[27]] section 6.4.
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confinement wavefunctions enable one to calculate the Coulomb matrix el-
ements as

V λ1,λ2,λ3,λ4
|k|||

=

2πe2

S ε0 εBG

∑
n,m

∫ (
ζn,λ1k||

(z) ζm,λ2k||
(z′)
)∗ e−|k||||z−z′|

|k|||

· ζm,λ3k||
(z′) ζn,λ4k||

(z) dzdz′ . (2.13)

Here, ε0 is the vacuum permittivity and εBG is the dielectric constant.
Both, the Coulomb matrix elements and the dipole matrix elements are nec-
essary during the calculation of the optical properties of a heterostructure
as can be seen later on.
In general, quantum confinement not only introduces subbands but also
leads to a lift of degeneracy for the topmost valence bands [[16]]. Addition-
ally, the energetic location of the valence band maxima can be influenced
by strained growth of semiconductor layers on a substrate with a differing
lattice constant. In general, strained growth of semiconductor layers with
different optical properties opens up a wide range of possibilities for het-
erostructure designs.
In the framework of this thesis, strain was taken into account by using
the Pikus-Bir-formalism [[26, 27]] within the k·p-formalism. The temper-
ature dependence of the bandgaps was taken into account by the use of
the Varshni-formula [[28]]. For ternary materials all used parameters were
linearly interpolated from the corresponding binary materials if not stated
otherwise. An exception is the bandgap where bowing enters with the mate-
rial dependent bowing coefficient. All material parameters and coefficients
are taken from [[29]].
Moreover, since the spatially separated electrons and holes generate an elec-
tric field, the confinement potential is modified in comparison to the poten-
tial in absence of this field. In the calculations, this is taken into account
by self-consistently solving the Poisson equation when calculating the con-
finement wavefunctions, as in [[30]]. Hence, at first, the confinement wave-
functions are calculated without the consideration of the attraction between
separated electrons and holes. Subsequently, the charge density distribu-
tions of the electrons and holes are calculated and the Poisson equation is
set up and solved for the attractive Coulomb potential. This potential is
then used to calculate the confinement wavefunctions once more. There-
after, the new and old solutions are compared and it is decided whether
another iteration is necessary.
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2.2.2 Band alignment

}
type-I

}

type-II

}

type-III

Figure 2.1: Visualization of different types of band offsets between pairs
of different semiconductor layers. The labeling (type-I, type-II or type-III)
refers to the pairs indicated by the brackets, respectively.

As mentioned before, the bandstructures of the individual layers of a
heterostructure are connected at their interfaces assuming certain band off-
sets. This results in the alignment of the band edges of the layers. The
valence band edge is defined as the bulk material’s valence band maximum,
and similarly the conduction band edge is defined as the bulk material’s con-
duction band minimum. Below, a brief introduction of the different types
of band offsets, which are illustrated in Fig 2.1, is given.

Type-I: straddling gap. The type-I band alignment between two semi-
conductor materials is characterized by the fact that the bandgap of one
semiconductor material is enclosed by the bandgap of the other one. Conse-
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quently, in a heterostructure made of such a pair of semiconductor materials
the valence band maximum and the conduction band minimum of the struc-
ture belong to the same material.

Type-II: staggered gap. In the type-II band alignment the valence and
conduction band edges of one semiconductor material are shifted in the same
direction towards the valence and conduction band edges of the other ma-
terial. In a heterostructure made of a pair of such materials, the valence
band maximum and the conduction band minimum of the structure do not
belong to the same material.

Type-III: broken gap. If the valence band edge of one semiconductor ma-
terial is situated higher in energy than the conduction band edge of the other
semiconductor material, the two materials have a type-III band alignment.
A heterostructure made of a pair of materials with type-III band alignment
has no effective bandgap.
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2.3 Density functional theory

As mentioned in the introduction of Chapter 2, another approach to calcu-
late the electronic structure of solids is DFT. DFT enables the calculation
of ground state properties for many-body systems with an emphasis on the
ground-state density. In general, DFT is not only applicable for solids,
but since they are relevant for this thesis, this discussion focuses on them.
Since DFT has the advantage of being independent from experimental in-
put parameters, it is called an ab initio (or first principles) method. In
practice, DFT is able to produce qualitatively good results while having a
reasonable computational effort. Therefore, it has been widely applied to a
broad range of problems (e.g. [[31–33]]). While the theorems of Hohenberg
and Kohn [[34]] provided the key idea for DFT, the approach of Kohn and
Sham [[35]] paved the way for practical DFT calculations. Since there is
numerous literature available on DFT (for example [[36]]), it will only be
briefly introduced.

2.3.1 Hohenberg-Kohn theorems

A solid represents a demanding many-body system that can be fully de-
scribed by its many-body wavefunction Ψ (r1, r2, . . . , rN ) where ri are the
position vectors of the N electrons. The many-body wavefunction is the
solution of the the system’s many-body Schrödinger equation

H Ψ (r1, . . . , rN ) = EΨ (r1, . . . , rN ) . (2.14)

Here, different contributions enter in H: H = T + U + V, where T is the
kinetic energy, U describes the electron-electron interaction and V is the
external potential that contains contributions from the potential of the ions
as well as potentially other external potentials. The different contributions
to the system’s energy will be revisited later in the text. H can be divided
in a universal part comprising T +U , which can be used for the description
of any electron system with the same number of electrons, and a system
dependent part V, which distinguishes one system from another.
The complexity of the underlying many-body problem generally prevents
the analytic solution of Eq. (2.14). However, a big step towards an efficient
numerical solution of complex many-body problems was made by Hohenberg
and Kohn [[34]] who mapped the ground state wavefunction of the system
onto its ground state density ρ0 (r). This allows for a reduction of 3N co-
ordinates to three. For systems with a non-degenerate ground state, the
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justification for the use of the ground state density instead of the ground
state wavefunction is summarized in the Hohenberg-Kohn theorems [[34]]:

1st Hohenberg-Kohn theorem: The ground state density ρ0 (r) un-
ambiguously determines the external potential besides a trivial additive con-
stant.

2nd Hohenberg-Kohn theorem: The ground state density minimizes
the system’s total energy.

Both theorems can be proven by reductio ad absurdum.
From the first theorem it follows that the ground state density unambigu-
ously determines H through the determination of the external potential.
Consequently, the ground state energy is given as a functional of the ground
state density:

E0 [ρ0] = 〈Ψ | U + T + V |Ψ〉 = F [ρ0] + V [ρ0] , (2.15)

where
F [ρ0] = 〈Ψ | U + T |Ψ〉 (2.16)

is the universal part and

V [ρ0] =

∫
ρ0(r)V(r) d3r = 〈Ψ | V |Ψ〉 (2.17)

is the system dependent part with the external potential V(r).
The second theorem allows for a variational principle to be applied for the
determination of the ground state density that minimizes E [ρ]. While the
dimensionality of the underlying problem is reduced, a new problem arises
which is to determine the universal functional F [ρ] for the interacting many-
body system. Therefore, the formulation of the problem up to this point
does not constitute a way of actually solving it.

2.3.2 Kohn-Sham equations

One year after Hohenberg and Kohn’s groundbreaking publication [[34]],
Kohn and Sham reformulated the problem [[35]] and thereby paved the way
for practical applications. This was done by dividing the energy functional of
Eq. (2.15) into a non-interacting part and a part which contains all unknown
many-body contributions. The energy functional will be revisited later.
Important in their approach is the introduction of auxiliary non-interacting
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single-electron orbitals ψi (r) called the Kohn-Sham orbitals (KS-orbitals),
which are used to map the system of interacting electrons onto the auxiliary
system of non-interacting electrons. This auxiliary system belongs to the
same ground state density as the actual interacting electron system. The
electron density can be calculated with the KS-orbitals as

ρ (r) =
N∑
i=1

ni | ψi (r) |2 , (2.18)

where ni is the occupation of orbital i. Using the KS-orbitals, we can sep-
arate the kinetic energy functional T [ρ] = 〈Ψ | T |Ψ〉 into a single-particle,
Ts, and a correlation part, Tc:

T [ρ] = Ts[ρ] + Tc[ρ] =
−~2

2m0

N∑
i=1

∫
ψ∗i (r)∇2 ψi (r) d3r + Tc[ρ] . (2.19)

Here, Tc takes into account the difference between the true many-body
problem’s kinetic energy and the kinetic energy Ts of the non-interacting
electrons. Strictly speaking, instead of a functional of the density, Ts is a
functional of the KS-orbitals which are in turn functionals of the density.
In this way Ts is implicitly a functional of the density. Likewise, we can
divide the electron-electron interaction energy functional U [ρ] = 〈Ψ | U |Ψ〉
in a Hartree part, UH , and an exchange (or more general: non-classical)
part, Ux:

U [ρ] = UH [ρ] + Ux[ρ] =
e2

8πε0

∫ ∫
ρ (r) ρ (r′)

|r− r′|
d3rd3r′ + Ux[ρ] . (2.20)

Whereas Ts and UH are known, the remaining terms constitute the exchange-
correlation energy:

Exc [ρ] = Tc [ρ] + Ux [ρ] . (2.21)

Everything unknown is in here. How this functional can be approximated
will be mentioned in Section 2.3.3. The total energy of the system can be
written down as the functional

E[ρ] = Ts[ρ] + UH [ρ] + Exc[ρ] + V [ρ] . (2.22)

The ground state energy is obtained by variation of Eq. (2.22):

0 =
δE[ρ]

δρ (r)
=
δTs[ρ]

δρ (r)
+ UH (r) + Vxc (r) + V (r) , (2.23)
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where the Hartree-potential

UH (r) =
e2

4πε0

∫
ρ(r′)

|r− r′|
d3r′ (2.24)

and the exchange-correlation potential

Vxc (r) =
δExc[ρ]

δρ (r)
(2.25)

have been used.
By applying the method of Lagrange multipliers when minimizing the total
energy, we obtain the Kohn-Sham equations [[35]]:(

−~2

2m0
∇2 + UH (r) + Vxc (r) + V (r)

)
ψi (r) = εi ψ (r) . (2.26)

Where εi are the Kohn-Sham eigenvalues (KS-energy eigenvalues).
Consequently, when calculating the total energy of a system we can solve N
single-particle equations instead of a N -particle Schrödinger equation.

2.3.3 Exchange-correlation functionals

The introduction of the exchange-correlation potential allows for the usage
of the non-interacting KS-orbitals. Still, the problem of how to explicitly
express the unknown exchange-correlation potential remains. For this, dif-
ferent approaches have been made (see [[35, 37, 38]] for examples). Subse-
quently, two important exchange-correlation functional classes will be briefly
introduced.
The first common approximation to the exchange-correlation energy, which
provided the basis for all other approaches, was introduced with the local
density approximation (LDA) [[35]]. In the LDA description of Exc, the
exchange-correlation energy per electron εxc(ρ (r)) of a homogeneous elec-
tron gas is used which belongs to the same local density as is found locally
in the examined system:

Exc[ρ (r)] =

∫
εLDAxc (ρ (r)) ρ (r) d3r . (2.27)

While LDA is the numerically least demanding approach, it produces qual-
itatively good results for different kinds of systems (e.g. [[39, 40]]). It is re-
markable that although LDA makes use of the exchange-correlation energy
of a homogeneous electron gas, it has proven to be useful for inhomogeneous
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systems as well. However, when applying LDA for semiconductors, lattice
constants [[41]] and bandgaps are often significantly underestimated [[42]].
In order to better take into account the non-uniform character of a given
electron density, the generalized gradient approximations (GGAs) were in-
troduced (see [[37, 43]] for examples). Here, the exchange-correlation energy
is formulated as a semi-local functional of the electron density and its gra-
dient:

Exc[ρ (r)] =

∫
εGGAxc (ρ (r) ,∇ρ (r)) ρ (r) d3r . (2.28)

Such a functional has been used for the results presented in this thesis.
More specifically, the functional PBEsol [[44]] has been used which is based
on the functional PBE [[37]] but has been parametrized for solids. For solids,
PBEsol is known to improve the accuracy of calculated lattice constants in
comparison to LDA and PBE [[44]] as well.

Nevertheless, for certain Sb concentrations in Ga(AsSb), the problem
of vanishing Kohn Sham-bandgaps (KS-bandgaps) occurs during electronic
structure calculations with PBEsol. Since such concentrations were consid-
ered for the research that will be presented in Section 4.2.2, this problem
needed to be addressed. The so-called technique of half-occupations [[5, 6, 8,
45]] provides an approach for addressing this problem. Since this technique
was used for the results that will be presented in Section 4.2.2, it will be
introduced below.

2.3.4 DFT-1/2

The technique of half occupations relates back to a publication of Slater
and Johnson in the 1970s [[8]], in which the authors present their Xα-
method. This method enables the calculation of ionization energies that
agree well with experimental values even for systems where calculations
with the Hartree-Fock method were numerically too expensive at that time.
Slater and Johnson introduced the so-called transition state ([[8]] and refer-
ences therein). The transition state refers to a state in which the occupation
is halfway between the occupation of the ground state and the excited state
for which the corresponding transition energy can be computed as the en-
ergy eigenvalue of this transition state. Hence, this method is often called
the the half-occupation technique.
Some years later, Janak proved that this transition-state technique can be
applied in DFT calculations as well [[45]].
Decades later, Ferreira et al. [[5, 46]] applied the half-occupation technique



2.3. DENSITY FUNCTIONAL THEORY 17

for correcting the energy of valence band states in electronic structure calcu-
lations within DFT. In their publications, they compared results from LDA-
DFT calculations with and without the use of the half-occupation technique
and labeled the use of this technique with LDA-1/2. Applying LDA-1/2,
Ferreira et al. [[5]] obtained atomic ionization energies that agree well with
experimental results and bandgaps that agree with experimental bandgaps,
even when the corresponding bandgaps from LDA calculations significantly
differ from the experimental ones [[5, 46]]. In a subsequent publication it
was shown that their method can be applied in combination with the GGA
functional PBE as well [[46]].
Below, the necessary concepts for using the method of half occupations
within DFT will be briefly introduced. In doing so, the notation of Ferreira
et al. will be followed, and cgs units are used.
Based on Janak’s results, Ferreira et al. proceeded from the KS-energy
eigenvalue εi in its differential form:

εi(ni) =
∂E

∂ni
, (2.29)

where E is the total energy of the system studied and ni is the occupation
of state i.
The energy eigenvalue of the half ionized state i can be obtained from the
difference of the ground state’s energy and the ion’s energy. For this purpose,
Eq.(2.29) is integrated and the KS-energy eigenvalue is assumed to depend
linearly on the occupation [[46]]:

E (0)− E (−1) =

∫ 0

−1

∂E

∂ni
dni =

∫ 0

−1
εi(ni) dni = εi (−1/2) . (2.30)

Here, εi (−1/2) is the half ionized state’s KS-energy eigenvalue and E (0)
is the ground state’s total energy while E (−1) is the total energy of the
system with a single electron removed.
Taking the derivative of the KS-energy eigenvalue with respect to the occu-
pation yields [[6, 46]]

∂εi
∂ni

=

∫ ∫
d3r d3r′ρi(r)

[
ρi(r

′)

| r− r′ |
+

1

| r− r′ |
∑
j 6=i

nj
∂ρj(r

′)

∂ni

+
δ2Exc

δρ(r)δρ(r′)
ρi(r

′) +
δ2Exc

δρ(r)δρ(r′)

∑
j 6=i

nj
∂ρj(r

′)

∂ni

]
.

(2.31)
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Because of the self-energy character of the first term on the right hand side
of Eq. (2.31), Ferreira et al. introduced the self-energy Si, which is used for
the correction of state i’s energy, as

Si =
1

2

∂εi
∂ni

. (2.32)

The self-energy is related to the self-energy potential VS by

Si =

∫
d3r ρi (r)VS (r) (2.33)

with

VS (r) =
1

2

∫
d3r′

[
ρi(r

′)

| r− r′ |
+

1

| r− r′ |
∑
j 6=i

nj
∂ρj(r

′)

∂ni

+
δ2Exc

δρ(r)δρ(r′)
ρi(r

′) +
δ2Exc

δρ(r)δρ(r′)

∑
j 6=i

nj
∂ρj(r

′)

∂ni

]
.

(2.34)

Applying the self-energy correction to atoms, a much simpler expression for
VS than Eq. (2.34) can be used [[5, 46]]:

VS(r) = V (0, r)− V (−1/2, r) . (2.35)

In Eq. (2.35), V (0, r) is the Kohn-Sham potential of the atom in its ground
state and V (−1/2, r) the Kohn-Sham potential of the half ion.
Eq. (2.35) can be used for solids as well. Important for this is that the
wavefunction of the utilized state of the solid does not substantially differ
from that of the corresponding atom. The applicability of this Eq. (2.35)
favored by the strong localization of the charge carriers in the valence band
of a semiconductor.
In practical applications, the self-energy potentials from Eq. (2.35) can be
calculated by using the ATOM code [[47]] which produces atomic pseudopo-
tentials that can be used regardless of the chosen DFT code package. ATOM
enables partial ionization of the atomic orbitals that form the top-most va-
lence band when the atoms form the semiconductor. After generating them,
the self-energy potentials can be added as external potentials to the pseu-
dopotentials of the corresponding atoms and subsequently these can be used
to generate the pseudopotential of the semiconductor. This needs to be done
in a suitable manner and will be discussed below.
Furthermore, in the case of covalent bonds, the bonding electrons are shared
and one must be careful with the amount of charges that are stripped off.
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Incorporating the self-energy potentials of each atom that is part of the co-
valent bond into the pseudopotential of the solid leads to a double counting
of the correction. Therefore, in such cases 1/4 charges are stripped off [[5,
6]].
Still, one problem remains when the pseudopotentials of the atoms that were
corrected by adding VS to them are joined to form the pseudopotential of
the solid, namely that the self-energy potential’s tails from the atoms over-
lap with each other and thereby numerical divergence is caused. Hence, VS
needs to be suitably truncated. For this purpose, Ferreira et al. introduced
a cut-off function for a sphere-like trimming:

θ(r) =


[
1−

(
r

rcut

)n]3
for r ≤ rcut .

0 for r > rcut

(2.36)

Here n should be even and as large as numerically possible to guarantee a
sharp cut-off.
Physically, the idea behind this truncation is that the self-energy potential
should be applied only in regions where the wavefunction of the respective
state is not negligible [[5, 13]]. As presented in [[5]], the parameter rcut from
Eq. (2.36) is obtained from bandgap maximization of the examined semicon-
ductor or insulator. For this, the trimmed self-energy potentials are joined
into the pseudopotentials of the atoms from which the pseudopotenial of the
solid is then generated. After this, the bandgap of the solid is calculated
within DFT. This is repeated for different radii. Finally, for each considered
element the radius that maximized the bandgap of the corresponding solid
is chosen. The number of different elements to which the self-energy correc-
tion is applied depends on the solid and the type of chemical bond in it [[5,
6]]. Ferreira et al. applied the correction scheme to elementary insulators
and semiconductors as well as to binary compounds [[5, 46]]. For the cal-
culations that are presented in Section 4.2.2, it has been applied to binary
and ternary semiconductors. If the correction is applied to two elements, at
first one cut-off radius is obtained by bandgap maximization. Subsequently,
the resulting trimmed pseudopotential is used to find the second cut-off ra-
dius. If three cut-off radii are needed for a ternary semiconductor, bandgap
maximization of two suitable binary semiconductors provides the optimized
radii for all elements.
Ferreira et al. state that for fixed atom and bonding type rcut weakly de-
pends on the chemical environment [[5]]. Because of this, they applied the
same rcut to the same anion in different binary semiconductors.
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However, a spherical trimming scheme for the self-energy potential can lead
to an erroneous downward shift in energy of conduction band states. This is
for example the case when the hole resides along the bonds and conduction
band states near the core overlap with θ (r) VS (r). As a solution, Xue et
al. [[6]] introduced an improved cut-off function which allows for a trimming
in form of a spherical-shell:

θsh(r) =


0 for r < rin[
1−

(
2 (r − rin)

rout − rin
− 1

)n]3
for rin ≤ r ≤ rout .

0 for r > rout

(2.37)

Here, inner and outer cut-off radii rin and rout are necessary and, as before,
n should be even and as large as numerically possible. Again, the radii
are obtained from bandgap maximization. For the results presented in this
thesis, n = 20 was used for each cut-off function.
While Eq. (2.37) was used to produce the results presented in Section 4.2.2,
the effect of using Eq. (2.36) on the valence band offset results is tested
in this chapter as well.
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2.4 Calculation of optical properties

Subsequently, the microscopic many-body theory from which the absorption
(or gain) and photoluminescence (PL) of quantum well heterostructures can
be calculated will be introduced. While Section 2.4.1 introduces the semi-
conductor Bloch equations (SBEs) for the calculation of the absorption,
Section 2.4.2 introduces the semiconductor luminescence equations (SLEs)
for the calculation of the PL.
For this purpose, the second quantization will be used in the following sec-
tions. In the second quantization formalism, the fermionic creation and
annihilation operators a†µ,k||

and aµ,k|| create or annihilate an electron in

subband state µ with in-plane momentum k||.
For the description of an interacting system’s time dependence, the Heisen-
berg picture will be used. For simplicity, the time dependence of the op-
erators will usually not be explicitly noted (e.g. O instead of O(t)). In
the Heisenberg picture, the temporal evolution of an operator that acts on
a system is connected to the system’s Hamiltonian H via the Heisenberg’s
equation of motion:

i~
∂

∂t
O = [O,H] . (2.38)

Therefore, the dynamics of an observable can be obtained by taking the
expectation value of Eq. (2.38):

i~
∂

∂t
〈O〉 = 〈[O,H]〉 . (2.39)

Applying this technique for an N -particle operator, the interaction terms
in H cause coupling to (N + 1)-particle operators on the right hand side of
Eq. (2.38) (or equivalent Eq. (2.39)). The dynamics of the newly introduced
operators are in turn determined by Eq. (2.38) and couple to (N+2)-particle
operators. In this way, the so-called infinite hierarchy problem is caused,
given by the coupled set of differential equations obtained from the use of
Eq. (2.38). For a many-body problem, the set of coupled differential equa-
tions can not be solved analytically. In order to overcome this, a systematic
truncation needs to be applied. The so-called cluster expansion (for more
details see [[15]] and references therein) is a formalism that allows one to
carry out a systematic truncation while preserving physically relevant infor-
mation.
In the cluster expansion, a N -particle quantity is systematically decomposed
into combinations of single-particle quantities and higher-order-particle quan-
tities and correlations [[15]]. For an underlying physical problem, the cluster
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expansion is truncated at the lowest possible level such that all relevant ef-
fects are still included but the numerical effort is reduced.
During the calculations that were carried out for this thesis, higher order
contributions were factorized into expectation values of single-particle quan-
tities, applying the Hartree-Fock approximation [[15]]. The scattering terms
were treated at the level of the second-Born scattering approximation [[15,
16]] which was generally used in the Markov-limit. The latter refers to omit-
ting memory effects.

2.4.1 Semiconductor Bloch equations

The optical response of a quantum well heterostructure can be determined
from the macroscopic polarization P (t). The macroscopic polarization can

be calculated from the microscopic polarizations pνλk||
= 〈a†λ,k||

aν,k||〉 as

P (t) =
1√
S

∑
λ,ν,k||

((
dλνk||

)∗
pνλk||

+ dλνk||

(
pνλk||

)∗ )
. (2.40)

Here, λ and ν label the conduction and valence band states in the het-
erostructure, respectively. The dynamics of the microscopic polarizations are
calculated using Eq. (2.39), which leads to the SBEs. The SBEs are a cou-

pled set of differential equations for pνλk||
and the electron fλk||

= 〈a†λ,k||
aλ,k||〉

and hole occupations fνk||
= 1− 〈a†ν,k||

aν,k||〉.
In Eq. (2.39), the many-particle system’s Hamiltonian

H = H0 +HC +HD +HP (2.41)

is inserted. Here, H0 = He
0 +Hp

0 describes the non-interacting contributions
from electrons,

He
0 =

∑
µ,k||

εµk||
a†µ,k||

aµ,k|| , (2.42)

and phonons,

Hp
0 =

∑
β,p||,p⊥

~Ωβ
p||,p⊥

(
Dβ†

p||,p⊥
Dβ

p||,p⊥
+

1

2

)
, (2.43)

where Dβ†
p||,p⊥

(Dβ
p||,p⊥) is the bosonic phonon creation (annihilation) oper-

ator, ~Ωβ
p||,p⊥ the phonon energy and β the phonon type. p = (p||, p⊥) is
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the phonon wavevector with the in-plane coordinates denoted by p|| and the
coordinate in growth direction is denoted by p⊥.
The remaining contributions in Eq. (2.41) describe many-body interactions.
Here, the Coulomb interaction among carriers is described by

HC =
1

2

∑
µ,µ′

∑
k||,k

′
||,q|| 6=0

V µµ′µ′µ
|q|||

a†µ,k||+q||
a†
µ′,k′

||−q||
aµ′,k′

||
aµ,k|| . (2.44)

The interaction of charge carriers with phonons is described by

HP = ~
∑
β,µ

∑
p||,p⊥,k||

Gµp||,p⊥

(
Dβ

p||,p⊥
+
(
Dβ
−p||,p⊥

)†)
a†µ,k||

aµ,k||−p|| (2.45)

where Gµp||,p⊥ is the Fröhlich matrix element [[15, 48]]
In the Hamiltonian from Eq. (2.41), the light field can be described clas-
sically to obtain the SBEs. As a result, the light-matter interaction is de-
scribed semi-classically. This stems from the fact that the light field gener-
ated by an ideal, coherent laser is as close as possible to classical light [[15]].
The corresponding Hamiltonian, which is labeled with D since it describes
dipole transitions between bands, is given by

HD = −E(t)
∑
λ,ν,k||

( dλνk||
a†λ,k||

aν,k|| + c.c. ) . (2.46)

Here, E(t) is the classical light field. When the system’s Hamiltonian is
used in Eq. (2.39) to obtain the dynamics of pνλk||

, one finds that the resulting

equation couples to fλk||
and fνk||

. The dynamics of the distribution functions

can in turn be determined using Eq. (2.39). Altogether, this leads to the
SBEs:

∂

∂t
pνλk||

=
1

i~
∑
ν′,λ′

(ενν
′

k||
δλ,λ′ + ελλ

′
k||
δν,ν′) p

ν′λ′
k||

−(1− fλk||
− fνk||

)
1

i
Ωλν
k||

+
∂

∂t
pνλk||

∣∣∣∣
scatt

(2.47)

∂

∂t
fλk||

= −2 Im

(∑
ν

Ωλν
k||

(
pνλk||

)∗)
+
∂

∂t
fλk||

∣∣∣∣
scatt

(2.48)

∂

∂t
fνk||

= −2 Im

(∑
λ

Ωλν
k||

(
pνλk||

)∗)
+
∂

∂t
fνk||

∣∣∣∣
scatt

. (2.49)
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Into the SBEs (Eqs. (2.47)-(2.49)), the renormalized single-particle energies

ελλ
′

k||
= ελk||

δλ,λ′ −
∑
λ′′,q||

V λλ′′λ′λ′′

|k||−q||| f
λ′′
q||

(2.50)

and
ενν

′
k||

= ενk||
δν,ν′ −

∑
ν′′,q||

V ν′ν′′νν′′

|k||−q||| f
ν′′
q||

(2.51)

enter, and

Ωλν
k||

=
dλνk||

E (t)

~
+

1

~
∑

λ′,ν′,q||

V λν′νλ′

|k||−q|||p
ν′λ′
q||

(2.52)

is the renormalized Rabi frequency. Eq. (2.52) shows that the charge carriers
react to an effective field which consists of the applied field E (t) weighted
with dλνk||

in the first term and the internal dipole field of the excited charge

carriers in the second term [[16]].
The subscript scatt marks the scattering terms from electron-electron and
electron-phonon scattering processes, which are treated at the level of the
second-Born approximation [[49, 50]].
Since for this thesis situations were considered where high charge carrier
densities that show no major temporal changes are present, instead of solving
Eq. (2.48) and Eq. (2.49), Fermi-Dirac distributions were used in Eq. (2.47).
From the microscopic polarizations, the macroscopic polarization P (t) can
be calculated according to Eq. (2.40). By Fourier transformation of P (t)
into frequency space, the frequency dependent absorption α(ω) is calculated
as

α(ω) =
ω

cnBG ε0
Im

(
P (ω)

E(ω)

)
. (2.53)

Here, c is the speed of light in vacuum and nBG is the background refractive
index.
Since negative absorption represents light-emission, it is called gain due to
the enhancement of the incident light-field. By convolution of the gain spec-
trum with a Gaussian distribution, the spectrum can be inhomogeneously
broadened to take fluctuations of quantum well widths and compositions
into account.

2.4.2 Semiconductor luminescence equations

While the coherent polarizations decay on a picosecond time scale, the char-
acteristic lifetime of the incoherent carrier densities is in the nanoseconds
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range [[15]]. As long as population inversion is present, luminescence can be
generated by spontaneous recombination of electron-hole pairs. The light
field generated by this quantum mechanical process cannot be described
classically. Hence, to obtain the SLEs and calculate the PL from these, the

bosonic photon creation and annihilation operators
(
Bβ

q||,q⊥

)†
and Bβ

q||,q⊥

are introduced into the system’s Hamiltonian. Here, β is the light polar-
ization and q|| and q⊥ are the in-plane components and the component in
growth direction of the photon wavevector q, respectively.
The quantized light-field causes the modification of Eq. (2.41) to

H = H0 +HC +HP +HLM , (2.54)

where H0 = He
0 +Hp

0 +H l
0. Here, the free-photon Hamiltonian H l

0 is defined
as

H l
0 =

∑
β,q||,q⊥

~ωq||,q⊥

((
Bβ

q||,q⊥

)†
Bβ

q||,q⊥
+

1

2

)
. (2.55)

HLM is the fully quantized light-matter interaction Hamiltonian

HLM = −i~
∑
β,λ

∑
q||,q⊥,k||

(
Fλνk||q||,q⊥

Bβ
q||,q⊥

a†λ,k||+q||
aν,k|| + c.c.

)
, (2.56)

which replaces HD in Eq. (2.41). Fλνk||q||,q⊥
= dλνk||

Eq||,q⊥u
β
q||,q⊥/~ is the light-

matter coupling matrix element where Eq||,q⊥ =

√(
~ωq||,q⊥

)
/ (2ε0) is the

vacuum field amplitude and uβq||,q⊥ is the effective mode function [[15]].
For the purpose of calculating PL spectra, the dynamics of the photon-
number-like correlations ∆〈 (Bβ

q||,q⊥)†Bβ
q||,q

′
⊥
〉 are used. More specifically,

the PL can be obtained from the resonant part ∆〈 (Bβ
q||,q⊥)†Bβ

q||,q⊥ 〉, since
it is proportional to the temporal change of the photon number for photons
with energy ~ωq||,q⊥ . The dynamics of ∆〈 (Bβ

q||,q⊥)†Bβ
q||,q⊥′ 〉 are obtained

using Eq. (2.39):

∂

∂t
∆〈 (Bβ

q||,q⊥
)†Bβ

q||,q⊥′ 〉 = i
(
ωq||,q⊥ − ωq||,q⊥′

)
∆〈 (Bβ

q||,q⊥
)†Bβ

q||,q⊥′ 〉

+
∑
λ,ν,k||

(
Fλνk||q||,q⊥

(
Πλ,ν

k||,q||,q⊥′

)∗
+
(
Fλνk||q||,q⊥′

)∗
Πλ,ν

k||,q||,q⊥

)
.

(2.57)
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This equation couples to the photon-assisted polarization

Πλ,ν
k||,q||,q⊥

= ∆〈 (Bβ
q||,q⊥

)† a†ν,k||−qaλ,k|| 〉 , (2.58)

whose equation of motion is in turn determined using Eq. (2.39) [[15,
48]]

i~
∂

∂t
Πλ,ν

k||,q||,q⊥
=
(
ελk||
− ενk||−q||

− ~ωq||,q⊥

)
Πλ,ν

k||,q||,q⊥

−
∑
λ′

Πλ′,ν
k||,q||,q⊥

∑
λ′′,k′

||

V λλ′′λ′λ′′

|k||−k′
|||
fλ

′′

k′
||
−
∑
ν′

Πλ,ν′

k||,q||,q⊥

∑
ν′′,k′

||

V ν′ν′′νν′′

|k||−q||−k′
|||
fν

′′

k′
||

+ fλk||
fνk||−q||

i~Fλ,νk||,q||,q⊥
+
∑

λ′,ν′,k||
′

i~Fλ
′,ν′

k′
||,q||,q⊥

∆〈a†
λ′,k′

||
a†ν,k||−q||

aλ,k||aν′,k′
||−q||〉

−
(

1− fλk||
− fνk||−q||

)
·

i~ ∑
q′⊥

Fλ,ν
k||,q||,q

′
⊥

∆〈 (Bβ
q||,q⊥

)†Bβ
q||,q

′
⊥
〉+

∑
k||

′,λ′,ν′

V λν′νλ′

|k||
′−k|||Π

λ′,ν′

k||
′,q||,q⊥


+
∂

∂t
Πλ,ν

k||,q||,q⊥

∣∣
corr

.

(2.59)
Analogous to the SBEs, the single-particle energies ελk||

and ενk||−q||
on the

right hand side of the first line are renormalized by the corresponding terms
in the second line.
The third line contains the spontaneous emission source term. In the first
part of the spontaneous emission source term, fλk||

fνk||−q||
yields the condi-

tion that allows for photon-assisted polarizations to build up. To be more
specific, this is possible when a hole and an electron exist simultaneously
at wavevectors k|| and k|| − q||. The second part of line three contains ex-

citonic correlations ∆〈a†
λ′,k′

||
a†ν,k||−q||

aλ,k||aν′,k′
||−q||〉. This part is necessary

to ensure the right lineshape of the luminescence spectrum and leads to an
underestimation of the luminescence amplitudes if it is neglected. Hence, it
is necessary to set up the equation of motion for the excitonic correlations
and use a suitable truncation. This equation of motion and a discussion
of the truncation, resulting in a treatment at the level of the second-Born
Markov approximation, can be found in [[48]]. Line three of Eq. (2.59) shows
that the onset of spontaneous emission takes place regardless of interactions
with a light-field. Instead, it is dependent on the presence of excited charge
carriers.
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In the fifth line, the generalized photon-assisted Rabi frequency can be iden-
tified in the brackets which is multiplied by the phase-space filling factor
given by the fourth line. The first term in the brackets in line five describes
the stimulated emission contributions. These contributions are not negligi-
ble if strong fields are present, i.e. caused by optical microcavities.
In the sixth line, ∂

∂tΠ
λ,ν
k||,q||,q⊥

∣∣
corr

summarizes higher-order correlations from

electron-electron and electron-phonon scattering processes. These are treated
at the level of the second Born-Markov approximation .
The temporal evolution of the occupations is given by

∂

∂t
fλk||

= −2Re

∑
q||,q⊥

(
Fλνk||q||,q⊥

)∗
Πλ,ν

k||,q||,q⊥

 (2.60)

and

∂

∂t
fνk||

= −2Re

∑
q||,q⊥

(
Fλνk||q||,q⊥

)∗
Πλ,ν

k||+q||,q⊥,q||,q⊥

 . (2.61)

When calculating the luminescence spectra presented in this thesis thermal-
ized charge carriers were assumed. Because of this, Fermi-Dirac distributions
were used instead solving Eq. (2.60) and Eq. (2.61).
Eqs. (2.57), (2.59), (2.60) and (2.61) represent the SLEs. The PL S(ωq||,q⊥)
is obtained from the resonant part of the SLEs:

S(ωq||,q⊥) =
∂

∂t
∆〈 (Bβ

q||,q⊥
)†Bβ

q||,q⊥
〉

= 2 Re

 ∑
λ,ν,k||

Fλνk||q||,q⊥

(
Πλ,ν

k||,q||,q⊥

)∗ .
(2.62)

As in case of the gain spectrum, fluctuations in quantum well widths and
compositions can be taken into account by convolution of the PL spectrum
with a Gaussian distribution.
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2.5 Implementations

For the calculations framework of this thesis, the lowest conduction band,
the heavy hole, light hole, and spin-orbit split-off hole band were explic-
itly considered. Since each band is twice-spin degenerate, this results in
an 8×8 k·p-Hamiltonian. The heterostructures k·p-Hamiltonian has been
obtained as described in Section 2.2.1. Necessary input are the layer compo-
sitions, layer widths and band offsets. Subsequently, the resulting eigenvalue
problem is solved and the confinement wavefunctions and single-particle en-
ergies are calculated. The results are used to calculate the heterostructure’s
dipole and coulomb matrix elements. These matrix elements and the single-
particle energies are input to the SBEs (Eq. (2.47)) and SLEs (Eq. (2.57) and
Eq. (2.59)). From these, the absorption and PL are calculated via Eq. (2.53)
and Eq. (2.62), respectively.
Further information can be found in the Appendix, where also typical pa-
rameters that were used for the k·p-calculations, the calculations of the
optical properties and the DFT calculations are given.
All presented results obtained with DFT were calculated with the Vienna Ab
initio Simulation Package (VASP) [[51–54]]. This package supplies various
exchange-correlation functionals and makes use of the projector-augmented-
wave method [[55, 56]].



Chapter 3

Ga(AsSb)/(InGa)As type-II
structures

Laser emission from semiconductor heterostructures with type-II band align-
ment is of technological interest in different areas, e.g. for medical applica-
tions [[57]] or optical communication [[1]], and these structures have proven
their usefulness in fundamental research [[10, 11]] as well. Modern society is
particularly dependent on telecommunication. In modern telecommunica-
tion, internet communication and television and telephone signals are trans-
mitted using optical fiber as waveguides (see [[58]] and references therein
for examples). Fiber-optical communication requires emission wavelengths
in the near-infrared where minima of absorption and dispersion of the used
fiber-optic materials can be found around different wavelengths [[59]]. This
causes different transmission windows to be used. One of these windows is
given by the wavelength range of 1260 nm until 1360 nm and is called the
O-band [[59]]. The research presented below mainly deals with wavelengths
in the vicinity of the O-band.
As mentioned, the more established type-I heterostructures with bandgaps
small enough for emission in the near-infrared suffer from significant Auger-
losses as the wavelength increases [[2]]. Therefore, Auger recombination is
a dominant loss mechanism in many of these heterostructures [[60]].
An alternative to type-I heterostructures is offered by type-II heterostruc-
tures. Type-II heterostructures are composed of nm-thick layers of different
semiconductor materials grown on top of a substrate material. By suitably
choosing a material combination, the electrons and holes are confined in dif-
ferent layers and light is emitted from electron-hole recombination across an
internal interface. The layer into which excited charge carriers of the same

29
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sign relax represents a sink in the potential to the carriers and is referred
to as a well. The electron and hole well layers constitute the light emitting
region, called the active region. The active region is embedded in barrier
material, which can be utilized to guarantee confinement of the charge carri-
ers and for other purposes, e.g. to avoid coupling between confined carriers
from different active regions in the case of structures with multiple active
regions.
In type-II structures, the spatial separation of electrons and holes leads to
reduced electron-hole wavefunction overlap in comparison to type-I struc-
tures and thereby to reduced dipole strengths of optical transitions. The
latter can be addressed by thoroughly optimizing the active regions of type-
II heterostructures with regard to their optical properties.
In Section 3.1.1, type-II heterostructure design studies for laser emission
close to 1200 nm will be discussed with a focus on the wells while in Sec-
tion 3.1.2 the influence of the barrier material on the optical properties will
be studied. In Section 3.1.3, type-II designs for an emission wavelength in
the vicinity of 1300 nm will be studied.
Section 3.2 will present an experiment-theory investigation of the optical
and terahertz (THz) properties of charge-transfer excitons in type-II het-
erostructures. Charge-transfer excitons are promising for the study of the
internal interfaces properties in type-II heterostructures on a microscopic
level.
The optical properties presented in this chapter were calculated with the
microscopic theory presented in Section 2.4 and Section 2.2.

3.1 Design and optical characterization

As mentioned in Section 2.2.1, the confinement potential, which is described
by the alignment of the valence band and conduction band edges from the
different layers, causes the formation of confinement levels and subbands.
In quantum well heterostructures, the transition energy of the fundamental
transition depends on the energies of the lowest electron and lowest hole
confinement levels, which can be influenced by the heterostructure design.
This will be considered later.
As an example, Fig 3.1 shows the confinement potential at room tempera-
ture of a type-II heterostructure with (InGa)As electron wells and Ga(AsSb)
hole wells and GaAs barriers for two different sheet carrier densities. Dashed
black lines show the confinement potential for a sheet carrier density of
3.0·1012/cm2, whereas the colored lines show the confinement potential for
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Figure 3.1: Confinement potential in growth direction at 300 K of a
GaAs0.8Sb0.2/In0.2Ga0.8As heterostructure with 10 nm GaAs barriers and
6 nm and 4 nm In0.2Ga0.8As and GaAs0.8Sb0.2 wells, respectively. The solid
blue line and solid green line give the conduction band and valence band
edges, respectively, at a sheet carrier density of 0.1·1012/cm2. The dashed
black lines give the band edges at a carrier density of 3·1012/cm2. The ener-
gies of the lowest confinement levels at a sheet carrier density of 0.1·1012/cm2

are given by the horizontal dashed colored lines.

a sheet carrier density of 0.1·1012/cm2. The dashed colored lines give the
energetic locations of the lowest (or first) electron (blue) and lowest hole
(green) confinement levels at a sheet carrier density of 0.1·1012/cm2.
In contrast to the confinement potential at the lower sheet carrier density,
it can be seen from Fig 3.1 that the confinement potential at a sheet carrier
density of 3.0·1012/cm2 is significantly deformed by the Coulomb attraction
of the spatially separated electrons and holes. As a result, at high sheet
carrier densities the electron-hole wavefunction overlap is increased in com-
parison to low sheet carrier densities.

3.1.1 Heterostructure design for emission around 1200 nm

Besides the emission wavelength, the temperature at which reliable laser
operation is possible can in practice set limits to the application area of a
laser.
For near-infrared laser applications at room temperature, (InGa)As and
Ga(AsSb) based type-II heterostructures have proven to be promising [[14,



32 CHAPTER 3. GA(ASSB)/(INGA)AS TYPE-II STRUCTURES

61]]. Nevertheless, realized laser structures exhibited disadvantageously low
optical output powers of 140 mW per facet [[14]] or even lasing from a type-I
transition instead of type-II [[61]]. This indicated the need for further opti-
mization.
Optimizations that increase the wavefunction overlap of the first electron
and first hole state in type-II structures aim to increase the type-II transi-
tion strength. For a structure composed of (InGa)As and Ga(AsSb) wells,
an efficient possibility to achieve this is the addition of another (InGa)As
well instead of using a bi-layer structure. This is done in such a way that
the (InGa)As wells surround the Ga(AsSb) well. Structures using such a
design are called “W”-structures since the conduction band edge alignment
looks like a stylized W, as can be seen in Fig. 3.1 (solid blue line).
“W”-heterostructures with (InGa)As and Ga(AsSb) wells are the objects of
investigation in this chapter. For all presented calculations of the optical
properties in this thesis, the charge carrier capture was not modeled but a
certain sheet carrier density in the wells was used instead.
In the context of optimizing the optical emission properties of (InGa)As and
Ga(AsSb) based “W”-heterostructures, structures with either equal electron
and hole well widths or unequal well widths were studied. In each case,
In and Sb concentrations of 20% were used which results in emission wave-
lengths close to the O-band and 10 nm GaAs barriers were used to guarantee
a proper decay of the charge carrier wavefunctions within these.

Fig. 3.2 shows the calculated PL and gain (absorption) spectra for these
structures while the corresponding emission wavelengths and the increased
emission strength are given in Table 3.1. At this, the emission strength of
the structure from the first row is considered to be 100%. The labeling of the
structures refers to the well width as explained later. Sheet carrier densities
of 0.1·1012/cm2 and 3.0·1012/cm2 were used to calculate the low-density PL
spectra at 300 K and high-density gain (absorption) spectra at 300 K (solid
lines) and 350 K (dashed lines).
Within this thesis, the absorption spectra are generally referred to as gain

in the text since negative absorption constitutes gain which yields the laser
light. Nevertheless, in figures the absorption is presented as it has been
obtained from the calculations and not the gain as the negative of the ab-
sorption.
The labeling of the structures in Fig. 3.2 and Table 3.1 was done in the
following way: a number ‘X’ followed by ‘nm’ labels structures with equal
well widths while ‘In’ or ‘Sb’ followed by ‘X nm’ labels the width of the
In0.2Ga0.8As or GaAs0.8Sb0.2 well. In cases where only one well width is
addressed, the wells that do not have a specified width have widths of 6 nm
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Figure 3.2: PL (left) and absorption (right) spectra of the structures labeled
in the legends. The labeling is explained in the text. A sheet carrier density
of 0.1·1012/cm2 was used for calculations of the 300 K PL spectra. The PL
spectra are normed to the maximum of the PL from structure ‘4 nm’. For
calculations of the 300 K (solid lines) and 350 K (dashed lines) absorption
spectra, a sheet carrier density of 3.0·1012/cm2 was used.

Structure λ300K
PL [nm], increase λ350K

gain [nm], increase λ300K
gain [nm], increase

Sb 5 nm 1199.6, +0% 1194.7, +0% 1167.2, +0%

In 6 nm, Sb 4 nm 1192.4, +49% 1190.4, +40% 1162.8, +34%

5 nm 1188.7, +52% 1188.4, +33% 1160.6, +34%

In 5 nm 1181.1, +141% 1183.5, +95% 1156.0, +83%

4 nm 1169.9, +251% 1176.2, +145% 1148.8, +132%

Table 3.1: Emission wavelengths and increase of the emission strengths of
“W”-heterostructures with In0.2Ga0.8As and GaAs0.8Sb0.2 wells of different
width and 10 nm GaAs barriers. The labeling of the structures is explained
in the text. The increase in emission strength is given relative to ‘structure
Sb 5 nm’, the emission of which is considered to be 100%.

in case of an In0.2Ga0.8As well or 4 nm in case of a GaAs0.8Sb0.2 well.
Among the investigated structures, the lowest PL and gain emission strengths
were calculated for structure ‘Sb 5 nm’ (green curves) where two 6 nm
In0.2Ga0.8As electron wells and a 5 nm GaAs0.8Sb0.2 hole well were used.
Since this is the structure with the widest electron and hole wells, this was
expected because wider wells lead to lower electron-hole wavefunction over-
lap and consequently to lower transition probabilities. Moreover, the wide
wells of this structure cause the confinement levels to be comparatively low
in energy. This results in the longest PL and gain emission wavelengths
among the considered structures. On the other hand, the strongest gain
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and PL emission has been calculated for structure ‘4 nm’, which is the
structure with the thinnest wells. Since thinner wells cause energetically
higher confinement levels, this leads to a blue-shifted emission compared to
the emission of structure ‘Sb 5 nm’. For example, the wavelengths of the
PL peak of structure ‘4 nm’ is blue-shifted by 29.7 nm in comparison to the
PL peak of structure ‘Sb 5 nm’. Structure ‘In 5 nm’ with 5 nm In0.2Ga0.8As
wells and a 4 nm GaAs0.8Sb0.2 well yields the second strongest emission and
has a blue-shifted PL peak by 18.5 nm relative to that of structure ’Sb 5
nm’. Very similar optical properties were obtained for the structures ‘5 nm’
and ‘In 6 nm, Sb 4 nm’. While the structure ‘5 nm’ yields a slightly stronger
low-density PL emission, at high charge carrier densities the structures yield
approximately equally strong gain emissions at 300 K. However, at 350 K
the gain emission of structure ‘In 6 nm, Sb 4 nm’ slightly exceeds that of
structure ’Sb 5 nm’. Here, the gain spectra of structure ‘5 nm’ are blue-
shifted by 2 nm compared to that of structure ‘In 6 nm, Sb 4 nm’.
Overall, thinner wells cause a considerably stronger emission as well as a
blue-shift of the emission. The latter needs to be balanced by adjusting the
Sb and In concentrations. The structures ‘In 6 nm, Sb 4 nm’ and ‘5 nm’
represent good compromises for the well widths with regards to emission
strengths and emission wavelengths close to 1200 nm.
The minor shifts of the emission wavelengths that were observed for the
calculated 300 K PL spectra and 350 K gain spectra (see Table 3.1) can
be advantageous for the following reason. In general, PL measurements
can be used to monitor the successful growth of the active region. For op-
tically pumped laser devices, like vertical-external-cavity surface-emitting
lasers (VECSELs1), it is reasonable to expect a heating up by 50 K during
room temperature operation due to the optical excitation [[63]]. In case of
a minor shift between the 300 K PL and 350 K gain emission wavelengths,
monitoring the successful growth of the active region by PL measurements
allows for a direct conclusion on the lasing wavelength.

The collaboration of our group with the experimental physics group of
W. Stolz resulted in successful realizations of type-II laser structures. An
example for this is a 930 µm long single “W”-quantum well electrical injec-
tion laser using the layout of structure ‘In 6 nm, 4 nm’ for the active region.
To be more specific: a 4 nm wide GaAs0.8Sb0.2 hole well embedded between
two 6 nm wide In0.2Ga0.8As electron wells were used which were adjacent to
GaAs barriers [[9]].

1An introduction to the physics of VECSELs can for example be found in [[62]].
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For this laser structure, room temperature measurements of the optical out-
put pulse power per facet as a function of the current density (Fig.1 in [[9]])
revealed a low threshold current density of 0.4 kA/cm2. At the threshold
current density the losses are exactly balanced by the gain and above it
laser operation takes place. The 930 µm long laser structure was optically

Figure 3.3: Measured electroluminescence spectra of a 930 µm long laser bar,
with the active region that is specified in the text, at room temperature. The
insets show the calculated room temperature absorption spectrum at a sheet
carrier density of 3.0·1012/cm2 (upper picture) and PL spectrum at a sheet
carrier density of 0.1·1012/cm2 (lower picture). This figure is based on Fig. 2
in [[9]].
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characterized by electroluminescence (EL) spectroscopy. Here, the radiative
recombination of injected charge carriers causes light-emission. Whereas at
low current densities that are well below the threshold current density the
EL spectra dominantly stem from spontaneous emission, at current densities
that are above the threshold current density the spectra dominantly stem
from stimulated emission. Hence, at low injection current densities the EL
emission wavelength is expected to agree with the emission wavelength cal-
culated for the 300 K PL at low sheet carrier densities, whereas at injection
current densities above the threshold current density the EL emission wave-
length is expected to agree with the calculated emission wavelength of the
300 K gain at high sheet carrier densities.
Fig. 3.3 shows the laser structure’s EL spectra dependent on the color coded
injection current density along with the calculated PL and gain spectra for
sheet carrier densities of 0.1·1012/cm2 (red curve) and 3.0·1012/cm2 (blue
curve), respectively, in the insets. As can be seen from Fig. 3.3, the theoret-
ically predicted 300 K PL emission wavelength of 1192.4 nm (see Table. 3.1,
‘In 6 nm, 4 nm’) is in agreement with the EL emission wavelengths at low
injection current densities of 0.10 kA/cm2 and 0.18 kA/cm2. Above the
threshold current density of 0.4 kA/cm2, the EL emission wavelengths are in
agreement with the theoretically predicted 300 K gain emission wavelength
of 1162.8 nm (see Table. 3.1, ‘In 6 nm, 4 nm’). At all current densities, no
indication of lasing from a type-I transition was observed.
Besides the above mentioned low threshold current density of 0.4 kA/cm2,
the 930 µm long laser structure exhibited a high differential efficiency of 66%,
pump-limited maximum optical output powers of 1.4 W per facet, and low
internal losses of 1.9 cm−1 [[9]]. These results demonstrate the suitability of
(InGa)As/Ga(AsSb) “W”-structures for near-infrared laser applications at
room temperature.

3.1.2 Impact of the barrier material

To further optimize the optical properties of (InGa)As and Ga(AsSb) based
“W”-structures the impact of the barrier material was investigated, since
the barriers impose localization to the charge carriers. For this purpose, the
active region constructed of 6 nm In0.2Ga0.8As and 4 nm GaAs0.8Sb0.2 wells
was used and the 10 nm GaAs barriers were replaced either by AlxGa1−xAs,
with x=0.1 or 0.2, or monolayers of GaP0.5As0.5 were introduced between
the 10 nm GaAs barrier and the In0.2Ga0.8As wells. The monolayers were
modeled by 0.5 nm-layers of GaP0.5As0.5.
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Figure 3.4: Confinement potentials of heterostructures with an active re-
gion consisting of a 4 nm wide GaAs0.8Sb0.2 well embedded in two 6 nm
wide In0.2Ga0.8As wells. The titles refer to the varying barrier materials.
While GaAs, Al0.1Ga0.9As and Al0.2Ga0.8As refer to 10 nm of each material
embedding the active region, the title GaAs/GaP0.5As0.5 refers to barri-
ers consisting of 10 nm GaAs combined with a monolayer of GaP0.5As0.5
adjacent to each electron well.

Fig. 3.4 shows the confinement potentials for combinations of the above
mentioned active region and barrier materials. In comparison to the use of
GaAs barriers (black lines), the modified barriers (colored lines) introduce
a larger potential difference to the confinement potential at the (InGa)As
well-barrier interface and thereby increase the confinement of charge carriers
in the active region.

Hence, different barrier designs result in differences in the electron-hole
wavefunction overlap of the lowest states which can be seen in Fig. 3.5. Here,
the lowest electron and hole wavefunctions are displayed for a sheet carrier
density of 0.1·1012/cm2 and a temperature of 300 K. Light-gray shaded areas
mark the electron wells and dark-gray ones the hole wells. The shape of the
electron and hole wavefunctions differ of course. While the coupled electron
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Figure 3.5: First electron and first hole wavefunctions along growth direc-
tion (centered on the hole well) at 300 K and for a sheet carrier density of
0.1·1012/cm2. Light-gray shaded areas mark the electron wells and dark-gray
areas the hole wells. The titles link the barrier material to the colors of the
wavefunctions. The titles are explained in the caption of Fig. 3.4. To facili-
tate comparison, the lower right part shows all wavefunctions in one picture.

wavefunctions show two maxima where one is located in each electron well,
with a minimum in between, the hole wavefunctions have a single maxi-
mum located in the hole well. As can be seen when comparing the heights
of the electron wavefunctions minima, the probability for the electrons to
be found in the Ga(AsSb)-layer is increased (dashed colored lines) for bar-
rier materials differing from GaAs (solid black lines). Whereas in case of
structures with AlxGa1−xAs barriers the hole wavefunctions (dashed green
and blue lines) remain basically unchanged from the structure with GaAs
barriers (black solid lines), in case of GaAs/GaP0.5As0.5 barriers the hole
wavefunction has a slightly narrower width and a higher maximum. For
easier comparison, the lower right part of Fig. 3.5 shows the wavefunctions
from all structures with different barriers together in one plot. As can be
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Figure 3.6: Photoluminescence (left) and absorption (right) spectra of “W”-
structures with two 6 nm In0.2Ga0.8As wells, a 4 nm GaAs0.8Sb0.2 and dif-
ferent barriers. The PL was calculated at 300 K for a sheet carrier density
of 0.1·1012/cm2 and the absorption was calculated at 300 K (solid lines)
and 350 K (dashed lines) for a sheet carrier density of 3.0·1012/cm2. The
legend labels the barrier material as explained in the caption of Fig. 3.4.
The PL spectra are normed to the maximum of the PL from structure ‘
Al0.2Ga0.8As’.

seen from this, higher barriers lead to an increased wavefunction overlap.
Fig. 3.6 shows the structures 300 K PL spectra at a sheet carrier density of
0.1·1012/cm2 along with the 300 K and 350 K gain spectra at a sheet car-
rier density of 3.0·1012/cm2. Whereas the calculated low density PL of the
structure with Al0.2Ga0.8As barriers is the strongest, the calculated gain of
the structure with GaAs/GaP0.5As0.5 barriers is the strongest. The second
strongest gain emission stems from the structure with Al0.2Ga0.8As barriers.
Thus, the increased wavefunction overlap increases the emission strength,
as expected.

In comparison to the spectra that were calculated for the structure with
GaAs barriers, the higher potential jump at the (InGa)As well-barrier in-
terfaces of the other structures causes a slight blue-shift of the emission
wavelengths and increases the emission strengths. To facilitate comparison,
the emission wavelengths and the increase of the emission strengths in % are
summarized in Table 3.2. Here, the increase in emission strength is given
relative to the structure with GaAs barriers, for which the emission is con-
sidered to be 100%.
While the use of the higher barriers results in stronger emission strengths,
in practice it is generally not possible to use arbitrarily high barriers for
any laser structure and excitation conditions. E. g., for optically pumped
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Structure λ300K
PL [nm], increase λ350K

gain [nm], increase λ300K
gain [nm], increase

GaAs 1192.4, +0% 1190.4, +0% 1162.8, +0%

Al0.1Ga0.9As 1187.6, +24% 1189.3, +8% 1161.2, +10%

Al0.2Ga0.8As 1185.7, +34% 1188.5, +15% 1160.4, +12%

GaAs/GaP0.5As0.5 1187.0, +30% 1185.5, +21% 1157.6, +15%

Table 3.2: Emission wavelengths and increase of the emission strengths
of In0.2Ga0.8As/GaAs0.8Sb0.2 “W”-heterostructures with different barriers.
The increase in emission strength is given relative to the structure with
GaAs barriers, the emission of which is considered to be 100%.

laser systems and non-resonant excitation of the carriers into barrier states,
the bandgap of the (AlGa)As-barriers must be matched with the excitation
energy of the pump-laser. Therefore, this can impose limitations to the Al
content used in the barriers. Moreover, the carrier capture has not been
modeled in the presented studies. Instead, a certain sheet carrier density in
the well has been assumed. Because of this, this study does not reflect the
impact of the GaP0.5As monolayers on the charge carrier capture.

3.1.3 Wavelength extension towards 1300 nm

With regards to optimizing the emission strength while extending the emis-
sion wavelength, the dependence of the emission strengths on the In and
Sb contents in the wells was studied. For this purpose, the gain spectra of
seven active regions in total with an electron well width of 6 nm, a hole
well width of 4 nm and 350 K gain emission wavelengths close to 1200 nm
(blue curves), 1300 nm (yellow and green curves) or 1350 nm (orange and
brown curves) were calculated. Fig. 3.7 shows these gain spectra at 300
K (dash-dotted and solid lines) and 350 K (dotted and dashed lines) for
a sheet carrier density of 3.0·1012/cm2. The percentages of In and Sb in
the (InGa)As electron wells and Ga(AsSb) hole wells are given in the color
coded legend. Here, the results from the structure with 20% In and Sb are
the ones that have already been presented in Sections 3.1.1 and 3.1.2.
Table 3.3 lists the gain emission wavelengths together with the increase of the
gain emission strengths in % relative to the lowest emission at a comparable
wavelength. As can be seen from Fig. 3.7 and Table 3.3, when optimizing
the gain properties it is advantageous to achieve longer wavelengths by in-
creasing the Sb content in the Ga(AsSb)-layer rather than increasing the In
content in the (InGa)As-layer.
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Figure 3.7: Absorption spectra of (InGa)As/Ga(AsSb) “W”-structures with
a 4 nm Ga(AsSb) well embedded between two 6 nm (InGa)As wells and
10 nm GaAs barriers at a sheet carrier density of 3.0·1012/cm2. Solid lines
and the dash-dotted line show the gain spectra at 300 K. Dashed lines and
the dotted line show the gain spectra at 350 K. The legend gives the percent-
ages of In and Sb in the (InGa)As-layer and Ga(AsSb)-layer, respectively.

A) Structure λ350K
gain [nm], increase λ300K

gain [nm], increase

25% In, 28% Sb 1352.9, +0% 1319.3, +0%
20% In, 31% Sb 1355.3, +17% 1321.0, +16%

B) Structure λ350K
gain [nm], increase λ300K

gain [nm], increase

33.5% In, 20% Sb 1299.2, +0% 1267.7, +0%
25% In, 25% Sb 1304.0, +31% 1272.3, +21%

C) Structure λ350K
gain [nm], increase λ300K

gain [nm], increase

20% In, 20% Sb 1190.4, +0% 1162.8, +0%
19% In, 20% Sb 1183.5,+4% 1156.3,+4%
20% In, 21% Sb 1204.7, +1% 1176.5, +3%

Table 3.3: Emission wavelengths of “W”-structures with 10 nm GaAs bar-
riers, 6 nm (InGa)As wells and 4 nm Ga(AsSb) wells together with the
increase of the emission relative to the structure with the lowest emission at
a comparable wavelength. The names of the structures give the percentage
of In and Sb in the wells.
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In practice, it has to be taken into consideration that reducing the In
content is accompanied by lowering the electron well depths and that the
increase of the Sb content is limited by the ability to produce high quality
layers at aimed contents.

So far, the energetic locations of the confinement levels have not been
considered. Layouts with 6 nm wide electron wells and 4 nm wide hole wells
cause the first and second electron energy levels to be energetically very
close. For the structures considered in the framework of this thesis, these
well widths result in a first and second electron confinement level separation
by about 10 meV. At high charge carrier densities and temperatures, this
favors lasing from higher order type-II transitions. Hence, in order to guar-
antee lasing from the fundamental electron-hole transition, the separation
of the first and second electron levels can be increased by decreasing the
(InGa)As well width and subordinately the Ga(AsSb) well width.

Table 3.4 gives the distance of the first and second electron confinement

Structure (InGa)As well width [nm] Ga(AsSb) well width [nm] distance of e2 and e1 level [meV]
Ref 6 4 8
In-1.5 4.5 4 15
In-1.5, Sb-0.5 4.5 3.5 19
In-2.5 3.5 4 20
In-2.5, Sb-0.5 3.5 3.5 23

Table 3.4: First electron and first hole confinement level distance of
In0.25Ga0.75As/GaAs0.72Sb0.28 “W”-structures with GaAs barriers at a sheet
carrier density of 0.1·1012/cm2 and at 300 K. The labeling of the structures
is explained in the text.

levels for different electron and hole well widths at a sheet carrier density of
0.1·1012/cm2 and 300 K. For all calculations, In0.25Ga0.75As electron wells
and GaAs0.72Sb0.28 hole wells and 10 nm GaAs barriers have been used. In
Table 3.4, structure ‘Ref’ has layer lengths of 6 nm for the In0.25Ga0.75As
well and 4 nm for the GaAs0.72Sb0.28 well. The naming of the other struc-
tures labels the corresponding shortened layer by indicating the (InGa)As
or Ga(AsSb) well with ‘In’ or ‘Sb’, respectively, followed by a number which
gives the reduction of the respective width length in nm. As can be seen in
Table 3.4, the distance of the first and second electron confinement levels
is primarily influenced by the width of the electron wells (see results from
‘Ref’, ‘In-1.5’ and ‘In-2.5’). The thickness of the hole well noticeably affects
this energy difference (compare results from ‘In-1.5’ and ‘In-2.5’ to results
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Figure 3.8: Absorption spectra of the In0.25Ga0.75As/GaAs0.72Sb0.28 “W”-
structures from Table 3.4 at a sheet carrier density of 3.0·1012/cm2 and at
300 K (solid lines) and 350 K (dashed lines). The structures are grouped
according to their In0.25Ga0.75As well width (left: 6 nm and 4.5 nm; right:
6 nm and 3.5 nm). The legends label all well width as explained in the text.

from ‘In-1.5, Sb-0.5’ and ‘In-2.5, Sb-0.5’) as well.
Fig. 3.8 shows the calculated gain spectra of the structures from Table 3.4
at a sheet carrier density of 3.0·1012/cm2 and 300 K (solid lines) and 350 K
(dashed lines). The 300 K gain spectrum of the structure with 6 nm wide
In0.25Ga0.75As and 4 nm wide GaAs0.72Sb0.28 wells (‘Ref’) is centered around
1319 nm, whereas the gain spectrum of the structure with the largest first
and second electron confinement level distance (‘In-2.5, Sb-0.5’) is centered
around 1278 nm at the same temperature. Hence, for an emission close to
1300 nm, the upwards shift of the fundamental transition energy needs to
be compensated by adjusting the Sb and In concentrations in the wells in
case of the latter structure.

Altogether, the largest effect on the emission strength can be achieved by
using thin layers for the wells. This increases the first electron and first hole
wavefunction overlap by forcing the charge carriers to be confined in nar-
rower regions. Furthermore, relatively low In contents in the electron well
and a large potential step at the electron well-barrier interfaces increases the
wavefunction overlap and the carrier confinement in the active region and
therefore the transition probability.
Apart from this, graded electron-hole well interfaces can be beneficial when
optimizing the gain emission strength [[63, 64]]. The gradients can be mod-
eled by 1 nm thick quaternary InxGa1−xAs1−ySby layers [[63]]. In doing so,
one starts from the electron wells moving in the direction towards the hole
well and linearly decreases the In content while the Sb content is linearly
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Figure 3.9: Confinement potential of 6 nm (InGa)As/4 nm Ga(AsSb) “W”-
structures with GaAs barriers and GaP0.5As0.5 monolayers at 300 K and at
a sheet carrier density of 3.0·1012/cm2. The solid lines belong to a structure
with rectangular confinement potential and the dashed lines belong to a
structure with graded interfaces between the electron and hole wells.

increased. More specifically, the In content decreases from the value xe used
in the InxeGa1−xeAs electron well to zero while the Sb content linearly in-
creases from zero to the Sb content yh used in the GaAs1−yhSbyh hole well.
For illustration, Fig. 3.9 shows confinement potentials of structures with
(dashed light-blue lines) and without (solid blue lines) graded interfaces be-
tween the wells at 300 K and a sheet carrier density of 3.0·1012/cm2.
Fig 3.10 shows the 300 K and 350 K gain spectra at a sheet carrier density of
3.0·1012/cm2 for both previously mentioned structures (light-blue and blue
curves) and two other structures (green and orange curves). The structures
combine aspects of the above mentioned approaches for gain optimization.
Table 3.5 contains the layer lengths and compositions of the structures from
Fig. 3.10. The spectra in Fig. 3.10 show that graded interfaces enhance the
gain (compare light-blue curves to blue curves), but the strongest enhance-
ment results from thinner wells (compare light-blue curves to green curves).
While the structure ‘In 4 nm, graded Sb 4 nm, GaAs/GaP0.5As0.5’ which
combines the use of thin wells, relatively low In content, modified barriers
and graded interfaces between the wells, yields the strongest gain, the gain
properties of structure ‘In 3.5 nm, Sb 3.5 nm, GaAs’ are remarkable as well.
For the latter structure, only thinner wells were used. Comparing the 300 K
gain of these two structures, the emission strength of structure ‘In 4 nm,
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Figure 3.10: Absorption spectra of “W”-structures with emission wave-
lengths close to 1300 nm at 300 K (left) and 350 K (right) and for a sheet
carrier density of 3.0·1012/cm2. The legends refer to the layouts of the active
regions that are specified in Table 3.5.

Structure (InGa)As well, % In, width Ga(AsSb) well, % Sb, width

In 6 nm, Sb 4 nm, GaAs/GaP0.5As0.5 15%, 6 nm 30%, 4 nm

In 6 nm, graded Sb 4 nm, GaAs/GaP0.5As0.5 15%, 6 nm (graded IF) 30%, 4 nm (graded IF)

In 3.5 nm, Sb 3.5 nm, GaAs 25%, 3.5 nm 28%, 3.5 nm

In 4 nm, graded Sb 4 nm, GaAs/GaP0.5As0.5 15%, 4 nm (graded IF) 30%, 4 nm (graded IF)

Structure Barrier, width

In 6 nm, Sb 4 nm, GaAs/GaP0.5As0.5 GaAs, 10 nm, GaP0.5As0.5, 0.5 nm

In 6 nm, graded Sb 4 nm, GaAs/GaP0.5As0.5 GaAs, 10 nm, GaP0.5As0.5, 0.5 nm

In 3.5 nm, Sb 3.5 nm, GaAs GaAs, 10 nm

In 4 nm, graded Sb 4 nm, GaAs/GaP0.5As0.5 GaAs, 10 nm, GaP0.5As0.5, 0.5 nm

Table 3.5: Layout of the (InGa)As/Ga(AsSb) “W”-structures used for the
calculation of the gain spectra in Fig. 3.10. In this table, the word ‘interface’
is abbreviated as ‘IF’.

graded Sb 4 nm, GaAs/GaP0.5As0.5’ exceeds that of structure ‘In 3.5 nm,
Sb 3.5 nm, GaAs’ by 12%.

The dependence of the gain on the sheet carrier density of structure ‘In
4 nm, graded Sb 4 nm, GaAs/GaP0.5As0.5’ was studied in more detail.
Fig. 3.11 shows the gain of the structure at 300 K dependent on the sheet
carrier density. The gain emission strength of this structure at a sheet carrier
density of 2.0·1012/cm2 (calculated maximum gain value: 591/cm) already
exceeds that of the structure ‘In 6 nm, Sb 4 nm’ from Table 3.1 with 20%
In and Sb at the same temperature but at a higher density of 3.0·1012/cm2

(calculated maximum gain value: 479/cm).

Thus, combining the different approaches for gain optimization shows
promise for the achievement of good gain values at low carrier densities.
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Figure 3.11: Sheet carrier density dependent absorption spectra at 300 K of
structure ‘In 4 nm, graded Sb 4 nm, GaAs/GaP0.5As0.5’ from Table 3.5.

However, the limits of practical realization must be taken into account.
For example, the theoretical consideration of a regularly graded interface
between the wells is an idealized model that can hardly be met in experi-
ments. Moreover, it can be disadvantageous for the layer-quality to achieve
a certain wavelength by primarily raising the Sb content while keeping the
In content low. Also, in order to achieve strong gain, it is generally prefer-
able to use thin electron and hole wells.

As a result from further calculations that were carried out in our group
and from the studies presented in this section an electrical injection laser
with emission wavelengths close to 1300 nm was fabricated [[4]]. For this
laser, a double “W”-layout was used where one “W” consists of 4 nm
GaAs0.72Sb0.28 hole wells embedded between two 4 nm In0.28Ga0.72As elec-
tron wells, which are adjacent to GaAs barriers.
Measurements of a 975 µm long laser bar with the above specified ac-
tive region at room temperature revealed a differential efficiency of 41%,
a threshold current density of 1.0 kA/cm2 and pump-limited maximum op-
tical output powers of 0.68 W per facet [[4]]. Furthermore, the temperature-
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dependent characterization of the device showed lasing from the fundamental
type-II transition up to a temperature of 373.15 K.
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3.2 Charge-transfer excitons in type-II structures

Excitons are electron-hole pairs which are bound via their mutual Coulomb
attraction. In a type-II heterostructure2 in principle two kinds of excitons
are possible: the direct or regular exciton in structures where also a type-I
band alignment between two semiconductor layers is present, and the charge-
transfer exciton (CTX). In case of the CTX, the bound electron-hole pair is
extended over different layers.
In modern type-II heterostructures, the charge transport through the inter-
nal interface is crucial for their performance. The CTX in combination with
experimental techniques allows to characterize properties of the internal in-
terface that are relevant for charge transport through it on a microscopic
level.
Below, aspects of a detailed experimental and theoretical investigation of the
formation and decay dynamics of CTX in a type-II heterostructure [[10]] will
be discussed while more detailed information can be found in the publica-
tion itself.

For studying the formation and decay dynamics of the CTX, a type-II
heterostructure where the charge transfer states can be directly excited has
been designed in our group. Subsequently, the type-II structure was grown
according to the requirements and the resulting structure was experimentally
characterized. The findings were then confirmed by theoretical calculations.
For this purpose, the measured and calculated absorption spectra were com-
pared to each other for different theoretically realized layouts. This revealed
a 7.7 nm wide Ga(AsSb) well with 3.3 % Sb and a 7.7 nm wide (InGa)As
well with 5.8 % In. To match the lowest calculated and measured lowest two
resonances of the optical absorption, the Ga(AsSb) bandgap was increased
by 3.5 meV and the (InGa)As bandgap was decreased by 5 meV [[10]].
These minor adjustments lie well within the uncertainties of the experi-
mentally derived bandgap bowing parameters of the compounds [[10, 29]].
Fig. 3.12 shows the confinement potential of this structure. Here, the green
and blue backgrounds mark the Ga(AsSb)-layer and the (InGa)As-layer, re-
spectively, while the white areas belong to the GaAs barriers and the 1 nm
GaAs-interlayer between the wells.
To allow for comparison of results, a type-I reference structure was grown
using the same layout but without a Ga(AsSb) well.
Both samples were optically characterized by absorption measurements.

2Generally, type-II refers to a heterostructure where the electron and hole ground states
are situated in different layers. These layers are not necessarily adjacent to each other.
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Figure 3.12: Layout of the confinement potential of the type-II
Ga(AsSb)/GaAs/(InGa)As heterostructure from [[10]]. The green and blue
backgrounds distinguish the 7.7 nm wide GaAs0.967Sb0.033 well (green) and
the 7.7 nm wide In0.058Ga0.942As well (blue) from GaAs.

THz-spectroscopy was used to confirm the excitonic resonances in the ab-
sorption spectra and to study the incoherent exciton dynamics. The coher-
ent exciton dynamics were studied by four-wave mixing (FWM) measure-
ments. All measurements were performed at 10 K.
To corroborate experimental findings and to gain further insights, the opti-
cal and THz absorbances were modeled and compared to the experimental
results [[10]]. The required confinement wavefunctions, band edge energies,
dipole matrix elements, confinement levels and the bandstructure were cal-
culated with the theory presented in Section 2.2.1. The effective masses
were obtained from fitting the bandstructure from the k·p-calculations.
Fig. 3.13 shows the experimental and theoretical optical absorption spectra.

The experimental absorption spectrum clearly shows resonances at 1.451 eV
and 1.464 eV, which are in accordance with the theoretical absorption spec-
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Figure 3.13: Experimental (a) and theoretical (b) optical absorp-
tion (solid blue lines) and absorbance spectra (blue area) of the
Ga(AsSb)/GaAs/(InGa)As type-II heterostructure. The pump pulse is
given by the red curve in (a). The arrows indicates the CTX resonance.
The pictures have been taken from [[10]].

trum. These resonances are assigned to the CTX and the regular (InGa)As
exciton, respectively. The energetically broad pump pulse (red curve in (a))
allows for a simultaneous excitation of direct (InGa)As and charge transfer
polarizations.
The presence of the CTX and the (InGa)As exciton in the respective struc-
tures was confirmed for both kinds of excitons by THz measurements.

Fig. 3.14 shows the (a) measured and (b) computed THz absorbance for in-
coherent exciton populations as a function of the delay time ∆tTHz between
the optical pump pulse and the THz probe pulse and the THz photon energy
~ωTHz. For this measurement, the type-II sample was resonantly excited
to its direct type-I exciton. Fig. 3.14 (c) shows the type-I and CTX exciton
resonance energies normed to the respective maximum of the 1s− 2p tran-
sition energy as a function of ∆tTHz. Both kinds of excitonic resonances
were measured at comparable sheet carrier densities. The inset in (c) shows
the THz absorbance of the type-I sample after the non-resonant excitation.
At short delay times, the THz absorbance spectra of (a) and (b) predom-
inantly show a Drude-like character. For longer delay times, the 1s − 2p
CTX resonance builds up and shifts towards ~ωTHz=3.2 meV (arrows in
(a) and (b)). The relative CTX 1s − 2p transition energies presented in
Fig. 3.14 (c) were extracted from Fig. 3.14 (a)(blue spheres for measured
energies) and Fig. 3.14 (b) (red dots for calculated energies) while the direct
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Figure 3.14: (a) Experimental and (b) theoretical THz absorbance of the
type-II sample after resonant excitation to the direct exciton as a function of
the delay time ∆tTHz and the photon energy ~ωTHz. (c) Shows the normed
1s−2p transition energies of the CTX in the type-II structure and the direct
exciton in the type-I structure as a function of the delay time. Blue spheres
refer to the measured CTX’s transition energy while the red dots refer to the
calculated transition energies of the CTX, both relative to 3.18 meV. Gray
spheres refer to measured transition energies of the direct exciton relative
to 6.97 meV. The inset shows the type-I structure’s THz absorbance of the
direct exciton after non-resonant excitation. The pictures have been taken
from [[10]].

exciton’s relative 1s − 2p transition energies (gray spheres) were extracted
from the measurements presented in the inset of (c). Since the phase-space
filling factor increases with decreasing delay times, by plotting the relative
CTX 1s−2p transition energies as a function of the delay time, the effect of
phase-space filling on the resonance energies is illustrated. From the plot in
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Fig. 3.14 (c) it can be deduced that the 1s−2p transition energy of the direct
exciton is insensitive to carrier densities in the wells while this is not the
case for the CTX. In case of the CTX, the small binding energy and large
exciton Bohr radius enhance the non-bosonic characteristics of the CTX,
which causes the CTX properties to be more sensitive to its fermionic sub-
structure [[10]]. Because of this, the Coulomb attraction between electrons
and holes is weakened by the repulsion between carriers of the same sign,
which causes the CTX’s 1s − 2p transition energy to be smaller at shorter
delay times.
In any case, neither the experimental nor the theoretical THz absorbances
of the type-II structure show any distinguishable signatures of the direct
exciton, even for short delay times. In accordance with this, FWM mea-
surements of the coherent exciton dynamics revealed that the coherence of
the direct exciton in the type-II heterostructure decays within the first 0.2 ps
in cases where no or almost no CTX polarization is present [[10]]. Therefore,
the absence of distinguishable direct exciton energies in the THz response
is consistent with the fast decay of the direct exciton’s coherences observed
in FWM measurements only if the direct exciton polarization directly de-
cays into a charge transfer electron-hole plasma and charge transfer exciton
states.
In summary, the formation, decay, and coherence properties of the CTX
have been studied experimentally and the results were theoretically analyzed
using our predictive microscopic theory. The study demonstrates that valu-
able information on the microscopic charge transfer process can be gained
by CTX spectroscopy.
Apart from the charge transport through internal interfaces, the magni-
tudes of the band offsets are crucial for the performance of quantum well
heterostructures. The next chapter will deal with the investigation of band
offsets between GaAs and Ga(AsSb) in quantum well heterostructures.



Chapter 4

Ga(AsSb)/GaAs band offsets

While the results presented in the previous chapter emphasize the benefits
of using Ga(AsSb) and GaAs in light-emitting heterostructures, there is no
clear consensus on the band alignment of these materials [[65–67]].
Below, two conceptually different approaches used for studying band off-
sets between GaAs and Ga(AsSb) in quantum well heterostructures will be
presented. In Section 4.1 band offsets will be deduced from comparing ex-
perimental and theoretical results while in Section 4.2.1 and Section 4.2.2
ab initio calculations will be used to determine valence band offsets between
GaAs and Ga(AsSb).

4.1 Experiment-theory comparison

Since time-resolved photoluminescence spectroscopy measurements of quan-
tum well heterostructures with Ga(AsSb)-, GaAs- and (InGa)As-layers in-
dicated a type-I band alignment between GaAs and Ga(AsSb) [[68]], the
band alignment has been further investigated. For this purpose, the exper-
imentally determined PL spectra of two structures that were used for the
time-resolved measurements in [[68]] were compared to theoretically calcu-
lated ones [[11]].
Experimentally, 5.2 nm wide (InGa)As electron wells and 5 nm wide (GaAs)Sb
hole wells were grown on GaAs substrates that were separated from each
other by GaAs-interlayers with different widths for different structures. For
each layout, the well-interlayer combination was grown five times in total
while the repetitions were separated by a 50 nm layer of GaAs to avoid cou-
pling between the confined charge carriers from different repetitions of the
wells.

53
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Figure 4.1: Illustration of the confinement potential of the interlayer-
structures. The illustrated confinement potential belongs to structure d4.8nm

at 100 K before including the attractive potential between spatially sepa-
rated electrons and holes. The location of the Ga(AsSb) well is marked by
the green background while the location of the (InGa)As well is marked by
the blue background.

Out of the different structures that were characterized by measurements [[11,
68]], this study considers the structures with GaAs-interlayers of widths
3.5 nm (structure d3.5nm) and 4.8 nm (structure d4.8nm). For structure
d3.5nm, the measured concentrations in the (InGa)As and Ga(AsSb) well
were 21.0±1.5% In and 23.8±1.5% Sb while for structure d4.8nm concentra-
tions of 21.0±1.5% In and 23.3±1.5% Sb were measured.
The PL, confinement wavefunctions, dipole matrix elements and single-
particle energies were calculated with the theory presented in Section 2.4.2
and Section 2.2.
Fig. 4.1 schematically shows the confinement potential of the structures
on the example of structure d4.8nm. To achieve good agreement between
measured and calculated PL spectra, the experimentally determined con-
centrations were varied within the limits of the uncertainties. For structure
d3.5nm, this resulted in concentrations of 22.4% In and 23.6% Sb while for
structure d4.8nm, concentrations of 20.3% In and 23.7% Sb were used for the
calculations.
To investigate the band alignment between GaAs and Ga(AsSb), a type-I
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band alignment of these materials was assumed for the calculation of the
PL spectra. Under this assumption, an investigation of the match between
the experimental and calculated PL spectra was performed. While this was

d4.8nm 100 K 200 K 250 K 290 K d3.5nm 250 K

Carrier temperature [K] 205 290 380 420 Carrier temperature [K] 265

VBOGaAs/Ga(AsSb) [meV] 331 327 325 323 VBOGaAs/Ga(AsSb) [meV] 324

∆EHS [meV] 1014 984 967 952 ∆EHS [meV] 952

Table 4.1: Charge carrier temperatures (second line), GaAs/Ga(AsSb) VBO
(third line) and effective bandgap (fourth line) of heterostructures d4.8nm

and d3.5nm for the temperatures listed in the first line.

done for a temperature of 250 K in the case of structure d3.5nm, for struc-
ture d4.8nm 100 K, 200 K and 290 K PL were used as well. To match the
type-I and type-II transition energies, the band offsets were varied for each
temperature. In doing so, the fraction of the bandgap difference between
GaAs and Ga(AsSb) assigned to the conduction band offset (CBO) was kept
constant. For both structures and all considered temperatures this resulted
in a GaAs/Ga(AsSb) CBO with an absolute value of 19 meV (rounded).
The experimental type-II transition energies were approached by shifting
the (InGa)As conduction band edge relative to the Ga(AsSb) valence band
edge. Table 4.1 contains the corresponding GaAs/Ga(AsSb) valence band
offsets (VBOs) and the effective bandgaps of the heterostructures (∆EHS).
∆EHS is the absolute value of the heterostructure’s conduction band edge
and valence band edge energy difference.

Figs. 4.2 and 4.3 show the theoretical and experimental PL of the struc-
tures. As can be seen in the two upper panels of Fig. 4.2, the theoretical
and experimental transition energies are in agreement, but the theoretically
calculated relative peak-heights from the type-II (lower energy peak) and
Ga(AsSb) type-I (higher energy peak) transitions differ from the experi-
mental ones. While minor deviations of the peak-positions most likely stem
from slightly different concentrations in the samples, deviations of the rel-
ative peak-heights indicate that the charge carrier system is not yet in a
complete quasi-equilibrium within the entire heterostructure [[11]]. To ac-
count for this state of a weak non-equilibrium, temperatures higher than
the lattice temperatures have been assigned to the charge carrier distribu-
tions. Because of the weakness of the non-equilibrium state, Fermi-Dirac
distributions still are a good approximation for the charge carrier distribu-
tions. In the case of structure d4.8nm, a considerably higher effective carrier
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Figure 4.2: Theoretical (solid red lines) and experimental (dashed blue lines)
PL of the structures d3.5nm and d4.8nm at a lattice temperature of 250 K. The
upper parts show the PL of the structures for the same carrier and lattice
temperatures. In the lower parts, the carrier temperatures exceed the lattice
temperature. Here, for structure d3.5nm, a carrier temperature of 265 K was
used for the calculations while for structure d4.8nm, the carrier temperature
of 380 K was used. These figures wer plotted with data from [[11]].

temperature of 380 K at a lattice temperature of 250 K was necessary to
match the relative peak-heights. In contrast to this, for structure d3.5nm

a mere effective carrier temperature of 265 K at a lattice temperature of
250 K was necessary. This difference most likely originates from less effi-
cient tunneling processes in structure d4.8nm, since the wells of this structure
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Figure 4.3: Theoretical (solid red lines) and experimental (dashed blue lines)
PL of structure d4.8nm for lattice temperatures mentioned in the respective
title and elevated charge carrier temperatures. The corresponding charge
carrier temperatures can be seen in Table 4.1. These figures were plotted
with data from [[11]].

are further apart. In the experiment, the charge carriers were excited non-
resonantly into states which belong to GaAs. Subsequently, they relax into
the (InGa)As and Ga(AsSb) quantum wells and tunnel into the respective
lowest states through the GaAs-interlayer between the wells. In the case of
the thicker GaAs-interlayer, the tunneling probability through the interlayer
is notably lowered because of the exponential decay of the carrier wavefunc-
tions within the interlayer. Hence, in structure d4.8nm, it is less likely for
not completely relaxed electrons and holes to tunnel into the respective low-
est states in the (InGa)As and Ga(AsSb) wells than it is for electrons and
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holes in structure d3.5nm. As a result, the charge carriers in structure d4.8nm

are at higher energies on average. Thus, they are effectively hotter during
emission processes than charge carriers in structure d3.5nm.
However, when comparing the calculated and measured spectra at different
temperatures of structure d4.8nm in Fig. 4.3, it becomes apparent that at
lattice temperatures of 100 K and 200 K, the (InGa)As type-I transition
appears in the measured PL (high energy peak of the dashed blue lines)
but not in the calculated one. This stems from the fact that the theoret-
ical PL is based on non-dynamical calculations and it is assumed that all
tunneling transitions took place already. Hence, in the calculations there
are not enough charge carriers available in the (InGa)As well such that this
transition does not appear in the theoretical PL. Moreover, a shoulder ap-
pears in the theoretical PL at a lattice temperature of 290 K which stems
from the type-I (InGa)As transition. In the case of the experimental PL at
290 K, this transition cannot be clearly distinguished from the background
noise [[11]].

While the presented study shows that a type-I band alignment between
GaAs and Ga(AsSb) is realistic, this study is restricted to the investigated
heterostructures used for the measurements.
In the following sections, the study of GaAs/Ga(AsSb) band offsets will
be continued. In contrast to the study presented above which relies on
experiment-theory comparisons, ab initio (or first principles) methods will
be used. By this, an extended concentration range can be accessed and
the resulting VBOs can be used to deduce band alignments that are not
restricted to certain heterostructures.



4.2. AB INITIO CALCULATION OF VALENCE BAND OFFSETS 59

4.2 Ab initio calculation of valence band offsets

The attempt of calculating band offsets from first principles has a long his-
tory and different approaches have been made.
For example, C. G. Van de Walle and J. Neugebauer used the energetic
location of hydrogen levels within semiconductor compounds to obtain un-
strained (natural) band offsets [[69]]. This resulted in band offset values
with error bars of ±200 meV [[69]].
If the bandgaps of the studied materials are known, it suffices to calculate
their VBO to deduce their band alignment since these two quantities implic-
itly determine their CBO. J. M. Bass et al. [[70]] used the localized density
of states to determine VBOs. While this allows to obtain the VBO from
a single DFT calculation, it has the disadvantage of introducing additional
adjustable parameters.
The state of the art in ab initio calculations of VBOs is to combine bulk-like
properties and information about the interface. The core-to-valence band
maximum method represents such an approach and was introduced by Wei
and Zunger [[71]] for the calculation of natural VBOs with DFT. Since mod-
eling strained quantum well heterostructures requires strained VBOs, Wei
and Zunger’s method has been modified for this case [[12]]. This so-called
modified core-to-valence band maximum approach yields VBOs that can be
readily applied to model pseudomorphically grown heterostructures.
In Section 4.2.1, the modified core-to-valence band maximum approach will
be introduced for the example of the GaAs/Ga(AsSb) interface and results
for this interface will be presented.
While using this approach for the calculation of the GaAs/Ga(AsSb) VBOs,
two problems emerged for certain Sb concentrations. These are diverging
results for different Ga(AsSb)-layer lengths and vanishing Ga(AsSb) KS-
bandgaps. In general, the problem of vanishing KS-bandgaps has been ad-
dressed with different approaches, e. g. with hybrid-functionals [[38]], the
quasi-particle approach within GW [[72]] or the DFT-1/2 method [[5, 6]].
While the former two approaches are accompanied by a considerably higher
numerical effort than GGA-DFT, DFT-1/2 calculations have the advantage
of having the numerical complexity of the used LDA- or GGA-functional.
Therefore, DFT-1/2 is a suitable choice for interface calculations in cases
where other approaches are numerically prohibitive. A short introduction
to DFT-1/2, which is often called the method of half-occupations, was given
in Section 2.3.4. Since the self-energy correction of DFT-1/2 is vanishing for
Bloch-waves, the localized states of the topmost valence band are usually
corrected. This enables the use of DFT-1/2 within the modified core-to-
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valence band maximum approach. In Section 4.2.2, this combination has
been used to calculate the presented GaAs/Ga(AsSb) VBOs.

4.2.1 Modified core-to-valence band maximum approach

In the framework of the modified core-to-valence band maximum approach
[[12]] the VBO between two materials is essentially calculated using valence
band maxima (VBM) which are obtained from calculations with strained
bulk cells.
The approach allows for the calculations of VBOs in heterostructures that
are pseudomorphically grown on a substrate. In all studies presented in this
thesis, GaAs was used as a substrate. In the calculations, the pseudomor-
phic growth of the materials has been taken into account by fixing the lattice
constants in the plane perpendicular to growth direction (in-plane direction)
to that of the substrate. These in-plane directional lattice constants have
been assigned to the x- and y-directions.
However, the VBM from bulk DFT calculations are accompanied by an
unknown energy offset which needs to be corrected before determining the
VBO. This stems from an misalignment of the energy scales of the separate
bulk calculations and stems from the fact that the average electrostatic po-
tential in an infinite solid is an ill-defined quantity [[73]]. Because of this, a
common reference energy is needed to align the energy scales from the bulk
calculations.
In this way, the choice of the reference energy influences the accuracy of the
results. A highly suited choice is the 1s electron level, because it is strongly
localized and thereby only influenced by the local chemical surrounding.
Hence, this energy level is used as the needed reference. For the purpose
of aligning the energy scales from the DFT calculations with bulk cells, the
1s electron levels are calculated for each bulk cell and additionally for an
interface cell, which is constructed using the bulk cells.

Overall, for the calculation of GaAs/Ga(AsSb) VBOs within the modified
core-to-valence band maximum approach, the following steps were necessary
for bulk and interface DFT calculations:

(i) The GaAs and Ga(AsSb) bulk cells were constructed and, in order to
model growth on a GaAs substrate, the lattice constants of Ga(AsSb)
were fixed to the previously obtained GaAs lattice constant in in-plane
direction.
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Figure 4.4: Illustration of the alignment of energy scales from two separate
DFT calculations for the bulk materials X and Y . In the middles of part
a) and b), schematic bandstructures of the bulk materials X and Y are
shown. EXv and EYv label the VBM of the materials while EXc and EYc
label their conduction band minima. Part c) shows an interface cell which
was constructed by stacking the bulk cells onto each other. EX0 and EY0
(dashed blue lines in a) and b)) are the reference energy levels that are
used to align the energy scales. For this purpose we chose the 1s electron
level. The calculation of their energy difference ∆EX1s and ∆EY1s in bulk
and interface cells with this level yields the offset of the calculations as
∆E0 = ∆EX1s − ∆EY1s. This picture has been taken from [[12]] (modified
version).

(ii) The bulk cells were relaxed to allow for changes in cell shapes and
atomic positions. Specifically, solely the lattice constants in growth
direction (z-direction) were allowed to change.

(iii) Electronic structure calculations of the relaxed bulk cells were carried

out to obtain the GaAs and Ga(AsSb) VBM (E
Ga(AsSb)
v and EGaAs

v )
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and all Ga 1s electron levels for each cell.

(iv) The interface cell was constructed by stacking the relaxed bulk cells
onto each other in z-direction.

(v) The relaxation from (ii) was repeated for the interface cell to take
corrections of the atomic structure at the interface into account.

(vi) Electronic structure calculations of the relaxed interface cell were car-
ried out to obtain all Ga 1s electron levels of the interface cell.

After the DFT calculations, the energy scales of the two bulk calculations
were aligned using the energy difference of the Ga 1s levels from the exact
image atoms in bulk and interface cells. This is illustrated in Fig. 4.4, where
∆E0 denotes the offset of the energy scales from the bulk calculations for
materials X and Y . In doing so, the vicinity of the interface was excluded.
Altogether, the VBO EVBO was calculated as [[12]]

EVBO =
(
EGa(AsSb)
v −∆E

Ga(AsSb)
1s

)
−
(
EGaAs
v −∆EGaAs

1s

)
, (4.1)

were ∆EGaAs
1s and ∆E

Ga(AsSb)
1s are the energy offsets of the bulk- and interface-

1s levels. By aligning the VBM which are obtained from bulk calculations,
the modified core-to-valence band maximum method yields true bulk-like
VBOs.

As mentioned in Section 2.3, for all presented VBO calculations the
functional PBEsol [[44]] was used. Whereas for GaAs the cell size of (2×2×2)
unit cells was used, different cell sizes of (2×2×2), (2×2×3) or (2×2×4)
unit cells were used for the Ga(AsSb) cells, belonging to Ga(AsSb)-layers
containing 64, 96 or 128 atoms, respectively. The Ga(AsSb)-layers were
constructed using special quasi-random structures (for more details see [[74,
75]]). For cell-sizes of (2 × 2 × 2), (2 × 2 × 3) or (2 × 2 × 4) unit cells,
Γ-centered Monkhorst-Pack k-point grids [[76]] of (5×5×5) in the first case
and (5× 5× 3) in the latter two cases were used. For the GaAs/Ga(AsSb)
interface calculations, (5×5×3) k-point grids were used in case of (2×2×2)
unit cells for Ga(AsSb) and (5 × 5 × 2) k-point grids otherwise. For the
electronic structure calculations, spin-orbit coupling was taken into account.
All calculations were carried out with a kinetic energy cut-off of 368 eV1.
These numerical settings were used for all VBO calculations with DFT that
are presented in this thesis.
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Figure 4.5: VBOs between GaAs and Ga(AsSb) dependent on the Sb mole
fraction calculated within the modified core-to-valence band maximum ap-
proach. The color of the data points refers to different numbers of atoms
in the Ga(AsSb)-layer, which is given in the legend. For Sb concentrations
above 25% the results diverge.

Fig. 4.5 presents the GaAs/Ga(AsSb) VBO as a function of the Sb mole
fraction up to a mole fraction of 0.354 Sb in Ga(AsSb). Here, the red, blue
and orange dots belong to calculations with 64, 96 and 128 atoms in the
Ga(AsSb)-layer, belonging to the (2× 2× 2), (2× 2× 3) or (2× 2× 4) cells,
respectively. 2 Except for the single configuration belonging to the red dot
at 31.3% Sb, for all calculations at minimum three different configurations
of the Ga(AsSb)-layer have been used. In case of the blue dots, additional

1This is the rounded value from 367.4983 eV which is the maximum value of all
ENMAX-values that can be found in the used POTCAR-files multiplied by 1.3.

2This leads to Ga(AsSb) cell lengths in growth direction of 11.4 Å to 11.9 Å (3.1%
until 34.4% Sb) for (2× 2× 2) cells, 17.0 Å to 17.9 Å (2.1% until 35.4% Sb) for (2× 2× 3)
cells, and 22.8 Å to 23.7 Å (3.1% until 29.7% Sb) for (2 × 2 × 4) cells.
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configurations for the Ga(AsSb)-layer were added at concentrations where
a considerable spread of the VBO-values was observed.
As can be seen in Fig. 4.5, up to Sb concentrations of 25%, all results agree
and basically depend linearly on the Sb concentration. In contrast to this,
above 25% Sb the results split into two different curves depending on the
Ga(AsSb)-layer lengths. Furthermore, for Ga(AsSb) concentrations &23%
Sb the KS-bandgaps are smaller than 0.1 eV in many cases [[13]]. In such
cases, the modified core-to-valence band maximum approach does not yield
reliable results.
In order to solve this, the modified core-to-valence band maximum approach
has been extended by the inclusion of DFT-1/2. More specifically, this was
done in order to clearly observe a bandgap at elevated Sb concentrations
and to be able to unambiguously align the VBM of GaAs and Ga(AsSb) at
these concentrations. This will be discussed in the following section.

4.2.2 Half-occupation technique within the modified core-to-
valence band maximum approach

In order to use the half-occupation technique within the modified core-to-
valence band maximum approach, for the electronic structure calculations
the pseudopotentials of the states that form the topmost valence band have
been corrected with the corresponding self-energy potential VS (compare to
Section 2.3.4).
As discussed in Section 2.3.4, for the application of the half-occupation tech-
nique to solids, each self-energy potential needs to be suitably truncated
before introducing it into the pseudopotential of the solid. For this purpose,
the cut-off functions from Eq. (2.36) and Eq. (2.37) have been introduced
where the optimized cut-off radii are obtained from bandgap maximization.
Since in the present case GaAs/Ga(AsSb) interfaces are the subjects of
study, both the bandgaps of GaAs and GaSb were maximized. At first it
was verified that these maximizations do not lead to considerably different
radii sets for Ga, for cases where Eq. (2.37) was applied. Second, the effect
on the VBO results of either using Eq. (2.37) or Eq. (2.36) when trimming
the self-energy potentials was tested.
Hence, for the use of Eq. (2.37) at first the cut-off radii belonging to the an-
ions were determined from bandgap maximization of GaAs and GaSb which
resulted in radii sets of 1.440 aBohr and 3.184 aBohr for As and 1.755 aBohr

and 3.494 aBohr for Sb with aBohr = 0.529177 · 10−8cm. Subsequently, the
anion’s trimmed self-energy potentials were included into the pseudopo-
tential of the respective solid and VS was calculated for Ga in each case.



4.2. AB INITIO CALCULATION OF VALENCE BAND OFFSETS 65

The self-energy potential of Ga was then trimmed with various inner and
outer radii combinations, the trimmed potentials were included into the
GaAs and GaSb pseudopotentials, and the bandgaps were calculated for
both solids. Here, the bandgap maximization of GaAs lead to the Ga-radii
set of 2.15 aBohr and 3.9 aBohr, while the bandgap maximization of GaSb
lead to the Ga-radii set of 2.189 aBohr and 3.933 aBohr. The difference of the
cut-off radii is 0.036 aBohr for the inner radii and 0.033 aBohr for the outer
radii and lies within the scope of the numerical accuracy. Hence, it should
be interchangeable which of the two Ga-radii sets is used for the truncation
of its self-energy potential in VBO calculations.
This was tested for the GaAs/Ga(AsSb) interface at Sb concentrations of
34.4% and 35.4%. Here, for each Sb concentration two configurations of the
Ga(AsSb)-layer were used3. For identical GaAs/Ga(AsSb) interfaces, minor
deviations were observed for the VBO results from calculations with the two
different Ga-radii sets. In order to evaluate the effect on the VBO calcula-
tions, the standard deviation of the VBO results from using the two different
radii sets was calculated for each interface configuration where the two sets
were applied. This yielded a maximum standard deviation of 0.66 meV.
Since this value is negligible in the framework of the presented VBO calcu-
lations, the interchangeability of the radii sets during the VBO calculations
with Eq. (2.37) has been demonstrated. For subsequent calculations with
Eq. (2.37), the radii combination of 2.15 aBohr and 3.9 aBohr for trimming
of the Ga self-energy potential was used.
Furthermore, the impact of using either function Eq. (2.36) or Eq. (2.37)
for trimming the self-energy potentials was tested at 34.4% and 35.4% Sb.
For this purpose, the same four interfaces as mentioned above were used. In
case of using Eq. (2.36), the self-energy correction was only applied to the
anions as suggested in [[5]]. The used cut-off radii for the spherical trim-
ming were 3.353 aBohr for As and 3.687 aBohr for Sb. For interfaces with
identical atomic arrangements and for calculations either with Eq. (2.36) or
Eq. (2.37), the VBO deviations were in the order of meV. Here, a maximum
standard deviation of 2.39 meV was observed for identical interfaces.
The spread caused by different atomic arrangements in the Ga(AsSb)-layer
when the same cut-off functions and radii combinations were used resulted in
a minimum and a maximum standard deviation of 4.46 meV and 22.15 meV

3Included was an odd-configuration at 34.4% Sb, which showed an agglomeration of
Sb atoms at the interface. Such a configuration where nearly all atoms can be found
in adjacent layers was only observed in this case. Thus, this configuration was excluded
from calculations that aim to produce realistic VBO results with and without DFT-1/2,
because of being considered as being unlikely to be found in grown heterostructures.
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Figure 4.6: VBOs between GaAs and Ga(AsSb)as a function of the Sb mole
fraction calculated with the modified core-to-valence band maximum ap-
proach combined with the half-occupation technique (green dots and stars).
The stars mark short Ga(AsSb)-layer comprising 64 atoms. The data point
spread for some concentrations stems from different atomic configurations
in the Ga(AsSb)-layer. An analytical fit of the configurationally averaged
VBO is given by the solid line. This picture has been taken from [[13]]
(modified version).

at the same Sb concentration. Since this is considerably larger than the
standard deviations from the above comparisons, it can be concluded that
the spread of the VBO at the same Sb concentrations basically stems from
different configurations in the Ga(AsSb)-layer.

However, for both GaAs and GaSb, electronegativity differences suggest a
strong covalent character of the bonds, which has been confirmed by stud-
ies [[6, 77, 78]]. Thus, in case of the GaAs/Ga(AsSb) interface the bonding
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electrons are considered to be shared by the bonding partners. Because of
this, the spherical-shell trimming from Eq. (2.37) was used and the self-
energy correction was applied to the anions and the cation. In doing so,
1/4-charges were stripped from each bonding partner to avoid a double
counting of the correction when the self-energy potentials are incorporated
into the pseudopotential-file of the respective solid.
For the calculations of the VBOs, already existing configurations from in-
terface calculations for Fig. 4.5 were used. Since these calculations are com-
putationally demanding, some configurations were omitted. This was done
especially for concentrations well below 23% Sb where a much lower spread
of the VBO results in comparison to higher Sb concentrations was observed.
The results are presented in Fig. 4.6. Here it becomes apparent that con-
trary to the results from Fig. 4.5 the results from Fig. 4.6 are independent of
the Ga(AsSb)-layer length and show no splitting into two branches. There-
fore, the use of the half-occupation technique ensures a finite bandgap4 in
all present calculations and successfully removes the divergence of the VBO
results.
As can be seen in Fig. 4.6, the spread of the VBO results strongly varies for
different Sb concentrations. Here, the maximum standard-deviation from
the mean value is 20 meV at 25% Sb. For the applications in material
design studies, an analytical fit of the configurationally averaged VBO is
provided [[13]]:

y = 1.190149 eV · x+ 0.498005 eV · x · (1− x) . (4.2)

Here, y is the VBO in eV and x the Sb mole fraction. In Fig. 4.6, the fit is
plotted as the solid green line. While the underlying data points are fitted
well by Eq. (4.2), it is considered to be strictly valid only within the con-
centration range which is shown in Fig. 4.6.
Altogether, the results from Fig. 4.6 agree well with the corresponding re-
sults from C. M. Jones and E. Kioupakis (compare for example to the solid
lines of the lower part of the Fig. 2 in [[7]]).
Whereas the results of Jones and Kioupakis are obtained from k·p-calcula-
tions for a model-solid theory and therefore depend on prior experimental
input, this is not the case for the approach used here. For 35% Sb, the au-
thors [[7]] explicitly provide the VBO of 540 meV for the pseudomorphically
strained GaAs/Ga(AsSb) interface. This value is in good agreement with
the here calculated VBOs (compare to the data points in Fig. 4.6) and with

4Fig. 3 in the supplementary material from [[13]] shows a plot of the Ga(AsSb) bandgaps
belonging to the calculations from Fig. 4.6.
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Figure 4.7: VBOs between GaAs and Ga(AsSb) calculated with the modi-
fied core-to-valence band maximum approach in combination with the half-
occupation technique and (labeled as DFT-1/2 in the legend) and without
this technique (labeled as DFT in the legend) as a function of the Sb mole
fraction. The number of atoms in the Ga(AsSb)-layer is given in the legend.

the VBO of 529.9 meV obtained from Eq. (4.2). Moreover, S.-W. Ryu and
P. D. Dapkus [[79]] obtained a VBO of 406 meV for a GaAs/Ga(AsSb) inter-
face with 27% Sb by fitting experimental data from an (InGa)As/Ga(AsSb)
“W”-structure grown on a GaAs substrate and applying the transitivity rule.
Again, this value agrees well with the VBO of 419.5 meV from Eq. (4.2).

In conclusion, Fig. 4.7 shows the VBO results from the modified core-to-
valence band maximum method with and without the application of the
half-occupation technique. Here, the green data points refer to the results
obtained with the half-occupation technique. As can be seen in Fig. 4.7,
for very low Sb concentrations, the green and blue results are in agreement
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with each other. Nevertheless, as the Sb content increases, the green and
blue data points increasingly diverge. This is most pronounced above 25%
Sb where it is not possible to clearly assign VBOs in case of the blue data
points, since they split into different curves depending on the number of
atoms in the Ga(AsSb)-layer. The divergence of the blue data points can
be removed by inclusion of the half-occupation technique into the modified
core-to-valence band maximum approach. Together with the comparison to
published results from [[7, 79]] it is concluded, that combining the modified
core-to-valence band maximum method with the half-occupation technique
has proven to be suitable for the calculation of pseudomorphically strained
GaAs/Ga(AsSb) VBOs. Furthermore, this approach has the potential to be
applicable to similar semiconductor systems as well.
To compare the calculated VBO results to the results from Section 4.1, the
GaAs/Ga(AsSb) VBOs at Sb contents of 23.7% Sb and 23.6% were calcu-
lated with Eq. (4.2). These are the Sb concentrations from structures d4.8nm

and d3.5nm. Here, the calculated VBO values exceed the ones obtained from
fitting experimental data, as well as the GaAs-Ga(AsSb) bandgap differ-
ences in structures d4.8nm and d3.5nm at all temperatures. Thus, in contrast
to the results obtained from fitting experimental data, a type-II band align-
ment follows for these structures using the modified core-to-valence band
maximum approach combined with the half-occupation technique.
From k·p based calculations, C. M. Jones and E. Kioupakis [[7]] conclude
that the band alignment of GaAs and Ga(AsSb) in quantum well het-
erostructures mainly depends on strain. While the authors observed a
type-II band alignment for pseudomorphically strained layers, the band
alignment changes from that to type-I at certain percentages of strain re-
laxation in dependence on the well width and the Sb mole fraction.
Further studies could help to clarify the discrepancy between the mea-
sured lifetimes of the PL assigned to the lowest type-I transition of the
GaAs0.763Sb0.237-well from Section 4.1 and the type-II band alignment be-
tween GaAs and GaAs0.763Sb0.237, which results from the DFT calculations
from Section 4.2.2.
A starting point could for example be provided by calculations analogous to
the ones from Section 4.2.2, with in-plane lattice constants of the Ga(AsSb)
cells that have been gradually changed from the substrates lattice constant
towards the Ga(AsSb) lattice constant.
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Chapter 5

Conclusion

This thesis summarizes results from the theoretical investigation of the op-
tical and electronic properties of pseudomorphically grown quantum well
heterostructures. The optical properties were calculated using the reli-
able microscopic many-body approaches of the semiconductor Bloch and
semiconductor luminescence equations in combination with k·p-calculations.
Furthermore, the band alignment between GaAs and Ga(AsSb) in such het-
erostructures was studied using DFT.
In Chapter 3, results were presented from calculations that aim to optimize
the optical properties of “W”-structures with (InGa)As and Ga(AsSb) wells
pseudomorphically grown on GaAs. At first, suitable designs for emission
wavelengths around 1200 nm and an experimentally realized laser struc-
ture [[9]] were presented. A strong agreement was seen between the experi-
mentally measured and theoretically predicted spectra.
Subsequently, the effect on the optical properties caused by modifying the
charge carrier confinement by using different barrier layers was theoretically
investigated.
The gained findings were then used to carefully study optimized designs for
“W”-structures with an emission wavelength close to 1300 nm. Furthermore,
in order to favor the emission from the fundamental transition at elevated
carrier densities, the variation of the energy-distance between the first and
second electron confinement level with varying layer lengths was studied.
Altogether, this resulted in different ways to optimize the optical properties
of “W”-structures. Here, the strongest effect on the emission strength re-
sulted from using thinner wells, which is also experimentally feasible. The
presented studies and further calculations contributed to the experimental
realization of an electrical injection laser with an emission wavelength close
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to 1300 nm [[4]].
The last part of Chapter 3 presented aspects from the first-ever1 combined
experimental and theoretical investigation of the optical and THz properties
of charge-transfer excitons [[10]]. For this study, a structure in which the
(InGa)As electron well was separated by a GaAs layer from the Ga(AsSb)
hole well was used. The results [[10]] are highly relevant for the non-
destructive characterization and optimization of electronic transport and
charge transfer processes across internal interfaces in the future.
Finally, Chapter 4 focused on the determination of band offsets between
Ga(AsSb) and GaAs in strained heterostructures, which determine the ma-
terial’s band alignment in strained heterostructures. The first part of this
chapter presented experiment-theory comparisons from which the band align-
ment and the band offsets between GaAs and Ga(AsSb) were deduced [[11]].
The structures used for this study comprised of an (InGa)As electron well
and a Ga(AsSb) hole well that were pseudomorphically grown on GaAs and
spatially separated by a GaAs-interlayer. Measurements indicated a type-I
band alignment between GaAs and Ga(AsSb) and theoretical calculations
showed that this is possible. The following parts of this chapter introduce ap-
proaches to calculate VBOs between pseudomorphically strained layers with
DFT [[12, 13]]. For Ga(AsSb), standard DFT calculations with PBEsol re-
sulted in vanishing Kohn Sham-bandgaps and diverging VBO results. This
was corrected by introducing the half-occupation technique to the VBO cal-
culations [[13]]. The resulting VBOs are in good agreement with calculated
values (obtained from k·p-calculations for a model-solid theory) and experi-
mental results [[7, 79]]. However, for the respective antimony concentrations,
the type-II band alignment between strained GaAs and Ga(AsSb) resulting
from the latter DFT VBO calculations differs from the type-I band align-
ment deduced from fitting experimental data. Here, further studies could
contribute to clarification.
In conclusion, well established microscopic many-body theories have proven
their merit for predicting and characterizing optical properties of (InGa)As
and Ga(AsSb) based quantum well heterostructures pseudomorphically grown
on GaAs. The use of DFT in combination with the half-occupation tech-
nique enabled the determination of VBO between GaAs and Ga(AsSb) for
Sb concentrations ranging between 0 and 35.4%.
Regarding optical communication, an extension of the emission wavelengths
of type-II lasers is desirable. However, for the presented (InGa)As and
Ga(AsSb) based “W”-structures, the emission wavelength range is limited

1This information refers to the time at which manuscript was written.
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by the possibility to grow high quality layers at elevated Sb or In contents.
Therefore, the extension of the emission wavelength of type-II “W”-structures
towards wavelengths around 1500 nm could be realized by using materials
that contain N or Bi in form of dilute-nitrides or dilute-bismides (see [[80]]
for example). These materials could be either based on GaAs or as well on
(InGa)As or Ga(AsSb), where N or Bi replaces a small fraction of As or
respectively Sb (see [[81]] for example).
Returning to the VBO calculations, the discrepancy between the band align-
ment results from theory-experiment comparisons and the alignment using
the VBO from ab initio calculations could be further investigated by consid-
ering the effect of strain relaxation during VBO calculations, as suggested
in Section 4.2.2.
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Appendix A

Numerical calculations

A.1 Symmetric heterostructures

For calculations of the properties of the symmetric heterostructures from Sec-
tion 3.1, the commercial software SimuLaseTM, Version 2.0 was used. This
software calculates the opto-electric properties of a heterostructure using the
k·p-theory and the semiconductor Bloch and semiconductor luminescence
equations.
Via the graphical user interface at the ‘Design Structure’-tab, the user en-
ters the heterostructures layer lengths and compositions. The layers are
marked according to their function either as well, barrier or cladding. Fur-
ther options for the calculations are entered via the ‘Generate Database’-tab.
Besides specifying the temperatures, sheet carrier densities and inhomoge-
neous broadenings that should be used, we generally choose the following
options:

√
‘Solve Poisson’;

√
‘Polarization(s): TE’;

√
‘Gain/Absorption’, ‘Accuracy: High’, ‘Calculate: Absorption’;

√
‘Model Options: Standard Model’ .

The number of electron and hole subbands used during the calculations was
entered via choosing ‘Sub Bands’ and ‘Number of Subbands’ in combination
with entering the corresponding numbers for the electron and hole sub-
bands. These numbers were determined by plotting the wavefunctions and
including the maximum number of electron or hole subbands that leads to
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wavefunctions that are sufficiently localized in the corresponding well. For
this, the option to ‘Show: Wavefunctions’ in the ‘Design Structure’-tab in
combination with entering the number of subbands via ‘Electron Subbands’
and ‘Hole Subbands’ in the ‘Advanced’-tab can be used. Likewise, this can
be examined using test-calculations and suitable wavefunction plots.
By choosing the ‘Calculate: Absorption’ option, the equation of motion
for the phonon-assisted polarizations is solved during the calculation of the
electron-phonon scattering. In comparison to other options, by choosing
‘Model Options: Standard Model’ the no phenomenological dephasing times
are used to describe the dephasing of the optical polarization by microscopic
scattering processes. The band offsets according to [[29]] are used by the
program.
For the studies presented in Section 3.1, the bulk band edges1, single-particle
bandstructures (with these the confinement levels are obtained), confine-
ment wavefunctions, absorption spectra and photoluminescence spectra were
used from the generated output.

A.2 Non-symmetric heterostructures

For calculations with the non-symmetric structures, C-code and shell scripts
which belong to our group were used. The code performs both, the k·p-
calculations for the heterostructure and the calculation of its optical prop-
erties with the semiconductor Bloch and semiconductor luminescence equa-
tions. The files are accessible in our group archive. In order to do a specific
calculation, the heterostructure’s layer length, layer composition as well as
the numerical parameters and other options for the calculations were spec-
ified in the file input.c. The sheet carrier densities are specified in the file
vals.dat. Here, it is assumed that the user uses units of 1012/cm2. After all
parameters are set, the program is compiled and executed. In the frame-
work of this thesis, the bulk band edges before and after self-consistently
solving the Poisson-problem, single-particle bandstructure (with these the
confinement levels are obtained), confinement wavefunctions, dipole matrix
elements, and absorption and photoluminescence spectra were used from the
generated output.
As stated above, for each heterostructure the numbers of electron and hole
subbands that were included in the calculations were determined. This was
done with test-calculations and plots of the respective wavefunctions.

1Available are the bulk band edges after the self-consistent solution of the Poisson-
Problem.
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Below, settings that were typically used to calculate the bandstructure and
optical spectra of (InGa)As/Ga(AsSb)-heterostructure are given. The pre-
sented input.c file belongs to calculations for the studies presented in Sec-
tion 3.2.

#define VERSION 0 l

extern char c l c f i l e p a t h [ ] ; char c l c f i l e p a t h [ ]= ”x” ;
extern char d i s p f i l e p a t h [ ] ; char d i s p f i l e p a t h [ ]= ”x” ;
extern char r e s f i l e p a t h [ ] ; char r e s f i l e p a t h [ ]= ”x” ;

extern double e n e r g y o v e r s ; double e n e r g y o v e r s =(0.8 l ) ;
extern double qw dens ity ; double qw dens ity =2.0 l ;
extern double t empera ture l ; double t empera ture l =10.0 l ; /* l a t t i c e
temperature [K] */
extern double temperature c ; double temperature c =10.0 l ; /* c a r r i e r
temperature [K] */
extern double f i e l d [ ] ; double f i e l d [ ]={0 . 0 e 5 l } ;
extern double dephase 2 ; double dephase 2 =1.0 l ;
extern double t o t a l t i m e ; double t o t a l t i m e =6.0e=12 l ;
extern double kpar maxini ; double kpar maxini =20.0 l ; /* maximum
k p a r a l l e l v a l u e ; in k Bohr = 2 p i /a0 ; a0 : Bohr r a d i u s */
extern long int tetmpol ; long int tetmpol =0; /* l i g h t p o l a r i z a t i o n ;
0 : TE, 1 : TM */
#define ZB OR WZ 0 l /* c r y s t a l s t r u c t u r e ; 0 : z i n c b l e n d e , 1 : w u r t z i t e */
#define WZ CBVB 0 l
#define CALC SE 1 l /* 0 : f o r absorp t ion , 1 : f o r PL and a b s o r p t i o n */
#define INCLUDE EX SOURCE 1 l
#define N LEVEL 0 l
#define Bi LEVEL 0 l

#define TWO P THREE 0 l
#i f ( TWO P THREE )

#d e f i n e NO WELLC TWO 3 l
#d e f i n e NO WELLH TWO 8 l
#i f ( N LEVEL )

#d e f i n e NO WELLC THREE 2 l
#e l i f ( Bi LEVEL )

#d e f i n e NO WELLC THREE 1 l
#else
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#d e f i n e NO WELLC THREE 1 l
#e n d i f
#i f ( Bi LEVEL )

#d e f i n e NO WELLH THREE 3 l
#else

#d e f i n e NO WELLH THREE 3 l
#e n d i f
#d e f i n e NO WELLC (NO WELLC TWO+NO WELLC THREE)
#d e f i n e NO WELLHH (NO WELLH TWO+NO WELLH THREE)
#d e f i n e FT NODES THREE 1 l

#else
#d e f i n e NO WELLC 2 l /* number o f subbands f o r e l e c t r o n s */
#d e f i n e NO WELLHH 6 l /* number o f subbands f o r h o l e s */
#d e f i n e NO WELLC TWO NO WELLC
#d e f i n e NO WELLH TWO NO WELLHH
#d e f i n e NO WELLC THREE (0 l )
#d e f i n e NO WELLH THREE (0 l )

#endif

#define NO OF KPAR 100 l
#define NOOFT 3001 l
#define POISSON 1 l
#define MODEL 4 l
#define PHON SCATT 1 l
#define ELEL SCATT 1 l
#define USE LOWEST 0 l
#define FT NODES 265 l /* number o f nodes f o r the z and k z g r id s ,
must be an i n t e g e r power o f two */
#define KZ PER NODE 8 l
#define GROW 0 l
#define STRAIN 1 l
#define SYMM STRUCT 0 l
#define SELF CONS MU 0 l
#define OZ OR OO 1 l
#define INCLUDE COULOMB INTERACTION 1 l
#define K FOURTH 0 l
#define WAVEFCTN PARTS 1 l
#define IMPURITY STATES UNOCCUPIED 1 l

extern long int b i g p o i s s o n c t r l ; long int b i g p o i s s o n c t r l =8;
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extern long int poisson swon ; long int poisson swon =5;

/* m a t e r i a l codes : 1 GaAs , 2 GaP, 3 AlAs , 4 AlP , 5 InAs , 6 InP ,
7 GaSb , 8 AlN , 9 GaN, 10 InN , 11 InSb , 12 AlSb */
#define STRUCTURE 9 l /* number o f l a y e r s */
extern long int compound type1 [ ] ; extern long int compound type2 [ ] ;
extern long int compound type3 [ ] ; extern long int compound type4 [ ] ;
extern long int p o t s l o p e t y p e [ ] ;
extern long int nary [ ] ;
extern double l a y e r l e n g t h s [ ] ;
extern long int t y p e o f l a y e r [ ] ;
extern double l a y e r c o n c e n t l 1 [ ] ; extern double l a y e r c o n c e n t l 2 [ ] ;
extern double l a y e r c o n c e n t r 1 [ ] ; extern double l a y e r c o n c e n t r 2 [ ] ;
extern double n konz [ ] ; extern long int n i n l a y e r [ ] ;
extern double Bi konz [ ] ;
extern double b a n d o f f s e t [ ] ; extern double b a n d o f f s e t l [ ] ;
extern double t y p e 2 o f f [ ] ;
/* the f o l l o w i n g four arrays d e f i n e the e lements in the
n=nary m a t e r i a l systems ;
the m a t e r i a l t y p e s in columns i are in l a y e r i */
long int compound type1 [ ] ={1 , 2 , 1 , 7 , 1 , 5 , 1 , 2 , 1} ;
long int compound type2 [ ] ={0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0} ;
long int compound type3 [ ] ={0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
long int compound type4 [ ] ={0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
/* from the arrays i t f o l l o w s :
GaAs ,Ga(AsP) , Ga( AsSb ) , GaAs , ( InGa )As , GaAs , Ga(AsP) , GaAs */
long int nary [ ] ={2 , 3 , 2 , 3 , 2 , 3 , 2 , 3 , 2} ; /* number o f e lements
in l a y e r i */
long int p o t s l o p e t y p e [ ] ={1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1} ; /* 1 : abrupt p o t e n t i a l
jumps , 2 : l i n e a r p o t e n t i a l s l o p e between l a y e r s */
long int t y p e o f l a y e r [ ] ={1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1} ; /* 2 : w e l l ,
1 : b a r r i e r */
extern int s t r a i n t o [ ] ; int s t r a i n t o [ ] ={0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1} ; /* a l l
l a y e r s are s t r a i n e d to the f i r s t one */
double l a y e r l e n g t h s [ ]=
{2 .3 e=9l , 1 9 . 3 e=9l , 4 . 6 e=9l , 7 . 7 e=9l , 1 . 0 e=9l , 7 . 7 e=9l ,

4 . 6 e=9l , 1 9 . 3 e=9l , 2 . 3 e=9 l } ;
/* above : 2 .3 nm GaAs , 19.3 nm Ga(AsP) , 4 .6 nm GaAs ,

7 .7 nm Ga( AsSb ) , 1 .0 nm GaAs , 7 .7 nm ( InGa )As , 4 .6 nm GaAs ,
19.3 nm Ga(AsP) , 2 .3 nm GaAs */
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double n konz [ ]={0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l } ;
long int n i n l a y e r [ ] ={0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
double Bi konz [ ]={0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l } ;
double l a y e r c o n c e n t l 1 [ ]=
{0 .0 l , 0 . 0 5 4 l , 0 . 0 l , 0 . 0 3 3 l , 0 . 0 l , 0 . 0 5 8 l , 0 . 0 l , 0 . 0 5 4 l , 0 . 0 l } ; /* 5.4% P,

3.3% Sb , 5.8% In , 5.4% P */
double l a y e r c o n c e n t r 1 [ ]=
{0 .0 l , 0 . 0 5 4 l , 0 . 0 l , 0 . 0 3 3 l , 0 . 0 l , 0 . 0 5 8 l , 0 . 0 l , 0 . 0 5 4 l , 0 . 0 l } ;

double l a y e r c o n c e n t l 2 [ ]=
{0 .0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l } ;

double l a y e r c o n c e n t r 2 [ ]=
{0 .0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l , 0 . 0 l } ;

double b a n d o f f s e t [ ]=
{0.6042 l , 0 . 6 0 4 2 l , 0 . 1 4 1 1 l , 0 . 1 4 1 1 l , 0 . 6 3 3 9 l , 0 . 6 3 3 9 l , 0 . 6 0 4 2 l , 0 . 6 0 4 2 l } ;
/* above : f r a c t i o n o f the bandgap d i f f e r e n c e t h a t i s a s s i g n e d to

the conduct ion band o f f s e t between ad jace n t l a y e r s */
double b a n d o f f s e t l [ ]={0 . 0 l , 0 . 0 l } ;
double t y p e 2 o f f [ ]={0 . 0 l , 0 . 0 l , 0 . 0 l } ;

#i f ( TWO P THREE )
extern long int b u l k l a y e r n o ;
long int b u l k l a y e r n o=0 l ;

#endif

Generally, for the calculations, the layers next to the wells are marked as
wells instead of as barriers. This is done in order to carry out quantized
calculations for this layers as well. The first and the last layers are marked
as barriers. In practice, the specification of a layer either as well- or barrier-
material is done by entering 2 (for well) or 1 (for barrier) in the array
type of layer []. Here, column i belongs to layer i. When declaring a multi-
nary compound, the order of binary semiconductors in the columns of the
arrays long int compound typeM[] (where M∈ {1, 2, 3, 4}) can generally not
be arbitrary. Valid input can be derived by examining the function:

double parameter e c [4][(( long int)STRUCTURE)], double conc1, double conc2),

which can be found in the file kpparame 2010=05.c. This function calcu-
lates the unstrained bandgaps. Here, the bandgap calculations are generally
not implemented for all possible orders of elements in a compound. This
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function was also used to adjust the bandgaps that were used for calcula-
tions in the studies presented in Section 3.2. For this purpose, the bandgap
calculation in the conditional statement of:

else if ( compound type1[layer]==7 && compound type2[layer]==1 )

was replaced.

For the (InGa)As, Ga(AsSb) and GaAs based heterostructures from Sec-
tion 4.1, using #define FT NODES 128l was sufficient. Except for this, the
same numerical parameters were used in input.c. In this study, the bandgaps
were not varied.

A.3 VBO calculations with DFT

For the DFT calculations, VASP 5.4.4 was used. In order to model pseu-
domorphically grown materials an adjusted version of VASP 5.4.4 was used
during the relaxation calculations. This z-relaxation version allows only for
changes of the lattice constant in z-direction, while the lattice constants
perpendicular to the z-direction remain unchanged. The VASP z-relaxation
version was compiled with an adjusted constr cell relax.F file. In this file, all
components of the matrix that contains the forces on the supercell (the re-
spective matrix is called FCELL) were set to zero except for the z-component
on the diagonal of the matrix.
The calculations from Section 4.2.1 were carried out using Python-code
which belongs to our research group and was programmed by J. O. Oelerich.
This code enables an efficient set up of VASP calculations. It uses different
functions from the Atomic Simulation Environment [[82]] code and generates
special quasi-random structures using the mcsqs-code from the Alloy Theo-
retic Automated Toolkit [[75]]. The code is accessible in our group archive.
Below, generally used settings in the INCAR-files during relaxation and elec-
tronic structure calculations are given. Information on the used cell sizes
and and the corresponding KPOINTS-files can be found in Section 4.2.1.
These INCAR-files were automatically generated with the above mentioned
Python-code, to which the user-input was passed.

INCAR f o r r e l a x a t i o n c a l c u l a t i o n s
ENCUT = 367.498300
EDIFF = 1.00 e=04
EDIFFG = =2.00e=02
SIGMA = 0.050000
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POTIM = 0.500000
AMIN = 0.010000
GGA = PS
ALGO = f a s t
PREC = normal
NSW = 150
IBRION = 1
NELM = 250
ISYM = 1
ISIF = 3
ISMEAR = 0
NFREE = 10
ADDGRID = .TRUE.
LREAL = Auto

INCAR f o r e l e c t r o n i c s t r u c t u r e c a l c u l a t i o n s
ENCUT = 367.498300
EDIFF = 1.00 e=04
SIGMA = 0.050000
AMIN = 0.010000
GGA = PS
ALGO = f a s t
PREC = normal
ISTART = 0
NELM = 250
ISYM = =1
ISMEAR = 0
ICHARG = 2
LMAXMIX = 4
ICORELEVEL = 1
LVHAR = .TRUE.
LSORBIT = .TRUE.
LVTOT = .TRUE.
LREAL = Auto

Depending on the cluster on which the calculations were carried out, differ-
ent setting for NPAR or NCORE were used.
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[4] C. Fuchs, A. Brüggemann, M. J. Weseloh, C. Berger, C. Möller, S.
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tures (Les Éditions de Physique, Les Ulis Cedex, France, 1988).
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[55] P. E. Blöchl, “Projector augmented-wave method”, Physical Review
B 50, 17953–17979 (1994).

[56] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the
projector augmented-wave method”, Physical Review B 59, 1758–1775
(1999).

[57] J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence
of ocular damage thresholds in the near-ir to far-ir transition region:
proposed revisions to MPES”, Health Physics 92, 15–23 (2007).

[58] D. O. Caplan, “Laser communication transmitter and receiver design”,
Journal of Optical and Fiber Communications Reports 4, 225–362
(2007).

[59] K. Mathur, Fundamentals of Fiber Optics Communications (ZORBA
Books, 2018).

[60] J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic evaluation of
spontaneous emission- and auger-processes in semiconductor lasers”,
IEEE Journal of Quantum Electronics 41, 1217–1226 (2005).

[61] B. N. Zvonkov, N. S.M., V. O.V., and D. N.V., “Emission properties
of heterostructures with a (GaAsSb-InGaAs)/GaAs bilayer quantum
well”, Semiconductors 47, 1219–1223 (2013).



88 BIBLIOGRAPHY

[62] M. Kuznetsov, “VECSEL Semiconductor Lasers: A Path to High-
Power, Quality Beam and UV to IR Wavelength by Design”, in Semi-
conductor disk lasers (John Wiley & Sons, Ltd, 2010) Chap. 1, pp. 1–
71.

[63] C. Berger, “Microscopic Theory of Semiconductor Laser Material Sys-
tems”, Dissertation (Philipps-Universität Marburg, 2016).

[64] X. He and S. Srinivasan, Quantum well laser with a composition-graded
interface at the quantum-well, United States Patent, Patent Number:
6,091,752, 2000.

[65] J.-B. Wang, S. R. Johnson, S. A. Chaparro, D. Ding, Y. Cao, Y. G.
Sadofyev, Y.-H. Zhang, J. A. Gupta, and C. Z. Guo, “Band edge align-
ment of pseudomorphic GaAs1-ySby on GaAs”, Physical Review B 70,
195339 (2004).

[66] S. R. Johnson, S. Chaparro, J. Wang, N. Samal, Y. Cao, Z. B. Chen,
C. Navarro, J. Xu, S. Q. Yu, D. J. Smith, C.-Z. Guo, P. Dowd, W.
Braun, and Y.-H. Zhang, “GaAs-substrate-based long-wave active ma-
terials with type-II band alignments”, Journal of Vacuum Science &
Technology B: Microelectronics and Nanometer Structures Processing,
Measurement, and Phenomena 19, 1501–1504 (2001).

[67] C. E. Pryor and M.-E. Pistol, “Band-edge diagrams for strained III–V
semiconductor quantum wells, wires, and dots”, Physical Review B
72, 205311 (2005).

[68] S. Gies, B. Holz, C. Fuchs, W. Stolz, and W. Heimbrodt, “Recom-
bination dynamics of type-II excitons in (Ga,In)As/GaAs/Ga(As,Sb)
heterostructures”, Nanotechnology 28, 025701 (2016).

[69] C. G. Van De Walle and J. Neugebauer, “Universal alignment of hy-
drogen levels in semiconductors, insulators and solutions”, Nature,
626–628 (2003).

[70] J. M. Bass, M. Oloumi, and C. C. Matthai, “A method for determining
band offsets in semiconductor superlattices and interfaces”, Journal of
Physics: Condensed Matter 1, 10625–10628 (1989).

[71] S. H. Wei and A. Zunger, “Calculated natural band offsets of all II-VI
and III-V semiconductors: chemical trends and the role of cation d
orbitals”, Applied Physics Letters 72, 2011–2013 (1998).

[72] M. S. Hybertsen and S. G. Louie, “First-Principles Theory of Quasipar-
ticles: Calculation of Band Gaps in Semiconductors and Insulators”,
Physical Review Letters 55, 1418–1421 (1985).



BIBLIOGRAPHY 89

[73] A. Baldereschi, S. Baroni, and R. Resta, “Band Offsets in Lattice-
Matched Heterojunctions: A Model and First-Principles Calculations
for GaAs/AlAs”, Physical Review Letters 61, 734–737 (1988).

[74] S.-H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, “Electronic
properties of random alloys: Special quasirandom structures”, Physical
Review B 42, 9622–9649 (1990).

[75] A. van de Walle, P. Tiwary, M. de Jong, D. Olmsted, M. Asta, A. Dick,
D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu, “Efficient stochastic
generation of special quasirandom structures”, Calphad 42, 13 –18
(2013).

[76] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone
integrations”, Physical Review B 13, 5188–5192 (1976).

[77] G. Merad, H. Aourag, and B. Khelifa, “The valence and conduction
band edges charge densities under high pressure for GaSb”, Physica
Scripta 45, 454–457 (1992).

[78] D. Benson, O. F. Sankey, and U. Häussermann, “Electronic structure
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