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Abstract

With the rapid growth of multimedia data on the Internet, content-based

image retrieval becomes a key technique for the Internet development. Hashing

methods are e�cient and e↵ective for image retrieval. Dual Complementary

Hashing (DCH) is one such method, which uses multiple hash tables and has

good performance. However, DCH utilizes wrongly hashed image pairs to train

the following hash table and discards correctly hashed image pairs. Therefore,

the number of image pairs utilized for training the following hash tables will

decrease rapidly. Moreover, each hash function in a hash table of DCH is

trained by correcting the errors caused by its preceding one instead of holistically

considering errors made by all previous hash functions. These restrictions

significantly reduce the training e�ciency and the overall performance of DCH.

In this paper, we propose a new hashing method for image retrieval, Bootstrap

Dual Complementary Hashing with semi-supervised Re-ranking (BDCHR). It

is a semi-supervised multi-hashing method consisting of two parts: bootstrap

DCH and semi-supervised re-ranking. The first part relieves the restrictions of

DCH while the second part further enhances the image retrieval performance.

Experimental results show that BDCHR yields better performance than other

state-of-the-art multi-hashing methods.
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1. Introduction

Multimedia data on the Internet grows rapidly in recent years which leads

to higher requirements for existing data understanding and managing methods

[1, 2, 3, 4]. Image retrieval has become an important means of harnessing and

harvesting the vast number of images on the Internet. Content-based image5

retrieval is a class of methods that retrieve images based on image content rather

than image meta data [5, 6, 7]. Given an image as the query, it seeks to find

relevant images in the database that are similar to the query image based on the

content of images. Approximate nearest neighbor search methods [8, 9] return

approximately similar images as the returned set, succeeding with excellent10

retrieval performance in both speed and storage. For image retrieval purpose,

compared with accurate search (e.g. [10, 11]) which has optimal performance

but is usually time costly, approximate search is generally acceptable which has

suboptimal performance but is time e�cient. As a representative method for

approximate search, hashing-based search has been widely researched in recent15

years due to its sublinear time complexity and good performance.

Hashing methods generate compact binary hash code for high-dimensional

images. Hamming distance between hash codes of images is computed to

evaluate their similarities. The main problem with hashing methods is how

to generate hash codes. Generally, hash functions are learned firstly which20

can be regarded as hyperplanes that partition the original feature space into

buckets. For each hash hyperplane, images located on di↵erent sides of it have

di↵erent binary hash bits, i.e. 0 and 1; and images on the same side have same

binary hash bits. Therefore, K hash functions generate at most 2K di↵erent

buckets and each bucket has a unique hash code. This set of K hash functions25

forms a single hash table. For a given query, Hamming distance is calculated

between the query image and images in the database. The nearest images with
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the smallest Hamming distance can be viewed as being in a Hamming ball with

a constant radius in the Hamming space and are returned as the final retrieval

results. Existing hashing methods [12, 13, 14, 4] can achieve high retrieval30

performance when the radius of Hamming ball is small. However, the radius of

Hamming ball needs to be increased when more relevant images are required.

This could significantly lower the retrieval accuracy.

Multi-hashing methods (e.g. [15, 16, 17, 18]) generate multiple hash tables

in order to improve recall rate without yielding a significant drop in precision.35

The pairwise similarity matrix which records the semantic relationship between

image pairs is generally introduced into the objective function of hash functions

training for semantic relationship preservation. Moreover, multi-hashing

methods employ multiple hash tables and always train these hash tables one

by one. Each hash table contains a set of hash functions. Image pairs in40

the database being wrongly hashed by previous hash tables are usually used

to train the next hash table. Hashing methods using multiple hash tables

usually yield better retrieval precision-recall performance than hashing methods

using a single hash table. Boosting Iterative Quantization Hashing (BIQH) [16],

Complementary Hashing (CH) [17], Dual Complementary Hashing (DCH) [15],45

and bagging-boosting-based semi-supervised multi-hashing with query-adaptive

re-ranking (BBSHR) [18] are representative multi-hashing methods. BIQH is

supervised and requires all data being labeled. CH is unsupervised and it could

not achieve satisfying performance for semantic retrieval problems. Moreover,

it has high time complexity due to Eigen-value decomposition. DCH is semi-50

supervised, which is more practical, and achieves decent performance. However,

DCH ignores correctly hashed image pairs by the previous hash tables when

training the following hash table. Therefore, the number of image pairs in the

pairwise similarity matrix utilized for training reduces sharply. As a result,

the performance of DCH cannot be further improved after several iterations55

of training. BBSHR is proposed recently which employs multiple hash tables

in a bagging manner. By partitioning the dataset into several parts, multiple

hash tables are trained in parallel, one for each part. A problem is that hash
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tables are trained independently, without considering the correlation between

hash tables which is valuable for image retrieval.60

Having considered the advantages and disadvantages of current multi-

hashing methods, we propose a semi-supervised multi-hashing method for

image retrieval, Bootstrap Dual Complementary Hashing with semi-supervised

Re-ranking (BDCHR). BDCHR consists of two parts, the bootstrap dual

complementary hashing and the semi-supervised re-ranking. In the bootstrap65

dual complementary hashing part, a hash function in one hash table is trained by

correcting the errors caused by all previous ones, rather than only the last one.

Furthermore, a hash table is trained by focusing on not only the wrongly hashed

image pairs by all previous hash tables, but also correctly hashed image pairs.

In the semi-supervised re-ranking part, based on the initial returned results by70

using multiple hash tables, a re-ranking method is used to further improve its

retrieval performance. The contribution of this paper can be summarized as

follows:

• BDCHR trains both hash tables and hash functions in a boosting manner.

Di↵erent from DCH, which trains a new hash function by correcting the75

errors made by the previous one hash function, BDCHR trains a new

hash function based on the errors made by all previous hash functions,

considering all previous bits holistically.

• To train a new hash table, di↵erent from DCH which sets the weights

of correctly hashed image pairs to zero, BDCHR increases the weights of80

wrongly hashed image pairs and decreases the weights of correctly hashed

image pairs. In this way, the number of image pairs available for training

the following hash table will not be reduced.

• A semi-supervised re-ranking method is introduced in BDCHR to improve

its retrieval performance. BDCHR computes weights of each hash function85

for each category in advance in an o✏ine manner. For a query image,

query-adaptive weight of each hash function is computed. The weighted

4



Hamming distance is calculated to finally evaluate the similarities between

the query and images in the dataset.

The rest of this paper is organized as follows. Related works are briefly90

introduced in Section 2. In Section 3, BDCHR is proposed. Experimental

results and analyses are presented in Section 4. The paper concludes in Section

5.

2. Related works

Hashing methods [19, 20, 21] generally learn a set of hash functions to build a

hash table and generate compact hash codes for images. For the hash table with

K hash functions, the k
th hashing function can be represented as the following

form:

hk(x) = sign(wT

k
x+ b) (1)

where sign(•), x, w and b denote the sign function, the feature vector of one95

image, the hash mapping vector, and the intercept, respectively. b is 0 and

can be omitted when the data set is centralized. The hash table with K hash

functions is represented as H(x) = {h1(x), h2(x), ..., hK(x)}. Hamming distance

between two images xi and xj is computed to evaluate their similarities. If two

images have larger Hamming distance, they are less likely to be similar, and vice100

versa. The Hamming distance between two images can be computed as follows:

dH(xi, xj) =
1

4
||H(xi)�H(xj)||2 (2)

Most of existing hashing methods focus on the training procedure of hash

functions in an individual hash table. These methods are introduced in Section

2.1. Hash codes of images in database are computed and stored o✏ine when

hash functions are learned. The hash code of the query image and Hamming105

distances between this query image and images in the database are computed.

Images in the database with Hamming distances lower than a threshold are

returned as the retrieval result. To achieve higher recall rate, larger Hamming
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distance threshold is required which will also return many dissimilar images and

lead to a rapid decrease in retrieval precision. Hashing methods with multiple110

hash tables could achieve high recall rates and precisions simultaneously, which

are introduced in Section 2.2.

2.1. Hashing methods with single hash table

Generally, according to whether label information is used for the training of

hash functions, existing hashing methods can be categorized into unsupervised,115

supervised and semi-supervised methods. Unsupervised hashing methods learn

functions without considering the semantic similarity information between

images. Locality Sensitive Hashing (LSH) and its variants [22, 23, 24] are

representative unsupervised hashing methods which generate hash functions

in a random manner. Based on the data distribution information of images,120

Principal Component Hashing (PCH) [25] trains hash functions by principal

component analysis [26] and utilizes the top-K principal components of the

covariance matrix to construct its hashing projections. Iterative Quantization

Hashing (ITQ) [12] learns the optimal rotation matrix for the data after the

principle component analysis by minimizing the quantization error. SKLSH125

[27] gets the hash functions by randomly extracting Fourier features of images

without considering the data distribution information. Asymmetric Cyclic

Hashing [28] generates longer hash code for query image and short hash code for

images in database to ensure higher retrieval accuracy and lower storage cost.

Two-phase Mapping Hashing [29] projects the images to a high dimensional130

Hamming space firstly to preserve the initial data structure. Then images

are projected to low Hamming space by minimizing the reconstruction error.

Spectral Embedded Hashing [30] is a graph-based hashing method, which

introduces a new regularizer to the objective function of original Spectral

Hashing [13]. Ordinal Constraint Hashing (OCH) [31] trains hash functions135

based on an ordinal graph to preserve the permutation relation information

among images. Distributed Graph Hashing [32] learns hash functions based on

data located in a distributed manner. Special Structure-Based Hashing method
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is proposed in [33] which builds hash functions by preserving the underlying

geometric information of images.140

Supervised hashing methods train hash functions based on fully labeled

dataset. LDA Hashing method [34] projects the high dimensional image

descriptors into short binary hamming codes based on the semantic information

with the linear discriminant analysis. Supervised Discrete Hashing (SDH) [35]

generates compact hash code for images by optimizing a joint learning objective145

which combines hash code learning and linear classifier training simultaneously.

To further improve retrieval performance of SDH, SDH with relaxation is

proposed in [36] which learns the regression targets from data directly. Based

on SDH, a fast SDH is proposed in [37] which regresses class label to the

corresponding hash code. Column Sampling based Discrete Supervised Hashing150

(COSDISH) [38] optimizes the hash code learning problem without relaxation

to achieve more accurate retrieval. Error correcting input and output coding

method is proposed in [39] which learns hash codes based on distribution

preservation and error correction. In [40], the evaluation for supervised hashing

methods is analyzed based on the label information of data. The supervised155

matrix factorization hashing is a cross-modal hashing method based on collective

matrix factorization [41]. Multimodal Discriminative Binary Embedding [42]

aims to learn discriminative hash codes for multiple modalities of data to

improve the retrieval performance. In recent years, we have also witnessed the

rapid development of deep hashing methods which extract high-level features of160

images based on deep neural networks. For example, supervised deep hashing is

proposed in [43] which learns features of images, hash codes, and classification

simultaneously based on deep convolutional neural networks. Deep ordinal

hashing is proposed in [44] which learns hash code based on the similarity

ranking information of images.165

Supervised hashing methods generally achieve higher accuracy than

unsupervised hashing methods, but su↵er from higher time complexity.

Moreover, it is also impractical to require dataset being fully labeled. Therefore,

semi-supervised hashing methods are proposed, which require the dataset being
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partially labeled. Sequential Projection Learning for Hashing (SPLH) [14]170

is a primary semi-supervised hashing method which learns hashing functions

sequentially. In SPLH, a new hash function is learned by correcting errors

brought by its previous one. Semi-supervised Composite Multi-view Discrete

Hashing fuses multiple views information of data to generate hash codes, in

which a hash projection is learned for each view [45]. Bootstrap Sequential175

Projection Learning for Hashing (BSPLH) is proposed in [4] which trains a

new hash function by correcting errors caused by all previously learned hash

functions.

2.2. Hashing methods with multiple hash tables

Most of existing hash methods focus on the training of a single hash table.180

However, with multiple hash tables being learned, relevant images of the query

image could be returned in a smaller region in Hamming space comparing to

hashing methods with a single hash table. Since images with smaller Hamming

distance to the query have higher possibility to be similar to query image,

therefore multi-table-based hashing methods could generally achieve higher185

precision-recall performance than single-table-based hashing methods [17].

Complementary Hashing (CH) is a representative multi-table-based hashing

method which trains hash tables in a boosting manner [17]. The objective

function to generate an individual hash table can be optimized as the eigenvalue

decomposition problem. CH su↵ers from the high time complexity for eigenvalue190

decomposition, though it may be relieved using a sparse matrix to reduce

the burden. Moreover, hash functions in a hash table are trained in a

single shot which ignores the correlation information between hash bits. Dual

Complementary Hashing (DCH) [15] is another semi-supervised hashing method

which trains both hash tables and hash bits in a boosting manner. In DCH, an195

individual hash table is trained by SPLH which learns a new hash function by

correcting errors caused by its previous one. Meanwhile, the correctly hashed

pairwise similarity information will be reduced for the training of following hash

tables. Boosting Iterative Quantization Hashing with query-adaptive re-ranking

8



(BIQH) [16] employs multiple hash tables and trains hash tables in a boosting200

manner with dynamically adjustment of weights of images. BIQH re-orders

intermediate returned images by the query-adaptive re-ranking technique to

enhance the final retrieval performance. To learn a new hash table, BIQH, CH,

and DCH all discard correctly mapped image pairs and focus on incorrectly

mapped image pairs. This leads to a significant drop in the number of205

training images for upcoming hash tables which seriously limit the performance

improvement of these multi-table-based hashing methods. Bagging-boosting-

based semi-supervised multi-hashing with query-adaptive re-ranking (BBSHR)

is proposed in [18] which trains multiple hash tables in a bagging manner.

However, hash tables in BBSHR are trained independently. The correlation210

between hash tables are ignored which is meaningful and should be taken

into consideration. Therefore, in this paper, Bootstrap Dual Complementary

Hashing with semi-supervised Re-ranking (BDCHR) is proposed to handle these

problems.

3. Bootstrap Dual Complementary Hashing with Semi-Supervised215

Re-ranking

In this paper, BDCHR trains both hash functions and hash tables in a

boosting manner which finally generates m hash tables with K hash functions

per table. In one hash table, a new hash function is trained by correcting

errors made by its previous ones which is similar to the idea in [4]. In order

to make hash tables in BDCHR complementary, each hash table is trained by

correcting errors made by previous hash tables and m hash tables in BDCHR

are trained sequentially. Let X 2 R
d⇥n be the dataset where d and n denote the

dimensionality of image descriptor and the number of images, respectively. The

labeled subset of X is represented as Xl while unlabeled dataset is represented

as Xu, i.e. X = Xl [ Xu and Xl \ Xu = ;. The dataset is centralized firstly.

In BDCHR, for an image descriptor x, its k
th hash bit of the t

th hash table is
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computed as follows:

ht,k = sign(wT

t,k
x) (3)

where ht,k(•) and wt,k denote the kth hash function in the tth hash table and the

hash projection vector, respectively. The superscript T denotes the transpose

of the vector.

In Section 3.1, the training method of hash functions and updating method220

of the weight matrix for hash tables in BDCHR are introduced. The semi-

supervised re-ranking method used in BDCHR is described in detail in Section

3.2.

3.1. Bootstrap Dual Complementary Hashing

In BDCHR, hash functions in each hash table are trained sequentially. Each

hash function is learned by correcting errors made by its previous ones. Let P

and N denote sets of similar and dissimilar image pairs, respectively. BDCHR

aims to make Hamming distances between similar image pairs being small and

Hamming distances between dissimilar image pairs being large. This objective

of hash can be represented as follows:

minE{dH(xi, xj)|P}� E{dH(xi, xj)|N} (4)

where H, E{•}, and dH(•) denote the set of hash functions, the expectation

function, and the Hamming distance function, respectively. After replacing the

Hamming distance function in Eq.4, the objective function of BDCHR with m

hash tables and K hash functions per table can be formulated as follows:

J(H) = max

mX

t=1

KX

k=1

{
X

(xi,xj)2P

ht,k(xi)ht,k(xj)�
X

(xi.xj)2N

ht,k(xi)ht,k(xj)} (5)

Moreover, the hash code outputted from the t
th hash table is computed as

follows:

Ht(X) = sign(WT

t
X) (6)

whereWt denotes the hash projection matrix of the tth hash table. The semantic

similarity matrix S stores the pairwise similarity information of labeled data.
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The element in S is computed as follows:

Sij =

8
>>>><

>>>>:

1 (xi, xj) 2 P

�1 (xi, xj) 2 N

0 otherwise

(7)

Thus, the objective function Eq.5 of BDCHR can be rewritten as follows:

J(H) = max

mX

t=1

tr{H(Xl)SH(Xl)
T } (8)

i.e.

J(W ) = max

mX

t=1

tr{sign(WT

t
Xl)Ssign(W

T

t
Xl)

T } (9)

By relaxing the constraint of sign function in Eq.9 as in [14, 4], the objective

function of BDCHR is transformed as follows:

J(W ) = max

mX

t=1

tr{WT

t
XlSX

T

l
Wt} (10)

The objective function above only considers the semantic information of labeled

images. Given that the whole dataset also consists of many unlabeled data, a

hash function which partitioning the dataset evenly achieves maximal entropy

of the corresponding hash bit. Thus, to avoid overfitting, a penalty term is

added to the objective function as follows:

J(W ) = max

mX

t=1

tr{WT

t
XlSX

T

l
Wt + �W

T

t
XX

T
Wt}

= max

mX

t=1

tr{WT

t
MWt}

(11)

where M = XlSX
T

l
+ �XX

T and � is the parameter for the penalty term.225

The bootstrap dual complementary hashing is used to construct hash tables

sequentially by solving the objective in Eq.11 which is shown in the following

algorithm.

BDCHR trains hash functions in boosting manner. Each hash function is

trained by focusing on those wrongly hashed image pairs by its previous ones.230

Error brought by all previous k hash functions are corrected in the t
th hash
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Algorithm 1 Bootstrap Dual Complementary Hashing

Input: data X, labeled data Xl, semantic matrix S, length of hash codes K,

number of hash table m, parameters ↵, �, �, c, �.

Output: Hashing projections Ht, t=1,2,...m.

1. Initialize the weight matrix S
1 = S;

2. for t = 1 to m do

3. Xtr = X

4. S
t,1 = S

t

5. for k = 1 to K do

6. M = XlS
t
X

t

l
+ �XtrX

T

tr

7. Extract the first Eigen vector of M : wt,k

8. Update S
t,k+1 from S

t,k by Eq.12

9. Compute the residual: Xtr = Xtr � wt,kw
T

t,k
Xtr

10. end for

11. Get Ht from wt,k, k = 1, ...K

12. Update S
t+1 from S

t with Eq.14

13. end for
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table to get the new weight matrix S
t,k+1. After computing Hamming distances

between labeled images using the learned k hash functions, errors are computed

based on image pairs with the same label but yielding a large Hamming distance

and image pairs with di↵erent labels but yielding a small hamming distance.235

The updating function for new weight matrix can be formalized as follows:

S
t,k+1 = S

t,1 +�S
t,k (12)

where S
t,1 and �S

t,k denote the original weight matrix, and increased weight

matrix, respectively. Let D
t,k

ij
=

P
k

s=1 sign(w
T

s
xix

T

j
ws) denote similarities

between labeled images xi and xj according to the previously learned k hash

functions. �S
t,k is evaluated according to the errors caused by all previous hash

functions. Thus, we calculate the element in S as follows:

�S
t,k

ij
=

8
>>>><

>>>>:

(↵k �D
t,k

ij
)/2k, D

t,k

ij
� ↵k < 0 and S

1
ij
> 0

(�k �D
t,k

ij
)/2k, D

t,k

ij
� �k > 0 and S

1
ij
< 0

0 otherwise

(13)

where ↵ and � denote thresholds of similarity and dissimilarity, respectively.

The training procedure of each individual hash table is similar with BSPLH

[4] which trains hash functions sequentially. After training one hash table, the

similarity matrix is updated and used as weight matrix for the training of the240

following hash table.

In DCH, elements in the weight matrix for correctly hashed image pairs are

set to be zero, which reduces the number of pairwise similarities for the following

training seriously. With this drawback, hash tables trained afterwards cannot

capture the similarity information of the whole dataset which leads to a low

retrieval performance. Therefore, in BDCHR, elements in the weight matrix

of correctly hashed image pairs are preserved while elements corresponding

to wrongly hashed image pairs are increased. The updated weight matrix

S
t+1 from S

t is based on the errors caused by the previous hash table. After

computing Hamming distances between labeled data using the t
th hash table,

error occurs when images with the same label yield large Hamming distances or
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images with di↵erent labels yield small Hamming distance. The weight matrix

S for training the (t+ 1)th hash table is updated based as follows:

S
t+1 = S

t + c�S
t (14)

where c is the parameter to control the stride of updating the S matrix. The

element in �S
t is computed as follows:

�S
t

ij
=

8
>>>><

>>>>:

1 dH(xi, xj) > �, S
t

ij
> 0

�1 dH(xi, xj) < �, S
t

ij
< 0

0 otherwise

(15)

where dH(xi, xj) and � denote the Hamming distance function and a positive

threshold with scale (0,K), respectively.

3.2. Semi-supervised Re-ranking

After multiple hash tables being trained, we employ a semi-supervised re-245

ranking to further improve the retrieval performance. In the semi-supervised

re-ranking method, a pseudo-label is firstly assigned to each unlabeled data.

Then the category-specific weight of each hash function is computed. For a

given query xq, based on the learned multiple hash tables, the accumulated

Hamming distances between xq and images in database are computed to return250

an initial retrieval image set, i.e. XR. Then, according to the appearance ratio

of each category in XR and pre-calculated category-specific weights of each

hash function, the query adaptive weight of each hash function is computed.

Finally, the weighted Hamming distances between xq and the images in XR are

calculated and re-ranked. A subset of XR with smallest weighted Hamming255

distance will be returned as the final retrieval results.

In semi-supervised re-ranking procedures of BDCHR, the first step is to

assign pseudo-label to unlabeled images in the database based on the labeled

data. For each unlabeled image, its top 1% closest labeled images based on

Euclidean distance are found. The most frequently appearing category in

these labeled images is used as the pseudo-label of the corresponding unlabeled

14



image. Noted that the operation of pseudo-label assignment for all images

in the database is time consuming but is conducted o✏ine before queries.

Then, according to the performance of each hash function to each category,

the category-specific weight of each hash function is computed. In the ideal

case, images sharing the same label (including the real label and pseudo-label)

are expected to share the same hash code. With this concern, the category-

specific weight vh,c for the hash function h with respect to the category c is

computed as follows:

vh,c =
max(n�, n+)

n� + n+
(16)

where n� and n+ denote the number of images in category c which has hash

value �1 and +1, respectively. It is obvious that the best performance of one

hash function is achieved when all images in category c sharing the same hash

value. The value of weight v is in the range [0.5, 1], which is then normalized as

follows:

vh,c = 2(vh,c � 0.5) (17)

The method to compute the category-specific weight of each hash function is

similar to that in [18]. The category-specific weight of each hash function is

computed o✏ine before retrieval, which is practical for real world applications.

With Eq.16 and Eq.17, the matrix V is built to record the category-specific260

weights of all hash functions, in which its element Vt(c, k) denotes the category-

specific weight of the k
th hash functions in t

th hash table to the category c.

When given the query image xq, the initial retrieval set XR is returned based

on the accumulated Hamming distance between xq and images in database. The

query has a high probability to have the label same to those with the maximum265

appearance number of images in XR. According to the ratio of appearance of

each category in XR and the pre-learned category-specific weight, the query

adaptive weight of the k
th hash function in the t

th hash table is computed as

follows:

Gt(k) =

P
C

c=1 ncVt(c, k)P
C

c=1 nc

(18)
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where Gt(k), C, and nc denote the query adaptive weight function, number of270

categories in database, and number of images of category c in XR, respectively.

With the query adaptive weight of each hash function in each hash table, the

weighted Hamming distance between xq and the image xi in XR is computed

as follows:

dw(xi, xq) =
1

2

mX

t=1

KX

k=1

Gt(k){abs(ht,k(xi)� ht,k(xq))} (19)

A subset of XR is returned based on the re-ranking according to the weighted275

Hamming distance.

4. Experiments

In this section, we evaluate the retrieval performance of BDCHR on four

datasets: MNIST, CIFAR-10, USPS, and NUSWIDE. MNIST is an image

dataset consisting of 70, 000 handwritten digital images belonging to 10 classes,280

i.e. 0, 1, 2,..., 9. Each image in MNIST has 28⇥ 28 pixels and is represented by

a 784-dimension feature (pixel) vector. CIFAR-10 consists of 60, 000 real world

images belong to 10 classes, such as dog and cat. Each image is represented

by a 512-dimension GIST feature vector. USPS is a dataset consisting of 9, 282

16⇥ 16-pixel images belonging to 10 categories. Each image is represented by a285

256-dimension feature vector. NUSWIDE consists of 269, 648 images belonging

to 81 categories. Each image is represented by a 500-dimensional bag-of-words

feature. For all four databases, 1000 images are randomly selected as the query

set while the rest of images are used as the training set. For semi-supervised

case, 1000 images are randomly selected from the training set as labeled set. In290

experiments, recall-and-precision curves are used to evaluate the performance of

hashing methods. MAP scores of all hashing methods are also shown in Tables

1, 2, 3, and 4.

In Section 4.1, experimental results of the proposed method, i.e. BDCHR,

and comparative methods with di↵erent hash code lengths are shown. Recall-295

and-precision curves and MAP score are employed for evaluation of retrieval
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performance. Moreover, to further validate the e�ciency of BDCHR, BDCHR

and single-table hashing methods under the same storage cost of hash codes

are also compared in Section 4.2. In Section 4.3, parameters of BDCHR are

selected.300

4.1. Experimental Results of BDCHR and Comparative Hashing Methods

In this paper, BDCHR is compared with LSH, SPLH, BSPLH, COSDISH,

CH, DCH, BIQH, and BBSHR. Among them, LSH is a representative

unsupervised hashing method and used as the baseline method. Both SPLH

and BSPLH are representative semi-supervised hashing methods. In BDCHR,305

BSPLH is also utilized for the training of each single hash table, which makes

this method very relevant to the work in this paper. The supervised COSDISH

method is also compared in experiments. CH, DCH, BIQH, and BBSHR are

representative hashing methods with multiple hash tables. Among comparative

methods, both LSH and CH are unsupervised hashing methods while COSDISH310

and BIQH are supervised hashing method. The proposed method BDCHR is a

semi-supervised hashing method with multiple hashing tables. In experiments,

the number of hash tables employed by all multi-table-based hashing methods

is 5. Recall-and-precision curves of these hashing methods with di↵erent hash

code lengths, i.e. 16, 24, 32, 48, and 64, on four databases are shown in Figures315

1, 2, 3, 4, and 5.

According to these figures, BDCHR achieves outstanding performance

comparing with other hashing methods on four databases with di↵erent hash

code lengths. Retrieval performances of LSH and CH are the worst because their

hash functions are trained in unsupervised manners. The data distribution320

information and semantic information of data are not utilized for training

which are very important for similarity preservation. The recently proposed

BBSHR method is a semi-supervised multi-table-based hashing method which

achieves satisfying performance on four databases with di↵erent hash code

lengths. This method achieves promising retrieval performance which is just325

worse than BDCHR. The supervised COSDISH method achieves nearly the
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(a) MNIST-16 (b) CIFAR-10-16

(c) USPS-16 (d) NUSWIDE-16

Figure 1: Recall-and-precision curves for 16 bits per table on the MNIST (a), the CIFAR-10

(b), the USPS (c), and the NUSWIDE (d).

(a) MNIST-24 (b) CIFAR-10-24

(c) USPS-24 (d) NUSWIDE-24

Figure 2: Recall-and-precision curves for 24 bits per table on the MNIST (a), the CIFAR-10

(b), the USPS (c), and the NUSWIDE (d).
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(a) MNIST-32 (b) CIFAR-10-32

(c) USPS-32 (d) NUSWIDE-32

Figure 3: Recall-and-precision curves for 32 bits per table on the MNIST (a), the CIFAR-10

(b), the USPS (c), and the NUSWIDE (d).

(a) MNIST-48 (b) CIFAR-10-48

(c) USPS-48 (d) NUSWIDE-48

Figure 4: Recall-and-precision curves for 48 bits per table on the MNIST (a), the CIFAR-10

(b), the USPS (c), and the NUSWIDE (d).
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(a) MNIST-64 (b) CIFAR-10-64

(c) USPS-64 (d) NUSWIDE-64

Figure 5: Recall-and-precision curves for 64 bits per table on the MNIST (a), the CIFAR-10

(b), the USPS (c), and the NUSWIDE (d).

best performance on USPS database but very poor performances on other three

databases. The reason is that the number of images in USPS is much smaller

than other three databases. Given the fact that the training set of each database

consists of 1000 images, a higher portion of samples in USPS are utilized as330

labeled images for training. Therefore, COSDISH achieves good performance

with enough supervised information. In contrast, 1000 labeled images only

take a low portion in training sets for the other three databases which do not

contain enough semantic similarity information for training. Thus COSDISH

cannot achieve good retrieval performance for semi-supervised problems. As a335

semi-supervised method, the proposed BDCHR method which could make full

use of both the structural information of unlabeled data and semantic similarity

information of labeled data achieves promising retrieval performance. Moreover,

the performance of BDCHR gets worse with hash code length increasing. This

may be caused that with longer hash bits learned, redundant hash bits are340

involved. This phenomenon also indicates that BDCHR could achieve promising
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Table 1: MAP scores of BDCHR and comparative methods with di↵erent hash code lengths

on the MNIST

16 bits 24 bits 32 bits 48 bits 64 bits

BDCHR 64.72% 66.21% 67.5% 69.34% 69.78%

COSDISH 52.58% 53.99% 56.73% 58.33% 58.64%

BBSHR 57.43% 58.54% 59.44% 60.34% 61.43%

BSPLH 47.53% 48.54% 50.34% 52.77% 53.66%

BIQH 57.34% 58.34% 58.54% 58.98% 57.77%

DCH 56.98% 57.8% 58.67% 58.41% 57.14%

CH 25.34% 25.88% 28.12% 32.32% 36.65%

SPLH 46.52% 49.39% 50.13% 52.55% 52.91%

LSH 23% 23.96% 24.51% 29.66% 34.35%

Table 2: MAP scores of BDCHR and comparative methods with di↵erent hash code lengths

on the CIFAR-10

16 bits 24 bits 32 bits 48 bits 64 bits

BDCHR 22.44% 24% 24.78% 25.3% 25.54%

COSDISH 20.96% 21.12% 21.12% 21.83% 22.77%

BBSHR 20.43% 19.23% 19.43% 20.33% 21.65%

BSPLH 18.63% 19.43% 21.43% 22.23% 22.76%

BIQH 19.54% 18.34% 19.56% 20.54% 21.64%

DCH 21.72% 19.77% 20.01% 21.44% 22.17%

CH 12.54% 12.77% 12.88% 13.04% 13.65%

SPLH 18.82% 20.41% 21.18% 22.35% 23.07%

LSH 11.69% 11.46% 12.25% 12.61% 12.7%

performance without long hash codes.

In the training procedure of CH, DCH, and BIQH, the weights of correctly

hashed images pairs are set to be 0 so that these image pairs will not be trained

for the following hash tables. Thus, the number of image pairs utilized for the345

training of following hash tables will decrease rapidly. In BDCHR, we increase

the weight of wrongly hashed image pairs and decrease the weight of correctly

hashed image pairs, which is more reasonable and avoids the amount reduction

of image pairs used for training following hash tables. Thus, BDCHR achieves

better retrieval performance than existing multi-hashing methods.350

MAP scores for hashing methods with di↵erent code lengths on MNIST,

CIFAR-10, USPS, and NUSWIDE are shown in Tables 1, 2, 3, and 4,

respectively. Compared with unsupervised and semi-supervised methods,

BDCHR achieves the highest MAP scores on four databases with di↵erent

hash code lengths. Similar to the results of Recall-and-precision curves, the355
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Table 3: MAP scores of BDCHR and comparative methods with di↵erent hash code lengths

on the USPS

16 bits 24 bits 32 bits 48 bits 64 bits

BDCHR 73.31% 74.61% 75.3% 75.91% 75.96%

COSDISH 78.91% 78.37% 78.91% 81.32% 80.02%

BBSHR 60.21% 64.23% 66.34% 67.34% 68.34%

BSPLH 53.45% 56.34% 57.45% 58.45% 60.24%

BIQH 54.75% 56.87% 58.45% 59.03% 61.23%

DCH 56.83% 51.18% 54.97% 56.59% 59.63%

CH 30.34% 33.21% 41.23% 43.23% 45.32%

SPLH 51.83% 55.27% 55.46% 55.71% 56.69%

LSH 28.97% 32.77% 40.36% 40.47% 44.6%

Table 4: MAP scores of BDCHR and comparative methods with di↵erent hash code lengths

on the NUSWIDE

16 bits 24 bits 32 bits 48 bits 64 bits

BDCHR 39.52% 39.92% 40.02% 40.1% 40.1%

COSDISH 30.21% 30.05% 30.53% 30.66% 30.32%

BBSHR 38.52% 39.33% 39.66% 39.89% 39.91%

BSPLH 32.75% 33.51% 33.94% 34.3% 34.47%

BIQH 31.71% 31.79% 31.81% 32.01% 32.11%

DCH 38.68% 38.7% 38.86% 38.84% 38.69%

CH 32.6% 32.45% 32.05% 31.41% 31.14%

SPLH 32.78% 33.27% 33.48% 34.79% 35.02%

LSH 28.42% 28.8% 28.62% 29.12% 28.92%

performance of BDCHR is the second highest on USPS dataset which is

just worse than the supervised COSDISH method, and the highest on other

three datasets. This phenomenon indicates that supervised hashing methods

generally require a lot of supervised information for training to achieve satisfying

performance. When the supervised information is not enough and cannot360

represent the semantic similarity information of datasets, semi-supervised

hashing methods based on both labeled and unlabeled data are more suitable

for image retrieval task.

4.2. Comparison Under the Same Storage Cost of Hash Codes

In this paper, to further validate the e�ciency of the proposed method,365

BDCHR is also compared with representative semi-supervised single-table based

hashing methods, i.e. SPLH and BSPLH, under the same storage cost of hash

codes. The unsupervised LSH method is also used as the baseline method.

BDCHR is compared with single-table based hashing methods using the same
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hash bits in total, i.e. BDCHR (4 tables with 8 bits per table) versus single-table370

based hash methods (LSH, SPLH, and BSPLH using 32 bits), and BDCHR (4

table with 16 bits per table) versus single-table hash methods (LSH, SPLH,

and BSPLH using 64 bits). Experimental results are shown in Figures 6 and 7,

respectively.

According to Figures 6 and 7, unsupervised LSH which generates hash375

functions randomly yields the worst performance. Semi-supervised hashing

methods, i.e. BSPLH and SPLH, achieves better performance than LSH,

because both data distribution information of unlabeled data and semantic

similarity information of labeled data are utilized for training. The proposed

BDCHR method trains hash functions by correcting errors caused by all the380

previous hash functions in a hash table and changes the updating rule of weight

matrix for the training of new hash table. Comparing to single-table based

hashing methods, BDCHR yields a better retrieval performance under the same

storage cost of hash codes.

(a) MNIST (b) CIFAR-10

(c) USPS (d) NUSWIDE

Figure 6: Recall-and-precision curves with 4 ⇥ 8 on the MNIST (a), the CIFAR-10 (b), the

USPS (c), and the NUSWIDE (d).
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(a) MNIST (b) CIFAR-10

(c) USPS (d) NUSWIDE

Figure 7: Recall-and-precision curves with 4 ⇥ 16 on the MNIST (a), the CIFAR-10 (b), the

USPS (c), and the NUSWIDE (d).

4.3. Parameters Selection385

The Area Under the Curve (AUC) [46] is used to measure the retrieval

performance of BDCHR with di↵erent values of parameters. The AUC is

computed based on the recall-and-precision curve as follows:

AUC =

Z
precision d(recall) (20)

BDCHR is trained in double loop. In the inner loop, BDCHR trains the

hash functions of a hash table using BSPLH, and parameters ↵, �, � can be set

as the same way in [4]. � controls the threshold of similar and dissimilar images

using the hamming distances, which will a↵ect the judge of error mapping of

the previous hash tables. � is finally set to be round(K/4) in our experiments390

where round(•) is the rounding function.

BDCHR firstly returns an image set XR using the trained multiple hashing

tables and then uses the semi-supervised re-ranking technique to return the

final retrieval images which is a subset of XR. A parameter ratio, is used which
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controls the number of images in XR being returned by each hash table. For395

example, ratio= 0.4 means return 40% of XR as the final retrieval result. All

the images in XR will be ranked using the query-adaptive weighted Hamming

distance. The Figure 8 shows AUC performance varies with di↵erent ratio

values. This experiment is performed on the MNIST database with 5 hash

tables and 32 bits per table. According to the Figure 8, BDCHR achieves best400

performance when ratio= 0.8. Therefore, we set ratio= 0.8 for BDCHR in all

experiments.

Figure 8: AUC varies with di↵erent values of ratio on MNIST of BDCHR with 32 bits.

The number of hash table m also has an influence on the performance of

BDCHR. The Figure 10 shows the AUC values of BDCHR with variable number

of hash tables while the number of bits per table is set to 32. This figure405

shows that more hash tables will lead to better AUC performances of BDCHR.

Considering both the performance and the memory cost, the value of m is finally

is set to 5 while the performance trends to remain unchanged when m > 5.

The value of c controls the updating step of matrix S. The experiment is

done in MNIST with 5 tables and 32 bits per table which are showed in the410

Figure 10(a). The values of c have not significant e↵ect on the performance

of BDCHR, and BDCHR gets the best performance when c = 9. Thus, the

parameter c is set to be 9 in all experiments.
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Figure 9: AUC varies with m on MNIST of BDCHR with 32 bits.

Figure 10: AUC varies with c on the MNIST of BDCHR with 32 bits.

5. Conclusion

A semi-supervised multi-hashing method for image retrieval, i.e. BDCHR,415

is proposed in this paper. BDCHR trains both hash functions and hash tables

in the boosting manner. In one hash table, each hash function is trained by

correcting the errors caused by its previous ones. To train the next hash

table, the similarity matrix is updated by increasing the weight of wrongly

hashed image pairs instead of ignoring the correctly hashed image pairs. In420

this way, the number of image pairs utilized for the training of following hash

tables will not be reduced. Moreover, a semi-supervised re-ranking method

is also introduced in BDCHR to further improve its retrieval performance.
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Experimental results on four real world image datasets show that BDCHR

outperforms other comparative hashing methods, even with same storage cost425

of hash codes.

In this paper, the proposed BDCHR method attempts to handle the image

retrieval task in stationary data environments. However, the data environment

in real world is always non-stationary with new data appearing sequentially.

Thus, an important future work is to extend BDCHR to the non-stationary data430

environment by employing complementary multiple hash tables updated based

on newly appearing data. Moreover, with the development of deep hashing

methods which train hash functions based on high-level features of images, this

will be an interesting future work to apply deep learning techniques to further

strengthen the performance of BDCHR.435
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