

AstroByte: Multi-FPGA Architecture for Accelerated

Simulations of Spiking Astrocyte Neural Networks

Abstract— Spiking astrocyte neural networks (SANN) are a new

computational paradigm that exhibit enhanced self-adapting and

reliability properties. The inclusion of astrocyte behaviour

increases the computational load and critically the number of

connections, where each astrocyte typically communicates with 6-9

neurons (and their associated synapses) with feedback pathways

from each neuron to the astrocyte. Each astrocyte cell also

communicates with its neighbouring cell resulting in a significant

interconnect density. The substantial level of parallelisms in

SANNs lends itself to acceleration in hardware, however, the

challenge in accelerating simulations of SANNs firmly resides in

scalable interconnect and the ability to inject and retrieve data

from the hardware. This paper presents a novel multi-FPGA

acceleration architecture, AstroByte, for the speedup of SANNs.

AstroByte explores Networks-on-Chip (NoC) routing mechanisms

to address the challenge of communicating both spike event

(neuron data) and numeric (astrocyte data) across significant

interconnect pathways between astrocytes and neurons. AstroByte

also exploits the NoC interconnect to inject data and retrieve

runtime data from the accelerated SANN simulations. Results will

show that AstroByte can simulate SANN applications with speedup

factors of between x162 -x188 over Matlab equivalent simulations.

Keywords—SANN acceleration, Multi-FPGA design, Data

acquisition, Networks on Chip (NoC), Astrocyte, SNN.

I. INTRODUCTION

The human brain can carry out computations in a power
efficient and immensely parallel manner which has motivated the
trend in bio-inspired computing [1]. Spiking Neural Networks
(SNNs) are a popular bio-inspired paradigm that have been used
in many applications [2]. The self-repairing ability of the human
brain is a key attractive feature that engineers are keen to
implement in the next generation of computers. In this context,
current research in self-repair has focused on astrocytes, a type
of glial cell, which is the mechanism responsible for facilitating
fine-grained self-repair. These new Spiking Astrocyte-neuron
Networks (SANNs) modulate the synaptic activities between
neurons via distributed astrocytes in the network. This concept
was proven in previous work when a biologically-faithful
astrocyte was integrated with an SNN and simulated in Matlab
[3]; this mechanism is illustrated in Fig. 1. When a synapse fails
to release neurotransmitters, the associated neural activity falls
and consequently the level of endocannabinoid (2-AG) decreases.
The absence of the 2-AG signal, which is a retrograde feedback
messenger from active postsynaptic neurons, causes an overall
increase in probability of release (PR) at all tripartite synapses.
This is because the direct feedback of 2-AG to the presynaptic

terminal, which causes Depolarisation Induced Suppression of
Excitation (DSE), has diminished leaving the indirect feedback
signal from the astrocyte to cause a sudden increase in PR. This,
in turn, increases the firing rate of the remaining synapses
because a probabilistic tri-partite synapse has been used.

Subsequent research focussed on accelerating this entire

process by means of designing a SANN accelerator on FPGA

hardware [4]. A speedup factor of up to x1067 was achieved

when compared with executing the model using Matlab. While

designing the SANN accelerator, a configuration and monitoring

platform was required, capable of passing configuration

parameters to the hardware SANN and collecting monitoring

data. This motivated the design of an FPGA Monitoring

Platform (FMP) [5]. In this paper, the SANN accelerator and

FMP are integrated into a multi-FPGA NoC platform called

AstroByte.
 The contributions of this work can be summarised as

follows:

1- A new fully scalable NoC-based multi-FPGA architecture for
accommodating SANN hardware Implementations.

2- Functional verify the NoC infrastructure by integrating the
SANN accelerator [4] on a 4-FPGA platform.

3- Present the integration of the FPGA Configuration and
Monitoring Platform (FCMP) [5] with the multi-FPGA
architecture, giving users the ability to configure the platform
and acquire real-time simulation data.

4- Providing results demonstrating that SANNs can be
accelerated using the NoC paradigm for facilitating cross-
FPGA communications.

Simulating SNNs has traditionally been performed using a
programming language such as MATLAB or PyNN that run on

Fig. 1 Interactions between the astrocyte and the two neurons between and

after a fault is injected [3].

Shvan Karim, Jim Harkin, Liam McDaid, Bryan Gardiner and Junxiu Liu

School of Computing, Engineering and Intelligent Systems

Ulster University, Magee Campus,

Derry, Northern Ireland, UK, BT48 7JL

{haji_karim-s, jg.harkin, lj.mcdaid, b.gardiner, j.liu1}@ulster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/336585994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:j.liu1%7d@ulster.ac.uk

single or multi-core general-purpose processors [6], [7]. In
addition, some researchers have focussed on implementing SNN
simulations on GPUs [8]. More recently, in-field
reconfigurability and the ability to realise dedicated parallel
hardware has made FPGAs attractive for SNN implementations
[9]. To this effect, the EMBRACE architecture was developed,
leveraging a 2D mesh NoC structure for scalable SNN FPGA
simulations [10]. The EMBRACE router contains a
programmable address table making simulation of different SNN
structures possible. Bluehive [11] is a multi-FPGA platform for
large-scale SNN real-time simulations.. The platform focusses on
massive real-time simulations as opposed to accelerating these
simulations. Each FPGA supports real-time simulation of 64,000
neurons and 64M synapses through time-multiplexing hardware
resources. SNAVA [12], allows parallel real-time simulation of
SNNs by means of a scalable and programmable architecture that
can scale to incorporate a number of FPGAs. A shared bus
extends to multiple FPGA boards in a ring topology using SMA
cables and Xilinx Aurora protocol. SNAVA can be configured to
a desired neuron and synapse model, utilising a time-
multiplexing technique for taking full advantage of the available
hardware.

The following distinguishes AstroByte from the above work:

1. Incorporation of astrocytes to provide SANNs with self-
repairing abilities.

2. Ability to efficiently reconfigure the SANN and capture real-
time simulation data using the same NoC infrastructure used
for data communication.

3. Able to achieve accelerations of up to x188 while capturing
full-scale real-time simulation data.

The rest of the paper is organised as follows. Section II
investigates the overall architecture and operation of the
AstroByte platform. Section III presents the results collected
from different experimentations. At first the experiments setup
will be explained followed by the results that include accuracy
comparison with an equivalent software model, speedup gained
and under-sampling. Section IV concludes the paper along with
investigating future works.

II. ASTROBYTE ARCHITECTURE

Fig. 2 shows the overall AstroByte architecture for a 4-FPGA

system where four NoC routers are used to facilitate

communication of configuration and simulation data. In effect,

each Terasic DE4 FPGA board (Fig. 6) acts as a node on the NoC.

Mesh topology is used along with a XY routing algorithm with a

round-robin arbitration. XY routing has been utilized because of

its efficiency –free of deadlock and livelock -and simplicity when

used with mesh NoCs. In addition to its neighbouring routers,

each router is also connected to an internal computing core. The

computing core can be either an SANN building block (e.g.

astrocytes, neurons, tripartite synapses, and spike generators) or

the FCMP. In the case of the former the core is connected to a

Core interface (CI) block and in case of the latter to the FCMP

Interface (FI) block. The microarchitectures of the router and CI

will be briefly discussed in the next subsections.

A. Astrobyte protocol

Three types of packets are supported by AstroByte: data, credit,

and configuration packets. Data and configuration packets are

composed of two Flow Control Units (flit), a header flit and a

body flit, while the credit packet is only one flit in size. Data

packets are composed inside the cores and used for

communicating neurons and astrocyte data with the other cores

in the NoC. Configuration packets are sent from the FCMP to the

other nodes on the NoC (other FPGAs) for configuring their

operation. As shown in Fig. 3, data and configuration packets

have similar structures with the difference being in the value of

the four control bits in the header flit. When the control bits

indicated a data packet, the header will be followed by a data flit

that contains spike or astrocyte data. If the control bits had other

values, a configuration packet is recognised, when the header flit

is being followed by a flit that carries configuration values

instead of spike of astrocyte values. Overall, AstroByte supports

12 configuration attributes. For example, in terms of

reconfigurability, the user can choose the rate of injected faults,

the time of occurrence of faults, and the destination of data

packets from cores (i.e. mapping of the SANN). Credit packets

are constantly sent to the neighbouring routers and their purpose

is interchanging information on the available buffer space in the

routers’ input ports. This enable data to be only send when there

is enough buffer space in the downstream router.

B. Router microarchitecture

Fig. 4 shows the router micro-architecture. Each router consists

of five ports, four for communicating with neighbouring

nodes/FPGAs and one internal port for the computing core. All

four external ports are connected to a bidirectional Intel Gigabit

Transceiver Block (GXB) for serialising the data stream and

sending over SATA connections. GXB transceivers accept and

supply parallel data in their clock domains generated by the

receiver and transmitter of the GXB respectively. Although the

frequency of these clocks is 150MHz (i.e. similar to the router

frequency), their phase is different, thus, should be dealt with as

different clock domains. Because of existence of many frequency

domains in the router, the Clock Domain Crossing (CDC)

Fig. 2. Mapping a prototype SANN into a 4-FPGA AstroByte platform

technique has been utilised using Dual Clock First in First out

(DCFIFO) memories and associated controllers. The micro-

architecture is illustrated in Fig. 4, where ports 1-4 have identical

building blocks while port 0, the core port, has a different

structure. The core port is different because its input and output

buses are connected to the CI which is located on the same

FPGA, meaning that GXBs are not required for serialising Data.

The input controller of Fig. 4 is responsible for de-multiplexing

the input stream and forwarding data to the two DCFIFOs; one is

data packet buffer (Data DCFIFO) and the other is credit packet

buffer (Credit DCFIFO). The Input controller and the write side

of the DCFIFOs operate in the GBX Rx clock domain which is

different for each port. Control logic 1 (CL1), the read side of the

input DCFIFO, and CL2, the write side of output DCFIFO,

operate in the router clock domain. CL1 contains controller logic

handling reading from the Data DCFIFO and generating request

signals by decoding the address in the header packets existing at

the DCFIFO outputs. Furthermore, CL1 contains logic for

deciding whether the Arbiter can grant request on the output port.

CL1 decided this firstly, decoding credit packets from the Credit

DCFIFO and determining if the downstream router can

accommodate further packets. For the internal port, no credit

packet is received and decoded. Instead, as the CI is located on

the FPGA, information regarding free buffer space is obtained by

a separate bus, denoted as CI Write_Used in Fig. 4. Secondly

CL1 uses the Write_Used signal from output Data DCFIFO to

decide if the output buffer has free space available. This

information is passed to the Arbiters (one in each port) that

control access to the output ports in the crossbar switch. The

Arbiter implements a round-robin arbitration scheme and it will

only grant access to requesting ports if the CL1 has determined

there is free space in both the output buffer of the current router

and the input buffer of the next router (or the internal node). CL2

contains logic to packetize the Read_Used signal (indicating the

number of used words) from the input Data DCFIFO to form the

credit packet. Also, CL2 is responsible for controlling write

operations to the two output DCFIFOs, one for data packets and

credit packets each. Output controller along with the read side of

output DCFIFOs operate in the GXB Tx clock domain. Output

controller multiplexes both data packet and credit packets before

forwarding the data stream to the transmitter parallel input.

C. Core Interface (CI) microarchitecture

The CI block is located between the internal port of the router-

port 0 and the computing core. In Error! Reference source not

found., the left side of CI communicates with the router while

the right side communicates with the core which is the SANN

computation. The Input Controller block decodes the header in

the incoming packet from the router and forwards the body part

to either Input Data DCFIFOs or configuration registers. If a

data packet is detected, the header will be discarded of and the

body, which is the data flit, will be stored in the Input Data

DCFIFOs. If a configuration packet is recognized, the header

will be decoded by the Input controller and the body forwarded

to the relevant register in either the Configuration Register File

(CRF) or CRF DCFIFO. The former parameters are used by the

Output controller and the latter will be passed to the SANN core.

The Output controller packetizes the core data, saved in the

Output Data DCFIFOs and forwards it to the router, i.e. as long

as port 0 has free buffer space. The output controller sends data

according to the content of CRF. For example, while packetizing

data, the Output controller uses the value stored in the CRF

address register, received at the start of operation, as the

destination address of the packets. Additionally, the value stored

in the under-sampling register of CRF will be used to decide

whether to send data at full or reduced granularity.

D. FCMP & FI

FCMP is a Nios II embedded processor-based system that can

communicate to a PC and the FPGA fabric. FCMP is placed on

one of the FPGAs with a NoC router. This allows the FCMP to

address and be addressed by the other FPGAs, allowing for easy

configuration and monitoring as the FCMP will act similar to the

other nodes on the network. The FCMP & FI microarchitecture

is an adaptation of the design reported in [5].

E. Astrobyte Operation

Initially all FPGA boards are programmed with SANN cores

and a single FCMP HDL codes. The configuration phase starts

next, in which the FCMP node starts sending configuration

Fig. 4 Simplified router microarchitecture

Fig. 3. Astrobyte protocol format

Fig. 5 Core Interface (CI) microarchitecture

packets to the other nodes to facilitate a user defined multi-FPGA

SANN platform through modifying the SANN parameters. As an

example, if inserting faults was required by the simulation,

appropriate configuration packets can be sent to specify the rate

of the fault and the time of occurrence in clock cycles. Next, the

FCMP sends a special configuration packet that carries start

command for starting acceleration at the SANN cores. The

SANN cores then commence sending data through the NoC

infrastructure to destinations specified by the configuration

packets. The destinations are other nodes with the possibility of

sending data to FCMP for monitoring. When the FCMP SRAM

is full, a trigger goes to the Nios II processor and sending data

from the SRAM to a PC begins. The data will be sent using

Ethernet to a PC that runs Matlab for storage, monitoring and

analysis purposes.

III. EXPERIMENTATIONS AND RESULTS

A. Experiment setup

Intel Quartus Prime 18.0 SE was used for FPGA design,
synthesis and programming. SignalTap II and the in-house
developed FCMP were used for design verification. Matlab
R2015b was used for capturing simulation data for storage and
analysis. An Intel build for Eclipse Mars 2 was used with Nios ii
embedded processor. All software simulation experiments were
executed on a 3.4 GHz Intel Core i7-2600 with 16GB of RAM,
running 64-bit Windows 10.

Terasic DE4 FPGA boards , each with an Intel Stratix IV GX
EP4SGX530 FPGAs, were used to implement AstroByte, as can
be seen in Fig. 6. DE4 boards provide a number of standard
interfaces and AstroByte uses Ethernet, SATA, and General
Input Output Pin (GPIO) interfaces.

The SATA links provide a throughput of 6Gbps. Although
the transceivers can support this throughout, the maximum
effective throughput across the link is 4.8Gbps due to a 8b/10b
encoding scheme [13]. In this work, 2.7Gbps (70%) of the
bandwidth has been utilised.

B. Multi-FPGA SANN Implementation

The set of experiments that will presented next aim at evaluating

performance of the AstroByte platform by integrating the SANN

accelerator block into the multi-FPGA NoC architecture. Fig. 2

illustrates this integration. The first neuron entity (N1), and the

associated tripartite synapses, spike and probability generators,

are mapped into node (0,1) in the NoC mesh. N2 and its

associated blocks are mapped to node (1,0) while the astrocyte

core is mapped to node (0,0) and FCMP is located at node (1,1).

FCMP sends configuration packets at the start of a simulation,

routing information from the SANN components to their

destination. The Astrocyte core sends eSP signals to both neuron

cores, which in turn, send the astrocyte 2AG values. The neurons

also send their average frequencies to the FCMP platform,

enabling users to monitor the rate of firing.

C. Acceleration

Acceleration gained from the prototype AstroByte platform
of Fig. 2 will be assessed in this section. Table. 1 shows that
SANN speedup factors of between x162 and x188 can be gained
on with AstroByte compared to an equivalent Matlab model [6].
Comparing these figures with acceleration obtained from a single
FPGA SANN platform indicates that, despite the NoC
interconnection overhead, the multi-FPGA AstroByte can
maintain over 75% of the speedup factor. From the last entry in
Table.1, 2hrs:46min of biological time can be simulated in 21.74
seconds using the proposed multi-FPGA accelerator. The same
biological time scale will take 1hr: 8mins in Matlab.

D. Accuracy

Fig. 7 illustrates average frequency comparison between
AstroByte SANN implementation and equivalent Matlab
software model. Frequency response trajectories for the healthy
neurons and various rations of faults, including no fault situation,
are presented. The average frequency of the trajectories is also
shown. It is evidence that a multi-FPGA AstroByte platform can
simulate SANNs with high accuracy. The maximum difference
between the average two frequencies can be seen in 7(f), with a
difference of 0.0939 Hz (~0.016%).

E. Under-sampling

 Under-sampling is carried out by collecting the same amount of
data with reduced granularity, resulting in faster simulation and
data acquisition. Table. 2 demonstrates the effect of under-
sampling.

TABLE.1.COMPARISON BETWEEN DIFFERENT SANN IMPLEMENTATIONS

 Fig. 5. A 4 FPGA AstroByte platform with SATA connections

Biological

Time(s)
Iterations

(Cycles)

Matlab

(Seconds)

AstroByte

(Seconds)
Acceleration

400 400,000 153.72 ~0.938 163.88

600 600,000 242 ~1.4 172.85

800 800,000 327 ~1.9196 170.34

1000 1,000,000 381 ~2.3448 162.48

1200 1,200,000 506 ~2.71 186.71

3600 3,600,000 1500 ~8.1618 183.78

5000 5,000,000 1960 ~10.7723 181.96

10000 10,000,000 4095 ~21.7448 188.32

Fig. 6 Accuracy comparison between AstroByte (Hardware) and Matlab

(Software) for different fault rates

(a) Accuracy comparision between a Hardware and Software

model of a healthy neuron (N1 in Fig.1)

(b) Accuracy comparision between a Hardware and Software model

of a neuron under no fault (N2 in Fig.1 before injecting faults)

(c) Accuracy comparision between a Hardware and Software

model of a neuron under a 20% fault rate (N2 in Fig.1)

(d) Accuracy comparision between a Hardware and Software

model of a neuron under a 20% fault rate (N2 in Fig.1)

(e) Accuracy comparision between a Hardware and Software
model of a neuron under a 60% fault rate (N2 in Fig.1)

(f) Accuracy comparision between a Hardware and Software
model of a neuron under a 80% fault rate (N2 in Fig.1)

With granularity of 1, i.e. all the processed data is sent to FCMP
for monitoring, simulating 401,408,000 cycles per node (111
hours and 30 minutes of biological time) can be performed in 17
minutes and 24 seconds. The same length of simulation can be
carried out in approximately 2 minutes and 38 seconds should the
users were willing to reduce the granularity of the data captured
to 10 (one in every ten of simulation data is collected). Reducing
the granularity to 100 and 1000 will result in simulating and
capturing monitoring data in approximately 1 minute and 28.8
seconds and 1 minute and 23 seconds, respectively. One can
notice that the advantage of under-sampling in terms of speed-up
is reduced with under-sampling steps. This is because higher
granularity means less data is transferred to the monitoring PC,
resulting in the SANN working closer to its maximum
acceleration capability of the FPGA accelerator.

IV. CONCLUSION AND FUTURE WORKS

This paper presented AstroByte, a novel multi-FPGA, scalable

and programmable platform for accelerating self-repairing

SANN applications. The AstroByte overall architecture was

explained, presenting the technical details involved in designing

the platform. It was shown that the platform can accelerate

SANN applications with speedup of up to x188 over an

equivalent Matlab model. It was proven that the platform can

replicate results gained from Matlab with high accuracy (a

maximum difference of 0.016%). The under-sampling feature

was examined, and its advantages and limitations were

discussed.

Future work includes exploring implementing large-

scale SANN models incorporating many astrocytes and neurons.

Additionally, further performance optimisations will be

investigated in terms of acceleration through astrocyte process

optimisation and further architecture exploration.

ACKNOWLEDGMENT

The authors would like to acknowledge the EPSRC funding
council grants (EP/N00714X/1 & EP/N007050/1) and Ulster
University for supporting this research.

 REFERENCE

[1] Q. Wu, B. Liu, Y. Chen, H. Li, Q. Chen, and Q. Qiu, “Bio-inspired computing

with resistive memories - Models, architectures and applications,” Proc. -

IEEE Int. Symp. Circuits Syst., pp. 834–837, 2014.

[2] S. R. Kulkarni, A. V Babu, and B. Rajendran, “Spiking Neural Networks

Algorithms , Hardware Implementations and Applications,” no. 1, pp. 426–

431, 2017.

[3] J. Wade, L. McDaid, J. Harkin, V. Crunelli, and S. Kelso, “Self-repair in a

bidirectionally coupled astrocyte-neuron (AN) system based on retrograde

signaling.,” Front. Comput. Neurosci., vol. 6, no. September, p. 76, 2012.

[4] S. Karim et al., “Assessing Self-Repair on FPGAs with Biologically Realistic

Astrocyte-Neuron Networks,” in Proceedings of IEEE Computer Society

Annual Symposium on VLSI, ISVLSI, 2017, vol. 2017-July, pp. 421–426.

[5] S. Karim et al., “FPGA-based Fault-injection and Data Acquisition of Self-

repairing Spiking Neural Network Hardware,” in 2018 IEEE International

Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[6] A. P. Davison, “PyNN: a common interface for neuronal network

simulators,” Front. Neuroinform., vol. 2, 2008.

[7] I. Bogdanov, R. Mirsu, and V. Tiponut, “MATLAB model for spiking neural

networks,” Proc. 13th WSEAS Int. Conf. Syst., no. July 2009, pp. 533–537,

2009.

[8] A. K. Fidjeland and M. P. Shanahan, “Accelerated simulation of spiking

neural networks using GPUs,” Int. Jt. Conf. Neural Networks, pp. 1–8, 2010.

[9] D. Ferrer, R. Gonzalez, R. Fleitas, J. P. Acle, and R. Canetti, “NeuroFPGA-

implementing artificial neural networks on programmable logic devices,” in

Proceedings Design, Automation and Test in Europe Conference and

Exhibition, pp. 218–223.

[10] L. McDaid, J. Harkin, S. Hall, and T. Dowrick, “EMBRACE: emulating

biologically-inspired architectures on hardware,” NN’08 Proc. …, 2008.

[11] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and A. Mujumdar,

“Bluehive - A field-programable custom computing machine for extreme-

scale real-time neural network simulation,” in Proceedings of the 2012 IEEE

20th International Symposium on Field-Programmable Custom Computing

Machines, FCCM 2012, 2012, pp. 133–140.

[12] A. Sripad et al., “SNAVA—A real-time multi-FPGA multi-model spiking

neural network simulation architecture,” Neural Networks, vol. 97, pp. 28–45,

2018.

[13] A. X. Widmer and P. A. Franaszek, “A DC-Balanced, Partitioned-Block,

8B/10B Transmission Code,” IBM J. Res. Dev., vol. 27, no. 5, pp. 440–451,

Sep. 1983.

TABLE.2 UNDER-SAMPLING RESULTS

 Granularity
Elapsed time

(Seconds)

Iteration/Node

(Cycles)

Biological

time scale

(Seconds)

1 1044.8 401,408,000 401,408

10 158.14 401,408,000 401,408

100 88.06 401,408,000 401,408

1000 82.76 401,408,000 401,408

