
 

AstroByte: Multi-FPGA Architecture for Accelerated 

Simulations of Spiking Astrocyte Neural Networks 

Abstract— Spiking astrocyte neural networks (SANN) are a new 

computational paradigm that exhibit enhanced self-adapting and 

reliability properties. The inclusion of astrocyte behaviour 

increases the computational load and critically the number of 

connections, where each astrocyte typically communicates with 6-9 

neurons (and their associated synapses) with feedback pathways 

from each neuron to the astrocyte. Each astrocyte cell also 

communicates with its neighbouring cell resulting in a significant 

interconnect density. The substantial level of parallelisms in 

SANNs lends itself to acceleration in hardware, however, the 

challenge in accelerating simulations of SANNs firmly resides in 

scalable interconnect and the ability to inject and retrieve data 

from the hardware.  This paper presents a novel multi-FPGA 

acceleration architecture, AstroByte, for the speedup of SANNs. 

AstroByte explores Networks-on-Chip (NoC) routing mechanisms 

to address the challenge of communicating both spike event 

(neuron data) and numeric (astrocyte data) across significant 

interconnect pathways between astrocytes and neurons. AstroByte 

also exploits the NoC interconnect to inject data and retrieve 

runtime data from the accelerated SANN simulations. Results will 

show that AstroByte can simulate SANN applications with speedup 

factors of between x162 -x188 over Matlab equivalent simulations.  

Keywords—SANN acceleration, Multi-FPGA design, Data 

acquisition, Networks on Chip (NoC), Astrocyte, SNN. 

I. INTRODUCTION  

The human brain can carry out computations in a power 
efficient and immensely parallel manner which has motivated the 
trend in bio-inspired computing [1]. Spiking Neural Networks 
(SNNs) are a popular bio-inspired paradigm that have been used 
in many applications [2]. The self-repairing ability of the human 
brain is a key attractive feature that engineers are keen to 
implement in the next generation of computers. In this context, 
current research in self-repair has focused on astrocytes, a type 
of glial cell, which is the mechanism responsible for facilitating 
fine-grained self-repair. These new Spiking Astrocyte-neuron 
Networks (SANNs) modulate the synaptic activities between 
neurons via distributed astrocytes in the network. This concept 
was proven in previous work when a biologically-faithful 
astrocyte was integrated with an SNN and simulated in Matlab 
[3]; this mechanism is illustrated in Fig. 1. When a synapse fails 
to release neurotransmitters, the associated neural activity falls 
and consequently the level of endocannabinoid (2-AG) decreases. 
The absence of the 2-AG signal, which is a retrograde feedback 
messenger from active postsynaptic neurons, causes an overall 
increase in probability of release (PR) at all tripartite synapses. 
This is because the direct feedback of 2-AG to the presynaptic 

terminal, which causes Depolarisation Induced Suppression of 
Excitation (DSE), has diminished leaving the indirect feedback 
signal from the astrocyte to cause a sudden increase in PR. This, 
in turn, increases the firing rate of the remaining synapses 
because a probabilistic tri-partite synapse has been used. 

Subsequent research focussed on accelerating this entire 

process by means of designing a SANN accelerator on FPGA 

hardware [4]. A speedup factor of up to x1067 was achieved 

when compared with executing the model using Matlab.  While 

designing the SANN accelerator, a configuration and monitoring 

platform was required, capable of passing configuration 

parameters to the hardware SANN and collecting monitoring 

data. This motivated the design of an FPGA Monitoring 

Platform (FMP) [5]. In this paper, the SANN accelerator and 

FMP are integrated into a multi-FPGA NoC platform called 

AstroByte.  
 The contributions of this work can be summarised as 

follows: 

1- A new fully scalable NoC-based multi-FPGA architecture for 
accommodating SANN hardware Implementations. 

2- Functional verify the NoC infrastructure by integrating the 
SANN accelerator [4] on a 4-FPGA platform. 

3- Present the integration of the FPGA Configuration and 
Monitoring Platform (FCMP) [5] with the multi-FPGA 
architecture, giving users the ability to configure the platform 
and acquire real-time simulation data. 

4- Providing results demonstrating that SANNs can be 
accelerated using the NoC paradigm for facilitating cross-
FPGA communications. 

Simulating SNNs has traditionally been performed using a 
programming language such as MATLAB or PyNN that run on 

Fig. 1 Interactions between the astrocyte and the two neurons between and 

after a fault is injected [3]. 
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single or multi-core general-purpose processors [6], [7]. In 
addition, some researchers have focussed on implementing SNN 
simulations on GPUs [8]. More recently, in-field 
reconfigurability and the ability to realise dedicated parallel 
hardware has made FPGAs attractive for SNN implementations 
[9]. To this effect, the EMBRACE architecture was developed, 
leveraging a 2D mesh NoC structure for scalable SNN FPGA 
simulations [10]. The EMBRACE router contains a 
programmable address table making simulation of different SNN 
structures possible. Bluehive [11] is a multi-FPGA platform for 
large-scale SNN real-time simulations.. The platform focusses on 
massive real-time simulations as opposed to accelerating these 
simulations. Each FPGA supports real-time simulation of 64,000 
neurons and 64M synapses through time-multiplexing hardware 
resources. SNAVA [12], allows parallel real-time simulation of 
SNNs by means of a scalable and programmable architecture that 
can scale to incorporate a number of FPGAs. A shared bus 
extends to multiple FPGA boards in a ring topology using SMA 
cables and Xilinx Aurora protocol. SNAVA can be configured to 
a desired neuron and synapse model, utilising a time-
multiplexing technique for taking full advantage of the available 
hardware.  

The following distinguishes AstroByte from the above work:  

1. Incorporation of astrocytes to provide SANNs with self-
repairing abilities.  

2. Ability to efficiently reconfigure the SANN and capture real-
time simulation data using the same NoC infrastructure used 
for data communication. 

3. Able to achieve accelerations of up to x188 while capturing 
full-scale real-time simulation data. 

The rest of the paper is organised as follows. Section II 
investigates the overall architecture and operation of the 
AstroByte platform. Section III presents the results collected 
from different experimentations. At first the experiments setup 
will be explained followed by the results that include accuracy 
comparison with an equivalent software model, speedup gained 
and under-sampling. Section IV concludes the paper along with 
investigating future works. 

II. ASTROBYTE ARCHITECTURE  

Fig. 2 shows the overall AstroByte architecture for a 4-FPGA 

system where four NoC routers are used to facilitate 

communication of configuration and simulation data. In effect, 

each Terasic DE4 FPGA board (Fig. 6) acts as a node on the NoC. 

Mesh topology is used along with a XY routing algorithm with a 

round-robin arbitration. XY routing has been utilized because of 

its efficiency –free of deadlock and livelock -and simplicity when 

used with mesh NoCs.  In addition to its neighbouring routers, 

each router is also connected to an internal computing core. The 

computing core can be either an SANN building block (e.g. 

astrocytes, neurons, tripartite synapses, and spike generators) or 

the FCMP. In the case of the former the core is connected to a 

Core interface (CI) block and in case of the latter to the FCMP 

Interface (FI) block. The microarchitectures of the router and CI 

will be briefly discussed in the next subsections.  

A. Astrobyte protocol  

Three types of packets are supported by AstroByte: data, credit,  

and configuration packets. Data and configuration packets are 

composed of two Flow Control Units (flit), a header flit and a 

body flit, while the credit packet is only one flit in size. Data 

packets are composed inside the cores and used for 

communicating neurons and astrocyte data with the other cores    

in the NoC. Configuration packets are sent from the FCMP to the 

other nodes on the NoC (other FPGAs) for configuring their 

operation. As shown in Fig. 3, data and configuration packets 

have similar structures with the difference being in the value of 

the four control bits in the header flit. When the control bits 

indicated a data packet, the header will be followed by a data flit 

that contains spike or astrocyte data. If the control bits had other 

values, a configuration packet is recognised, when the header flit 

is being followed by a flit that carries configuration values 

instead of spike of astrocyte values. Overall, AstroByte supports 

12 configuration attributes. For example, in terms of 

reconfigurability, the user can choose the rate of injected faults, 

the time of occurrence of faults, and the destination of data 

packets from cores (i.e. mapping of the SANN).  Credit packets 

are constantly sent to the neighbouring routers and their purpose 

is interchanging information on the available buffer space in the 

routers’ input ports. This enable data to be only send when there 

is enough buffer space in the downstream router. 

B. Router microarchitecture  

Fig. 4 shows the router micro-architecture. Each router consists 

of five ports, four for communicating with neighbouring 

nodes/FPGAs and one internal port for the computing core. All 

four external ports are connected to a bidirectional Intel Gigabit 

Transceiver Block (GXB) for serialising the data stream and 

sending over SATA connections. GXB transceivers accept and 

supply parallel data in their clock domains generated by the 

receiver and transmitter of the GXB respectively. Although the 

frequency of these clocks is 150MHz (i.e. similar to the router 

frequency), their phase is different, thus, should be dealt with as 

different clock domains. Because of existence of many frequency 

domains in the router, the Clock Domain Crossing (CDC) 

Fig. 2.  Mapping a prototype SANN into a 4-FPGA AstroByte platform 



technique has been utilised using Dual Clock First in First out 

(DCFIFO) memories and associated controllers. The micro-

architecture is illustrated in Fig. 4, where ports 1-4 have identical 

building blocks while port 0, the core port, has a different 

structure. The core port is different because its input and output 

buses are connected to the CI which is located on the same 

FPGA, meaning that GXBs are not required for serialising Data. 

The input controller of Fig. 4 is responsible for de-multiplexing 

the input stream and forwarding data to the two DCFIFOs; one is 

data packet buffer (Data DCFIFO) and the other is credit packet 

buffer (Credit DCFIFO).  The Input controller and the write side 

of the DCFIFOs operate in the GBX Rx clock domain which is 

different for each port. Control logic 1 (CL1), the read side of the 

input DCFIFO, and CL2, the write side of output DCFIFO, 

operate in the router clock domain. CL1 contains controller logic 

handling reading from the Data DCFIFO and generating request 

signals by decoding the address in the header packets existing at 

the DCFIFO outputs. Furthermore, CL1 contains logic for 

deciding whether the Arbiter can grant request on the output port. 

CL1 decided this firstly, decoding credit packets from the Credit 

DCFIFO and determining if the downstream router can 

accommodate further packets. For the internal port, no credit 

packet is received and decoded. Instead, as the CI is located on 

the FPGA, information regarding free buffer space is obtained by 

a separate bus, denoted as CI Write_Used in Fig. 4. Secondly 

CL1 uses the Write_Used signal from output Data DCFIFO to 

decide if the output buffer has free space available. This 

information is passed to the Arbiters (one in each port) that 

control access to the output ports in the crossbar switch. The 

Arbiter implements a round-robin arbitration scheme and it will 

only grant access to requesting ports if the CL1 has determined 

there is free space in both the output buffer of the current router 

and the input buffer of the next router (or the internal node). CL2 

contains logic to packetize the Read_Used signal (indicating the 

number of used words)  from the input Data DCFIFO to form the 

credit packet. Also, CL2 is responsible for controlling write 

operations to the two output DCFIFOs, one for data packets and 

credit packets each. Output controller along with the read side of 

output DCFIFOs operate in the GXB Tx clock domain. Output 

controller multiplexes both data packet and credit packets before 

forwarding the data stream to the transmitter parallel input. 

C. Core Interface (CI) microarchitecture  

The CI block is located between the internal port of the router-

port 0 and the computing core. In Error! Reference source not 

found., the left side of CI communicates with the router while 

the right side communicates with the core which is the SANN 

computation. The Input Controller block decodes the header in 

the incoming packet from the router and forwards the body part 

to either Input Data DCFIFOs or configuration registers. If a 

data packet is detected, the header will be discarded of and the 

body, which is the data flit, will be stored in the Input Data 

DCFIFOs. If a configuration packet is recognized, the header 

will be decoded by the Input controller and the body forwarded 

to the relevant register in either the Configuration Register File 

(CRF) or CRF DCFIFO. The former parameters are used by the 

Output controller and the latter will be passed to the SANN core. 

The Output controller packetizes the core data, saved in the 

Output Data DCFIFOs and forwards it to the router, i.e. as long 

as port 0 has free buffer space. The output controller sends data 

according to the content of CRF. For example, while packetizing 

data, the Output controller uses the value stored in the CRF 

address register, received at the start of operation, as the 

destination address of the packets. Additionally, the value stored 

in the under-sampling register of CRF will be used to decide 

whether to send data at full or reduced granularity. 

D. FCMP & FI  

FCMP is a Nios II embedded processor-based system that can 

communicate to a PC and the FPGA fabric. FCMP is placed on 

one of the FPGAs with a NoC router. This allows the FCMP to 

address and be addressed by the other FPGAs, allowing for easy 

configuration and monitoring as the FCMP will act similar to the 

other nodes on the network. The FCMP & FI microarchitecture 

is an adaptation of the design reported in [5].  

E. Astrobyte Operation 

Initially all FPGA boards are programmed with SANN cores 

and a single FCMP HDL codes. The configuration phase starts 

next, in which the FCMP node starts sending configuration 

Fig. 4 Simplified router microarchitecture 

Fig. 3. Astrobyte protocol format 

Fig. 5 Core Interface (CI) microarchitecture 



packets to the other nodes to facilitate a user defined multi-FPGA 

SANN platform through modifying the SANN parameters. As an 

example, if inserting faults was required by the simulation, 

appropriate configuration packets can be sent to specify the rate 

of the fault and the time of occurrence in clock cycles. Next, the 

FCMP sends a special configuration packet that carries start 

command for starting acceleration at the SANN cores. The 

SANN cores then commence sending data through the NoC 

infrastructure to destinations specified by the configuration 

packets. The destinations are other nodes with the possibility of 

sending data to FCMP for monitoring. When the FCMP SRAM 

is full, a trigger goes to the Nios II processor and sending data 

from the SRAM to a PC begins. The data will be sent using 

Ethernet to a PC that runs Matlab for storage, monitoring and 

analysis purposes. 

III. EXPERIMENTATIONS AND RESULTS 

A. Experiment setup 

Intel Quartus Prime 18.0 SE was used for FPGA design, 
synthesis and programming. SignalTap II and the in-house 
developed FCMP were used for design verification. Matlab 
R2015b was used for capturing simulation data for storage and 
analysis. An Intel build for Eclipse Mars 2 was used with Nios ii 
embedded processor. All software simulation experiments were 
executed on a 3.4 GHz Intel Core i7-2600 with 16GB of RAM, 
running 64-bit Windows 10. 

Terasic DE4 FPGA boards , each with an Intel Stratix IV GX    
EP4SGX530 FPGAs, were used to implement AstroByte, as can 
be seen in Fig. 6. DE4 boards provide a number of standard 
interfaces and AstroByte uses Ethernet, SATA, and General 
Input Output Pin (GPIO) interfaces.  

The SATA links provide a throughput of 6Gbps. Although 
the transceivers can support this throughout, the maximum 
effective throughput across the link is 4.8Gbps due to a 8b/10b 
encoding scheme [13]. In this work, 2.7Gbps (70%) of the 
bandwidth has been utilised. 

B. Multi-FPGA SANN Implementation 

The set of experiments that will presented next aim at evaluating 

performance of the AstroByte platform by integrating the SANN 

accelerator block into the multi-FPGA NoC architecture. Fig. 2 

illustrates this integration. The first neuron entity (N1), and the 

associated tripartite synapses, spike and probability generators, 

are mapped into node (0,1) in the NoC mesh. N2 and its 

associated blocks are mapped to node (1,0) while the astrocyte 

core is mapped to node (0,0) and FCMP is located at node (1,1). 

FCMP sends configuration packets at the start of a simulation, 

routing information from the SANN components to their 

destination. The Astrocyte core sends eSP signals to both neuron 

cores, which in turn, send the astrocyte 2AG values. The neurons 

also send their average frequencies to the FCMP platform, 

enabling users to monitor the rate of firing. 

C. Acceleration  

Acceleration gained from the prototype AstroByte platform 
of Fig. 2 will be assessed in this section. Table. 1 shows that 
SANN speedup factors of between  x162 and x188 can be gained  
on with AstroByte compared to an equivalent Matlab model [6]. 
Comparing these figures with acceleration obtained from a single 
FPGA SANN platform indicates that, despite the NoC 
interconnection overhead, the multi-FPGA AstroByte can 
maintain over 75% of the speedup factor. From the last entry in 
Table.1, 2hrs:46min of biological time can be simulated in 21.74 
seconds using the proposed multi-FPGA accelerator. The same 
biological time scale will take 1hr: 8mins in Matlab. 

D. Accuracy  

Fig. 7 illustrates average frequency comparison between 
AstroByte SANN implementation and equivalent Matlab 
software model. Frequency response trajectories for the healthy 
neurons and various rations of faults, including no fault situation, 
are presented. The average frequency of the trajectories is also 
shown. It is evidence that a multi-FPGA AstroByte platform can 
simulate SANNs with high accuracy. The maximum difference 
between the average two frequencies can be seen in 7(f), with a 
difference of 0.0939 Hz (~0.016%).  

E. Under-sampling 

 Under-sampling is carried out by collecting the same amount of 
data with reduced granularity, resulting in faster simulation and 
data acquisition. Table. 2 demonstrates the effect of under-
sampling. 

 

TABLE.1.COMPARISON BETWEEN DIFFERENT SANN IMPLEMENTATIONS 

 

       Fig. 5. A 4 FPGA AstroByte platform with SATA connections  

Biological 

Time(s) 
Iterations 

(Cycles) 

Matlab 

(Seconds) 

AstroByte 

(Seconds) 
Acceleration 

400 400,000 153.72 ~0.938 163.88 

600 600,000 242 ~1.4 172.85 

800 800,000 327 ~1.9196 170.34 

1000 1,000,000 381 ~2.3448 162.48 

1200 1,200,000 506 ~2.71 186.71 

3600 3,600,000 1500 ~8.1618 183.78 

5000 5,000,000 1960 ~10.7723 181.96 

10000 10,000,000 4095 ~21.7448 188.32 

 



 

Fig. 6 Accuracy comparison between AstroByte (Hardware) and Matlab 

(Software) for different fault rates 

(a) Accuracy comparision between a Hardware and Software 

model of a healthy neuron (N1 in Fig.1) 

(b) Accuracy comparision between a Hardware and Software model 

of a neuron under no fault  (N2 in Fig.1 before injecting faults) 

(c) Accuracy comparision between a Hardware and Software 

model of a neuron under a 20% fault rate (N2 in Fig.1) 

(d) Accuracy comparision between a Hardware and Software 

model of a neuron under a 20% fault rate (N2 in Fig.1) 

(e) Accuracy comparision between a Hardware and Software 
model of a neuron under a 60% fault rate (N2 in Fig.1) 

(f) Accuracy comparision between a Hardware and Software 
model of a neuron under a 80% fault rate (N2 in Fig.1) 



With granularity of 1, i.e. all the processed data is sent to FCMP 
for monitoring, simulating 401,408,000 cycles per node (111 
hours and 30 minutes of biological time) can be performed in 17 
minutes and 24 seconds. The same length of simulation can be 
carried out in approximately 2 minutes and 38 seconds should the 
users were willing to reduce the granularity of the data captured 
to 10 (one in every ten of simulation data is collected). Reducing 
the granularity to 100 and 1000 will result in simulating and 
capturing monitoring data in approximately 1 minute and 28.8 
seconds and 1 minute and 23 seconds, respectively. One can 
notice that the advantage of under-sampling in terms of speed-up 
is reduced with under-sampling steps. This is because higher 
granularity means less data is transferred to the monitoring PC, 
resulting in the SANN working closer to its maximum 
acceleration capability of the FPGA accelerator. 

IV. CONCLUSION AND FUTURE WORKS  

This paper presented AstroByte, a novel multi-FPGA, scalable 

and programmable platform for accelerating self-repairing 

SANN applications. The AstroByte overall architecture was 

explained, presenting the technical details involved in designing 

the platform. It was shown that the platform can accelerate 

SANN applications with speedup of up to x188 over an 

equivalent Matlab model. It was proven that the platform can 

replicate results gained from Matlab with high accuracy (a 

maximum difference of 0.016%). The under-sampling feature 

was examined, and its advantages and limitations were 

discussed.  

Future work includes exploring implementing large-

scale SANN models incorporating many astrocytes and neurons. 

Additionally, further performance optimisations will be 

investigated in terms of acceleration through astrocyte process 

optimisation and further architecture exploration. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the EPSRC funding 
council grants (EP/N00714X/1 & EP/N007050/1) and Ulster 
University for supporting this research.  

    REFERENCE 

[1] Q. Wu, B. Liu, Y. Chen, H. Li, Q. Chen, and Q. Qiu, “Bio-inspired computing 

with resistive memories - Models, architectures and applications,” Proc. - 

IEEE Int. Symp. Circuits Syst., pp. 834–837, 2014. 

[2] S. R. Kulkarni, A. V Babu, and B. Rajendran, “Spiking Neural Networks 

Algorithms , Hardware Implementations and Applications,” no. 1, pp. 426–

431, 2017. 

[3] J. Wade, L. McDaid, J. Harkin, V. Crunelli, and S. Kelso, “Self-repair in a 

bidirectionally coupled astrocyte-neuron (AN) system based on retrograde 

signaling.,” Front. Comput. Neurosci., vol. 6, no. September, p. 76, 2012. 

[4] S. Karim et al., “Assessing Self-Repair on FPGAs with Biologically Realistic 

Astrocyte-Neuron Networks,” in Proceedings of IEEE Computer Society 

Annual Symposium on VLSI, ISVLSI, 2017, vol. 2017-July, pp. 421–426. 

[5] S. Karim et al., “FPGA-based Fault-injection and Data Acquisition of Self-

repairing Spiking Neural Network Hardware,” in 2018 IEEE International 

Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5. 

[6] A. P. Davison, “PyNN: a common interface for neuronal network 

simulators,” Front. Neuroinform., vol. 2, 2008. 

[7]  I. Bogdanov, R. Mirsu, and V. Tiponut, “MATLAB model for spiking neural 

networks,” Proc. 13th WSEAS Int. Conf. Syst., no. July 2009, pp. 533–537, 

2009. 

[8] A. K. Fidjeland and M. P. Shanahan, “Accelerated simulation of spiking 

neural networks using GPUs,” Int. Jt. Conf. Neural Networks, pp. 1–8, 2010. 

[9] D. Ferrer, R. Gonzalez, R. Fleitas, J. P. Acle, and R. Canetti, “NeuroFPGA-

implementing artificial neural networks on programmable logic devices,” in 

Proceedings Design, Automation and Test in Europe Conference and 

Exhibition, pp. 218–223. 

[10] L. McDaid, J. Harkin, S. Hall, and T. Dowrick, “EMBRACE: emulating 

biologically-inspired architectures on hardware,” NN’08 Proc. …, 2008. 

[11] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and A. Mujumdar, 

“Bluehive - A field-programable custom computing machine for extreme-

scale real-time neural network simulation,” in Proceedings of the 2012 IEEE 

20th International Symposium on Field-Programmable Custom Computing 

Machines, FCCM 2012, 2012, pp. 133–140. 

[12] A. Sripad et al., “SNAVA—A real-time multi-FPGA multi-model spiking 

neural network simulation architecture,” Neural Networks, vol. 97, pp. 28–45, 

2018. 

[13] A. X. Widmer and P. A. Franaszek, “A DC-Balanced, Partitioned-Block, 

8B/10B Transmission Code,” IBM J. Res. Dev., vol. 27, no. 5, pp. 440–451, 

Sep. 1983. 

 

 

 

 

 

 

 

 

 

TABLE.2 UNDER-SAMPLING RESULTS  

 Granularity 
Elapsed time 

(Seconds) 

Iteration/Node 

(Cycles) 

Biological 

time scale 

(Seconds) 

1 1044.8    401,408,000 401,408 

10 158.14    401,408,000 401,408 

100 88.06 401,408,000 401,408 

1000 82.76 401,408,000 401,408 

 


