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Abstract 23 

Background: To investigate the metabolic effects of FFAR4-selective agonists on islet and 24 

enteroendocrine cell hormone release and the combined therapeutic effectiveness with DPP-25 

IV inhibitors.  26 

Methods: Insulinotropic activity and specificity of FFAR4 agonists were determined in clonal 27 

pancreatic BRIN-BD11 cells. Expression of FFAR4 was assessed by qPCR and western 28 

blotting following agonist treatment in BRIN-BD11 cells and by immunohistochemistry in 29 

mouse islets. Acute in-vivo effects of agonists was investigated after intraperitoneal (i.p.) or 30 

oral administration in lean and HFF-obese diabetic mice. 31 

Results: GSK137647 (10-11-10-4 M) and Compound-A (10-10-10-4 M) stimulated insulin 32 

secretion at 5.6mM (p<0.05-p<0.001) and 16.7mM (p<0.05-p<0.001) glucose in BRIN-BD11 33 

cells, with no cytotoxicity effects as assessed by MTT. FFAR4 antagonist (AH-7614) abolished 34 

the insulintropic effect of GSK137647 (p<0.05-p<0.001), whilst FFAR1 antagonist (GW1100) 35 

had no effect. Incubation of BRIN-BD11 cells with GSK137647 and Compound-A increased 36 

FFAR4 (p<0.01) gene expression at 16.7 mM glucose, with a corresponding increase in FFAR4 37 

(p<0.01) protein concentrations. FFAR4 upregulation was attenuated under normoglycaemic 38 

conditions. Immunohistochemistry demonstrated co-localisation of FFAR4 and insulin in 39 

mouse islets. Orally administered GSK137647 or Compound-A (0.1 µmol/kgBW) 40 

monotherapy and combinational therapy with Sitagliptin improved glucose tolerance 41 

(p<0.001), increased plasma insulin (p<0.001), GLP-1 (p<0.05), GIP (p<0.05), decreased DPP-42 

IV activity (p<0.01-p<0.001) and induced satiety (p<0.001) in HFF mice.  43 

Conclusions: Specific FFAR4 agonism improves glucose tolerance through insulin and 44 

incretin secretion, with enhanced DPP-IV inhibition in combination with Sitagliptin. 45 
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General significance: These findings have for the first time demonstrated that selective 46 

FFAR4 activation regulates both islet and enteroendocrine cell function with agonist 47 

combinational therapy, presenting a promising strategy for the treatment of type-2-diabetes. 48 

 49 

Keywords: FFAR4, specificity, insulin, incretin, DPP-IV inhibition, combinational therapy 50 

 51 

1 Introduction: 52 

FFAR4 (GPR120) is a rhodopsin-like G-protein coupled receptor that is activated by 53 

unsaturated fatty acids (C16-22) and long chain saturated fatty acids (C14-18) [1-2]. The 54 

human FFAR4 gene is encoded on chromosome 10.q23.3 [3]. With respect to tissue 55 

distribution, FFAR4 is extensively expressed in peripheral tissues, intestines, lungs, spleen and 56 

pro-inflammatory macrophages [4]. Furthermore, recent studies have demonstrated that 57 

FFAR4 is abundantly expressed in the pancreatic islet, with further analysis demonstrating its 58 

expression in clonal pancreatic β-cell lines, including MIN6, RINm5f and INS-1E [5-7].  59 

Previously considered as orphan receptors, recent studies have shown FFAR1 (GPR40), 60 

FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120) and GPR84 to be activated by free fatty 61 

acid (FFA) molecules [3, 4, 8]. FFAR3 and FFAR2 exhibit specificity towards short chain fatty 62 

acids, GPR84 is activated by medium chain fatty acids, whereas FFAR1 and FFAR4 are 63 

activated by long chain fatty acids [3, 4]. Furthermore, FFAR4 and FFAR1 share 10% sequence 64 

homology and can be activated by similar endogenous ligands (Omega-3-fatty acids), which 65 

warrants the utilisation of receptor specific agonists to evaluate the therapeutic potential of 66 

FFAR4 [2, 8].   67 
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FFAR4 has been hypothesised to act as a lipid sensor in the body, and has been proven to have 68 

involvement in the regulation of inflammation, adipogenesis, and glucose homeostasis [1, 7, 69 

9].   Interestingly, it has been reported that a mutation in the FFAR4 gene (R270H) is linked 70 

with the development of obesity. The p.R270H variant impairs the signalling response of 71 

FFAR4 upon FFA binding, with subsequent defects observed to intracellular calcium 72 

mobilisation and GLP-1 secretion in intestinal cells [10, 11].  Further studies have 73 

demonstrated that FFAR4 knockdown with siRNA impaired the anti-apoptotic effects of 74 

omega-3 fatty acids in serum-starved STC-1 cells. Thus, indicating the potential proliferative 75 

and anti-apoptotic effects of FFAR4 in pancreatic beta cells [12].  76 

Numerous studies have identified the involvement of FFAR4 in the gastrointestinal (GI) tract, 77 

including the mediation of glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide 78 

(GIP) and cholecystokinin (CCK) secretion from intestinal L-cells, K-cells and I-cells, with 79 

high FFAR4 expression observed in the intestinal STC-1 and GLUTag cell lines [1, 12, 13]. 80 

FFAR4 activation has been shown to mediate GLP-1 secretion when tested with its endogenous 81 

agonist α-linolenic acid [1, 14, 15]. However, other studies suggest that FFAR4 has no role in 82 

GLP-1 release [16]. Previous findings have shown FFAR4 to mediate insulin-sensitising and 83 

anti-inflammatory properties in peripheral tissues [9].   84 

The expression and biological function of FFAR4 in the intestinal tract has been heavily 85 

documented, however the role of FFAR4 in pancreatic beta cell function was not investigated 86 

until recently [7]. A number of FFAR4 agonists were demonstrated to have regulatory role in 87 

glucose dependent insulin secretion in mouse islets, including endogenous docosahexaenoic 88 

acid (DHA), eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA) and synthetic GW-9508 89 

[7, 8]. In addition, these agonists demonstrated insulinotropic and glucose lowering properties 90 

in in-vivo [7]. However, the selectivity of endogenous FFAR4 agonists (ALA, DHA, EPA) 91 
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remains uncertain as activation of FFAR1 may contribute to the effects observed, whilst 92 

synthetic GW9808 has been shown to exhibit 100-fold greater potency towards FFAR1 over 93 

FFAR4 [17, 18].  94 

Upon activation, FFAR4 primarily couples to Gαq, which stimulates an array of secondary 95 

messenger signalling pathways through phospholipase C (PLC), including intracellular 96 

calcium and mitogen-activated protein kinases [4, 7]. The mechanism of FFAR4 mediated 97 

insulin secretion from the pancreatic beta cell is not conclusive; however, studies have shown 98 

a range of FFAR4 agonists to induce intercellular calcium release, indicating the potential 99 

involvement of inositol trisphosphate on intracellular calcium stores through PLCβ signalling 100 

[7]. FFAR4 activation with ALA and DHA leads to the rapid and transient phosphorylation of 101 

the receptor of HEK293 cells [19]. Although FFAR4 has been shown to act predominately 102 

through PKC signalling, DHA has also shown to activate G-protein coupled receptor kinase 103 

(GPK6) upon FFAR4 phosphorylation, with Thr(347), Ser (350), and Ser(357) shown to be 104 

major phosphorylation sites in the C-terminal tail of FFAR4 [19].  105 

Recently, Oh et al., have reported an orally available, selective, high affinity, small FFAR4 106 

agonist (Compound A) that exhibits a range of anti-diabetic effects [20]. Oral administration 107 

of Compound A improved glucose tolerance, insulin sensitivity and exerted anti-inflammatory 108 

effects on macrophages in high fat fed obese mice [20]. Sparks et al., recently identified a 109 

potent FFAR4 agonist GSK137647 [21] and preliminary in-vitro analysis has demonstrated 110 

that GSK137647 augmented insulin secretion in MIN6 cells, with a modest increase in GLP-1 111 

secretion from the NCl-H716 intestinal cell line [21, 22]. In-vivo findings showed that 112 

GSK137647 induced GLP-1 release by mouse circumvallate papillae [22]. The highly selective 113 

properties of this agonist suggested that it was suitable to evaluate FFAR4 activation in 114 

pancreatic beta cells.  115 
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Due to the regulatory role of FFAR4 activation on insulin and incretin secretion [1, 7, 14], a 116 

promising approach using selective FFAR4 agonists combined with a dipeptidyl peptidase-4 117 

(DPP-IV) inhibitor may offer therapeutic potential [23, 24]. The present study has assessed the 118 

effect of potent DPP-IV inhibitor (Sitagliptin) in combination with Compound A and 119 

GSK137647 on glucose tolerance and insulin secretion in high fat fed (HFF)-induced diabetic 120 

mice. This research aims to investigate the acute metabolic effects and of FFAR4 agonist 121 

monotherapy and combinational therapy on islet and enteroendocrine cell function, using 122 

pancreatic cells and diabetic mice.  123 

 124 

2 Materials and methods: 125 

2.1 Materials: 126 

FFAR4 agonists Compound A and GSK137647 were purchased from Cayman Chemicals 127 

(Michigan, USA) and Tocris (Bristol, UK) respectively. Sitagliptin phosphate monohydrate 128 

was obtained from Apexbio Technology LLC (Texas, USA).  Thiazolyl blue tetrazolium 129 

bromide (MTT) was received from Sigma (Poole, UK). Rabbit anti-GPR120 polyclonal IgG 130 

antibody (H-155) was purchased from Santa Cruz biotechnology (Santa Cruz, CA, USA) and 131 

guinea pig anti-insulin from Abcam (Cambridge, UK). 132 

2.2 Insulin secretion: 133 

Generation and characterization of the insulin-secreting BRIN-BD11 cells were outlined 134 

previously [25]. BRIN-BD11 cells were cultured with RPMI-1640 media (11.1 mM glucose) 135 

containing antibiotics (100 U/ml penicillin and 0.1 mg/ml streptomycin) and 10% foetal calf 136 

serum at 37oC in 95% air and 5% carbon dioxide. For acute insulin secretion studies, cells were 137 

detached using trypsin/EDTA and incubated overnight in 24-well plates with 150,000 cells per 138 
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well. Cells were then pre-incubated for 40 min at 1.1 mmol/l glucose in Krebs buffer 139 

(comprising 4.7 mmol/l KCL, 115 mmol/l NaCl, 1.28 mmol/CaCl2, 10 mmol/l NaHCO3, 5 g/l 140 

bovine serum albumin, 1.2 mmol/l KH2PO4, 1.2 mmol/l MgSO4.7H2O, pH 7.4). Test 141 

incubations were then performed at 37oC for 20 min. Supernatants were removed, then frozen 142 

at −20oC until determination of insulin by radioimmunoassay [26]. All FFAR4 ligands (1 143 

mg/ml) were dissolved in 50% DMSO prior to preparation in Krebs buffer. Compound A and 144 

GSK137647 at 10−12-10−4 mol/l were tested at 5.6 and 16.7 mmol/l glucose. To determine the 145 

selectivity of the agonists towards FFAR4, the FFAR1 antagonist GW1100 (10-5 mol/l), and 146 

FFAR4 antagonist AH-7614 (10-5 mol/l) were utilised to antagonise the respective receptors. 147 

Receptor antagonists were co-incubated with Compound A and GSK137647 on BRIN-BD11 148 

cells, with insulin secretory responses determined. 149 

2.3 Cytotoxicity assessment by tetrazolium (MTT): 150 

BRIN-BD11 cells were cultured overnight in 96-well plates. Incubations were performed as 151 

described for insulin secretory analysis. Test solutions were decanted, then 1mg/ml of working 152 

MTT solution was added and incubated for 2 h at 37oC. MTT solution was removed and 153 

replaced with 200 µl of DMSO. The plate was placed on an orbital shaker for 5 min to mix the 154 

formazan into the solvent. The optical density of each well was recorded at 560 nm with the 155 

background absorbance at 670 nm removed. The resultant optical density was proportional to 156 

the viable cell quantity.   157 

2.4 Acute effects of FFAR4 agonists in-vivo: 158 

All animal experiments were carried out in accordance with the UK Animal (Scientific 159 

Procedures) Act 1986. Male lean and HFF Swiss TO mice (Harlan UK, 30-34 weeks old, 55–160 

67 g) were individually housed in an air-conditioned room at 22 ± 2oC with a 12-h light: 12-h 161 

dark cycle. Drinking water was supplied ad libitum. Animals were maintained on a high fat 162 
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diet (45% fat, 20% protein, 35% carbohydrate; percent of total energy 26.15 kJ/g; Dietex 163 

International Ltd., Witham, UK) from 8 weeks of age for a total of 150 days to evoke dietary-164 

induced obesity-diabetes (DIO). Another group of mice was maintained on standard rodent diet 165 

(10% fat, 30% protein, 60% carbohydrate; percent of total energy 12.99 kJ/g, Trouw Nutrition, 166 

Cheshire, UK) and used as a model of normal controls. Similar high-fat diets, containing a 167 

large percentage of energy from fat, are used routinely in obesity-diabetes research [27-29]. 168 

Mice (n=6, fasted 18 h) received an oral or IP administration of glucose alone (18 mmol/kg 169 

body weight) or in combination with FFAR4 agonists (0.1 μmol/kg body weight). All FFAR4 170 

ligands (1 mg/ml) were dissolved in 50% DMSO prior to preparation in saline. Blood samples 171 

were obtained by a cut from the tip of the tail vein of conscious mice at the times indicated in 172 

Figures, and centrifuged at 16,060 × g for 3 min at 4oC. Plasma glucose was measured using 173 

an automated glucose oxidase procedure with a Beckman glucose analyser (Beckman-Coulter, 174 

High Wycome, UK) and insulin determined by radioimmunoassay [26]. Intestinal hormone 175 

secretion was assessed using ELISA; total GLP-1 (Millipore) and total GIP (Millipore). DPP-176 

IV activity was evaluated by Gly-Pro-AMC cleavage [30]. In a second series of experiments, 177 

18 h fasted normal mice were used to assess the effects of agonist treatment on food intake. 178 

Mice received oral administration of saline alone (0.9% (w/v) NaCl) or in combination with 179 

agonist (0.1 µmol/kg body weight) and food intake measured at 30 min intervals. 180 

2.5 Gene expression analysis by qPCR: 181 

mRNA was extracted from clonal pancreatic BRIN-BD11 cells following exposure to agonist 182 

treatment, using an RNeasy Mini kit adhering to manufacturer’s protocol (Qiagen, UK). 183 

Isolated mRNA (3 µg) was converted to cDNA using SuperScript II Reserve Transcriptase. 184 

Amplification parameters were set at 95oC for denaturation, 58oC for primer annealing and 185 

72oC for elongation for a total of 40 cycles, followed with melting curve analysis, with 186 
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temperature range set at 60oC to 90oC. Values were analysed using the Livak method and 187 

normalised to GAPDH expression.  188 

2.6 FFAR4 protein concentrations using western blotting: 189 

BRIN-BD11 cells were seeded at a density of 1,000,000 cells per well in 6-well plates and 190 

allowed to attach overnight. After 4 h exposure to 10-4M GSK137647 and Compound A, total 191 

protein was extracted at 4oC for 10 min using RIPA buffer containing 150 mM NaCl, 1.0% 192 

Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris HCl, pH 7.6 and protease 193 

inhibitor cocktail (Sigma, UK). Total protein concentration was determined using Bradford 194 

reagent (Sigma, UK). Equal amounts of protein were prepared in aliquots with Laemmli buffer 195 

(1 µg/µl), then boiled at 95oC for 10 min. Samples (25 µg per well) were loaded onto pre-cast 196 

gels (NUPAGE 4–12% Bis–Tris gels, Invitrogen, UK) and subjected to SDS-PAGE (70 V, 90 197 

min). After transfer to nitrocellulose membrane for 16 h at 90 mA, membranes were blocked 198 

with 5% skimmed milk and probed with rabbit anti-FFAR4 (1:150) (Santa Cruz, US)/mouse 199 

anti-β-actin (1:2500) (Cell signalling, US). Membranes were probed with ECL horseradish 200 

peroxidase donkey anti-rabbit IgG/ECL horseradish peroxidase sheep anti-mouse IgG 201 

(1:10000) (GE Healthcare, UK) and detected using Luminata Forte HRP substrate (Millipore, 202 

UK), with images captured using the G:BOX Chemi XX9 imager (Syngene, UK). Data were 203 

normalised to β-actin and presented relative to untreated control. 204 

2.7 Tissue distribution of FFAR4 by immunohistochemistry: 205 

Pancreatic tissue from lean and HFF NIH Swiss mice was excised and cut at 8µm using a 206 

microtome. Sections were placed on slides and dried for 2 h on a hot plate at 37oC. After 207 

incubation, wax was removed and tissue re-hydrated in ethanol (100%), ethanol (95%), ethanol 208 

(80%) and distilled water for 5 min each. Slides were incubated in 50 mM sodium citrate for 209 

20 min at 90oC for antigen retrieval. BSA (2.5%) was added to each slide (200 µl) for 45 min. 210 
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Primary antibodies (200 µl) at optimal dilutions (FFAR4 1:100, Insulin 1:300) were added and 211 

incubated at 4oC overnight. Slides were washed, followed by secondary antibody (1:400) 212 

incubation at 37oC for 45 min. The slides were washed, then DAPI (0.1 µg/ml) added and 213 

incubated at 37oC for 15 min. Slides were washed, then mounted. 214 

2.8 Statistics  215 

All data was analysed with Prism (v.5.0, GraphPad Software Inc. CA, USA) and expressed 216 

as mean ± S.E.M. All in-vivo glucose tolerance test data (glucose, insulin, GLP-1, GIP and 217 

DPP-IV activity) were analysed using two-way analysis of variance (ANOVA) followed by 218 

the Bonferroni post-hoc test. Area under the curve (AUC) was calculated using trapezoidal 219 

rule with baseline correction. All other data including AUC were analysed using Student’s t-220 

test (non-parametric, with two-tailed P values and 95% confidence interval). p<0.05 was 221 

considered to be statistically significant. 222 

 223 

3 Results: 224 

3.1 Determination of FFAR4 agonist selectivity on insulin secretion. 225 

The insulinotropic response and specificity of the novel synthetic FFAR4 agonists (Compound 226 

A, GSK137647) at 10-12-10-4 mol/l were assessed using clonal pancreatic BRIN-BD11 cells. 227 

At 5.6 mM glucose, Compound A at 10-10-10-4 mol/l augmented insulin secretion by 1.2- to 228 

1.9-fold (p<0.05-p<0.001), with a half maximal effective concentration (EC50) of 2.9 x 10-7 229 

mol/l, while GSK137647 was more potent (EC50 of 2.2 x 10-7 mol/l) with a 1.5- to 2.1-fold 230 

increase at 10-8-10-4 mol/l (p<0.05-p<0.001) (Figure 1 A, B). At 16.7 mM glucose, both 231 

agonists exhibited enhanced insulinotropic activity. Compound A at 10-7-10-4 mol/l augmented 232 

insulin secretion from 1.8- to 2.4 fold (p<0.05-p<0.001) and GSK137647 at 10-11-10-4 mol/l 233 
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enhanced insulin secretion by 1.4- to 2.8-fold (p<0.05-p<0.001), with EC50 values of 3.0 x 10-234 

8 mol/l (Compound A) and 1.2 x 10-10 mol/l (GSK137647) (Figure 1 C, D). Neither agonist 235 

affected cell viability when assessed by MTT (Figure 1).  236 

To investigate the selectivity of the agonists, both Compound A and GSK137647 were co-237 

incubated with selective FFAR1 and FFAR4 antagonists. The insulin secretory response of 238 

Compound A and GSK137647 was not influenced by incubation with the FFAR1 antagonist 239 

GW1100 (10-5 mol/l), with similar insulinotropic responses being observed in the presence and 240 

in the absence of GW1100 (Figure 1). In contrast, the FFAR4 antagonist AH-7614 (10-5 mol/l) 241 

significantly impaired the insulinotropic responses of Compound A and GSK137647. At 5.6 242 

mM glucose in the presence of the FFAR4 antagonist, Compound A (10-6-10-4 mol/l) 243 

augmented insulin secretion by 1.25- to 1.3-fold (p<0.05), corresponding to a 65% decrease in 244 

insulin output compared with control. Furthermore, the insulinotropic effect of GSK137647 245 

was abolished in the presence of the FFAR4 antagonist (Figure 1 A, B). At 16.7 mM glucose 246 

in the presence of the FFAR4 antagonist, Compound A at 10-5-10-4 mol/l increased insulin 247 

secretion by 1.7- to 1.8-fold (p<0.05), corresponding to a 65% reduction compared to agonist 248 

alone. GSK137647 at 10-7-10-4 mol/l only augmented insulin secretion by 1.7- to 2.1 fold in 249 

the presence of the antagonist (p<0.01) (Figure 1 C, D), reflecting a 40% decrease in 250 

insulinotropic action. 251 

3.2 Expression of FFAR4 in high fat fed pancreatic tissue and BRIN-BD11 cells: 252 

Immunohistochemistry revealed high expression and areas of co-localisation of FFAR4 and 253 

insulin in pancreatic islets from lean and HFF mice (Figure 2 A-H). The pancreatic BRIN-254 

BD11 cell line was used to confirm FFAR4 gene expression in pancreatic beta cells. At 5.6 255 

mM glucose, FFAR4 agonists Compound A (p<0.05) and GSK137647 (p<0.05) 256 

downregulated FFAR4 receptor mRNA expression in BRIN-BD11 cells (Figure 2 I). When 257 
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exposed to 16.7 mM glucose, FFAR4 agonists (Compound A (p<0.01) and GSK137647 258 

(p<0.01) increased FFAR4 mRNA expression (Figure 2 J). Western blotting was conducted to 259 

determine complimentary FFAR4 protein concentrations after agonist treatment. GSK137647 260 

upregulated FFAR4 protein by 1.9 fold (p<0.05) in hyperglycaemic conditions, whilst 261 

Compound A had no significant effect (Figure 2 L).  FFAR4 protein concentrations were not 262 

altered by either agonist under normoglycaemic (5.6 mM glucose) conditions (Figure 2 K).   263 

3.3 Acute effects of FFAR4 agonists on glucose tolerance and insulin secretion in-vivo 264 

An oral glucose tolerance test (OGTT) was performed to assess the anti-diabetic activity of 265 

Compound A and GSK137647 in fasted HFF mice. Compound A and GSK137647 were 266 

assessed alone or in combination with the DPP-IV inhibitor (Sitagliptin). FFAR4 antagonist 267 

AH-7614 was utilised to determine agonist specificity in-vivo. Oral administration of 268 

Compound A and GSK13647 improved glucose tolerance (p<0.05-0.001) (Figure 3 A, C), with 269 

AUC data showing decreases with Compound A and GSK137647 by 26% (p<0.05) and 18% 270 

(p<0.05) respectively (Figure 3 E, G). In combination with Sitagliptin, these compounds 271 

exhibited a further improvement on glucose excursion by 5-11%. The FFAR4 antagonist 272 

impaired the glucose lowering properties of Compound A and GSK137647 by 77% (p<0.05) 273 

and 89% (p<0.05) respectively (Figure 3 A, C). 274 

These effects on blood glucose control were accompanied by relative changes in insulin 275 

secretion. Agonising FFAR4 with Compound A (p<0.05) and GSK137647 (p<0.001) increased 276 

plasma insulin by 20% and 54% when assessed with AUC data (Figure 3 F, H). Compound A 277 

in combination with Sitagliptin demonstrated an additive 12% insulinotropic effect compared 278 

to Compound A alone, whilst GSK137647 combinational therapy resulted in a 9% reduction 279 

compared to agonist alone (Figure 3 B, D). The FFAR4 antagonist AH-7614 inhibited the 280 

insulinotropic response of Compound A by 30% and GSK137647 by 76% (p<0.001). 281 
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 GSK137647 increased plasma GLP-1 (p<0.05) and GIP (p<0.05), whilst Compound A 282 

increased plasma GLP-1 (p<0.05) but had no effect GIP secretion (Figure 4 A, B, D, E). 283 

GSK137647 (p<0.01) and Compound A (p<0.01) reduced DPP-IV activity, with activity 284 

further diminished when administered in combination with Sitagliptin (p<0.001) (Figure 4 C, 285 

F).     286 

In addition to oral treatment, Compound A and GSK137647 were administered also by 287 

intraperitoneal injection to lean mice (Figure 5 A). Compound A significantly improved 288 

glucose excursion (p<0.01), with GSK137647 (p<0.05) eliciting a similar response. 289 

3.4 Acute effects of FFAR4 agonists on appetite suppression in lean Swiss TO mice 290 

Compound A induced satiety after 30 min with further effects observed over the 3 h time period 291 

(p<0.05-p<0.001) (Figure 5 B). Sitagliptin impaired the satiation effect of Compound A at 60 292 

min. GSK137647 inhibited food intake after 30 min, with lasting effects throughout the 293 

experimental timeframe (p<0.01-p<0.001) (Figure 5 C). Combination of GSK137647 with 294 

Sitagliptin impaired the appetite suppressive effects of the agonist from 60 min to 180 min 295 

(p<0.05-p<0.001). 296 

 297 

4 Discussion: 298 

Recent interest in long chain fatty acid receptors has intensified due to identification of their 299 

involvement in the maintenance of glucose homeostasis through GPCR signalling. FFAR1 300 

(GPR40) [31], GPR55 [32, 33] and GPR119 [33, 34] have been previously reported to regulate 301 

islet function and hormone secretion. In particular, orally administered FFAR1 agonist TAK-302 

875 (Fasiglifam) entered stage III clinical trials with promising anti-diabetic effects of equal 303 
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potency to the sulphonylurea glimepiride, whilst omitting the risk of hypoglycaemia [35, 36]. 304 

However, signs of liver toxicity were observed towards the latter stages of the trial [37]. 305 

FFAR4 (GPR120) is a rhodopsin (class A) type receptor which has recently been shown to 306 

have anti-diabetic properties through the regulation of insulin and incretin secretion [1, 7, 8]. 307 

Recent studies have identified the expression and involvement of FFAR4 in the pancreatic islet 308 

and intestinal tract, with expression also identified in adipose tissue, lungs and pro-309 

inflammatory macrophages. FFAR4 shares 10% homology with FFAR1 and has high affinity 310 

for long chain fatty acids. However, many FFAR4 agonists can act as dual agonists with 311 

FFAR1, such as synthetic GW9508, therefore the identification of selective FFAR4 agonists is 312 

required to fully evaluate the role of the receptor in the maintenance of glucose homeostasis 313 

[7, 8].   314 

In the present study, the therapeutic potential of two novel synthetic agonists (Compound A, 315 

GSK137647), which have been shown to exhibit selective properties towards FFAR4, were 316 

assessed [20-21].  Insulin secretion studies demonstrated that both agonists enhanced glucose 317 

stimulated insulin secretion from pancreatic BRIN-BD11 cells. Compound A and GSK13647 318 

displayed similar potencies at basal glucose levels (EC50 of ~10-7 mol/l). Stimulatory glucose 319 

concentrations, GSK137647 exhibited an EC50 of 10-10 mol/l, compared with an EC50 of 10-8 320 

mol/l for Compound A. Neither agonist imparted adverse effects on cell viability as assessed 321 

using MTT. 322 

To demonstrate the selectivity of the novel agonists towards FFAR4, potent antagonists for 323 

FFAR4 and FFAR1 were employed. In the presence of FFAR1 antagonist (GW1100), the 324 

insulin secretory responses to both Compound A and GSK137647 was relatively unaffected. 325 

In contrast, the FFAR4 antagonist (AH-7614) impaired the insulinotropic properties of both 326 

agents, suggesting that the two agonists stimulate glucose dependent insulin secretion through 327 
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FFAR4 and not FFAR1 in the pancreatic beta cell. Numerous endogenous FFAR4 ligands have 328 

been shown to stimulate other fatty acids receptors, including FFAR1 [3, 8]. 329 

Immunohistochemistry demonstrated the highly abundant expression and co-localisation of 330 

FFAR4 and insulin in both the pancreas of lean and diabetic mice. Consistent with this, gene 331 

expression analysis demonstrated an upregulation of FFAR4 in BRIN-BD11 cells exposed to 332 

hyperglycaemia, suggesting that FFAR4 may have a regulatory role in islets exposed to 333 

diabetic stress factors. Interestingly, agonist treatment under normoglycaemic conditions 334 

significantly attenuated FFAR4 gene expression, with no effect demonstrated on FFAR4 335 

protein concentrations. The glucose responsive properties of the receptor expression promotes 336 

FFAR4 as a novel therapeutic target. 337 

In HFF mice, both Compound A and GSK137647 demonstrated acute glucose lowering and 338 

insulinotropic properties. Previously, FFAR4 activation was shown to augment glucagon 339 

release from pancreatic alpha cells [38]. Although glucagon opposes the biological actions of 340 

insulin, improved glucose tolerance is exhibited upon FFAR4 agonist treatment. This indicates 341 

superior secretory actions of FFAR4 agonism on insulin releasing beta cells. Interestingly, 342 

FFAR4 activation has also been shown to inhibit somatostatin release from pancreatic delta 343 

cells, which may have indirectly enhanced the insulinotropic actions of FFAR4 agonists 344 

observed in this study [39]. Although numerous glucoregulatory hormones are released upon 345 

FFAR4 activation, the anti-inflammatory effects and potentiation of glucose uptake in 346 

peripheral tissues may have also attributed to the glucose lowering effects exhibited by FFAR4 347 

[9].  348 

Conflicting results have been reported of the effect of FFAR4 activation of GLP-1 secretion 349 

[1, 16]. In the present study, GSK137647 was shown to induce GLP-1 and GIP secretion, whilst 350 

Compound A only stimulated GLP-1 secretion. To prolong the bioactivity of endogenously 351 
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released incretins, the DPP-IV inhibitor Sitagliptin was examined in combination with the 352 

FFAR4 agonists. Under these conditions, Compound A and GSK137647 exhibited enhanced 353 

glucose lowering capabilities, by stimulating incretin (GLP-1, GIP) and insulin secretion 354 

through FFAR4 activation, supplemented with prolonged incretin action through DPP-IV 355 

inhibition. DPP-IV inhibition however countered the inhibitory effects of both FFAR4 agonists 356 

on feeding activity. Further studies are required to fully understand the mechanism but 357 

inhibition of DPP-IV-mediated degradation of PYY(1-36) to the active form PYY(3-36) seems 358 

likely [40].    359 

To establish that the glucose lowering properties of the agonists was not based solely on 360 

incretin secretion, each agonist was administered i.p. in combination with glucose. Both 361 

GSK137647 and Compound A improved glucose excursion confirming that FFAR4 activation 362 

also directly stimulates beta cell function. The selectivity of the novel agonists was tested using 363 

the FFAR4 antagonist AH-7614, which significantly impaired the insulinotropic and glucose 364 

lowering capabilities of GSK137647 and Compound A.      365 

In conclusion, selective FFAR4 agonists enhance glucose stimulated insulin secretion in a 366 

concentration-dependent manner, whilst exhibiting no affinity for FFAR1. Expression analysis 367 

demonstrated glucose responsive properties of FFAR4 expression under hyperglycaemic 368 

stress, a novel finding which may aid the development of future anti-diabetic therapeutics. 369 

Activation of FFAR4 was associated with acute stimulatory effects on GLP-1 and GIP 370 

secretion. GSK137647 was the most potent agonist in terms of insulin and incretin secretion, 371 

suggesting that this agonist should be considered for further investigation. In addition, it has 372 

been shown for the first time that FFAR4 agonist combinational therapy with sitagliptin further 373 

improves glucose tolerance and may provide a novel approach for the treatment of type 2 374 

diabetes. 375 
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Figure Legends 497 

Figure 1. Acute insulinotropic effects of FFAR4 agonists (A, C) Compound A and (B, D) 498 

GSK137647 alone and in combination with FFAR4 antagonist AH-7614 (10-5 mol/l) or FFAR1 499 

antagonist GW1100 (10-5 mol/l) at 5.6 mM and 16.7 mM glucose in clonal pancreatic BRIN-500 

BD11 cells. Alanine (10 mmol/l) was used as positive control. MTT cell viability analysis 501 

demonstrating cytotoxicity of (A, C) Compound A and (B, D) GSK137647 on BRIN-BD11 502 

cells. Hydrogen peroxide (1 mmol/l) was used as a positive control. Values are mean ± SEM 503 

(n=8) for insulin secretion and (n=4) for cell viability. *p<0.05, **p<0.01, ***p<0.001, 504 

compared to saline control. †p<0.05, ††p<0.01, †††p<0.001, compared to agonist alone.  505 

Figure 2. Localisation of (A, B) 4’, 6 diamidino-2-phenylindole (DAPI) nuclear stain, (C, D) 506 

FFAR4, (E, F) insulin and (G) double immunofluorescence of FFAR4 and insulin in high fat 507 

fed (A, C, E, G) and lean (B, D, F, H) pancreatic islets at X40 magnification. Examples of 508 

double immunofluorescence indicated by white arrows. qPCR and western blot analysis 509 

demonstrating the effect of FFAR4 agonist treatment on FFAR4 mRNA and protein 510 

concentrations at (I, K) 5.6 mM and (J, L) 16.7 mM  in clonal pancreatic BRIN-BD11 cells 511 

after 4 h treatment. Expression was normalised to GAPDH for qPCR (n=3) and β-actin for 512 

western blotting (n=2; two independent experiments with two technical replicates). Values are 513 

presented as mean ± SEM.*p<0.05, **p<0.01, compared to glucose control.  514 

Figure 3. Acute effects of FFAR4 agonists Compound A and GSK137647 on plasma glucose 515 

(A, C), insulin (B, D) and respective AUC (E-H). Glucose (18 mmol/kg bw) was administered 516 

orally alone or in combination with FFAR4 agonist Compound A or GSK137647 (0.1 µmol/kg 517 

bw) and either the FFAR4 antagonist AH-7614 (0.1 µmol/kg bw) or Sitagliptin (50 mg/kg bw) 518 

to HFF mice (n = 6). Values are presented as mean ± SEM.  *p<0.05, **p<0.01, ***p<0.001, 519 
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compared to HFF glucose control. †p<0.05, ††p<0.01, †††p<0.001, compared to agonist 520 

alone. 521 

Figure 4. Acute effects of FFAR4 agonists Compound A and GSK137647 (0.1 µmol/kg bw) 522 

on circulating (A, D) total GLP-1, (B, E) total GIP and (C, F) DPP-IV activity. Glucose (18 523 

mmol/kg bw) was administered orally alone or in combination with FFAR4 agonist to HFF 524 

mice (n = 6). Values are presented as mean ± SEM.  *p<0.05, **p<0.01, ***p<0.001, compared 525 

to HFF glucose control. 526 

Figure 5. Acute effects of i.p. administration of FFAR4 agonists Compound A and 527 

GSK137647 (0.1 µmol/kg bw) on (A) glucose tolerance and (B, C) cumulative food intake. 528 

Glucose (18 mmol/kg bw) was administered i.p. in combination with FFAR4 agonist to lean 529 

Swiss TO mice for glucose tolerance (n = 6). For satiety analysis, FFAR4 agonists were orally 530 

administered alone or in combination with DPP-IV inhibitor (Sitagliptin) to 18 h fasted lean 531 

Swiss TO mice.  *p<0.05, **p<0.01, ***p<0.001, compared to saline control. †p<0.05, 532 

††p<0.01, †††p<0.001, compared to agonist alone. 533 

 534 

Supplementary data 535 

Figure 1. Effects of Compound A and GSK137647, with half maximum effective 536 

concentration (EC50) values, on insulin release from clonal pancreatic BRIN-BD11 cells at (A) 537 

5.6 mM and (B) 16.7 mM glucose concentrations. Results are the mean ± SEM (n=8). 538 

Figure 2. Effect 150-day high fat fed diet on glucose tolerance and insulin secretion in 18 h 539 

fasted Swiss TO mice. Animals were subjected to an oral glucose tolerance test (18 mmol/kg 540 

bw) with (A, B) glucose tolerance, (C, D) insulin secretory response, (E) fasting plasma glucose 541 
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and (F) bodyweight determined.  Results are the mean ± SEM (n=6). *p<0.05, **p<0.01, 542 

***p<0.001 compared to lean control. 543 

Figure 3. Effect 150-day high fat fed diet on glucose tolerance and insulin secretion in 18 h 544 

fasted Swiss TO mice. Animals were subjected to an insulin sensitivity test (40U/kg 545 

bodyweight; dissolved in 0.9% saline, i.p. injection). (A) Plasma glucose and (B) respective 546 

AOC are shown. Results are mean ± SEM (n=8).  **p<0.01, compared to lean control.  547 
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