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Introduction 1 

Rule-based, computerised electrocardiogram (ECG) interpretation has been employed as an 2 

important diagnostic aid for over half a century.1 Despite this, there is significant room for 3 

improvement in such systems, particularly with regards to arrhythmia detection and 4 

classification.2-4 Over the last five years, a type of machine learning algorithm known as a 5 

deep neural network (DNN) has facilitated significant advances in the field of algorithmic 6 

data processing.5 Within the last two years, these advances have been translated into the field 7 

of ECG signal processing and a number of so-called “deep learning” (DL)-based ECG 8 

classification algorithms have produced promising results. 6-9 It is perhaps too early to predict 9 

the extent to which DNNs will transform the practice of automated ECG analysis, but they 10 

have undoubtedly been highly disruptive in other domains such as speech recognition, 11 

computer vision and autonomous driving. 10-12 We may, as researchers from Stanford claim in 12 

their seminal work on this subject as published earlier this year, be on the cusp of truly 13 

“cardiologist-level” ECG read-outs. 6  14 

To date, the vast majority of research into DL-based ECG interpretation has focussed upon 15 

raw signals recorded directly from the ECG hardware. Yet, there is an enormous body of 16 

historical ECG data worldwide that exists only in paper form, or as scanned images thereof.13 17 

These ECGs are often associated with medical records containing years of rich clinical 18 

information: echocardiograms, angiographic findings, cardiac biomarkers, morbidity and 19 

mortality endpoints, and so on. It has long been acknowledged that such data could provide a 20 

rich source of insights to inform the science of ECG interpretation. Furthermore, the printed 21 

ECG is the universal format. Accurate, computerised analysis thereof would overcome the 22 

difficulties arising from proprietary formats and algorithms, long cited by researchers in the 23 

field as a substantial hindrance.14  24 
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There have, of course, been significant efforts towards converting ECG images to digital 25 

signals. These are summarized by Waits and Soliman (2017) excellent review in this 26 

journal.15 However, regarding the current state of image-based ECG analysis, they conclude 27 

that “certain limitations have been identified and overcome while others remain elusive”. A 28 

significant issue, noted both in the aforementioned review and by other authors, is a relatively 29 

decreased signal to noise ratio (SNR) compared with direct-from-hardware data.15,16 Modern, 30 

sophisticated digitization methods have certainly made progress in this area, but validation of 31 

such techniques has been undertaken almost exclusively on 12-lead ECGs recorded in a 32 

controlled environment.17 There has been little or no work exploring the digitization of 33 

ambulatory ECGs, where computerised analysis is already particularly challenging due to 34 

poorer SNRs caused by additional noise and movement artefact.18 Furthermore, most studies 35 

have sought to validate digitization methods using metrics based on ECG intervals, 36 

amplitudes and areas, but few have examined the impact of raw signals vs image-derived 37 

signals on final diagnosis. 38 

There is good reason to suppose that DL techniques may substantially increase the robustness 39 

of the image-based ECG interpretation pipeline and improve diagnostic quality: it has been 40 

established that DNNs, by virtue of certain regularization techniques such as “dropout” and 41 

data augmentation, can be particularly adept at handling low SNRs.19,20 To test this 42 

hypothesis, we attempt to use DL to achieve accurate ECG interpretation of a particularly 43 

challenging dataset, consisting of images of ambulatory ECGs produced at half resolution. 44 

Methods 45 

Data acquisition 46 

The 2017 Physionet AF Challenge (PAFC) was identified as an appropriate benchmark for 47 

our study, as the training data and results from several approaches (both rule-based and DL-48 
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based) were publicly available. The goal of the challenge was to classify each of 8528 single-49 

lead ECG recordings into one of four rhythm categories: sinus rhythm, atrial fibrillation, 50 

other or noisy (see https://physionet.org/challenge/2017/ for competition rules and profile of 51 

training data).21 52 

Plotting ECGs to image files 53 

To generate an image database for this study, all ECG signals were plotted as RGB image 54 

files using a standard Python library (MatPlotLib). Original signals were recorded at 300Hz 55 

on AliveCor devices, thus a 300 pixels / second resolution would have been required to 56 

maintain full resolution. In fact, a target resolution of 150 pixels / second and 75 pixels / mV 57 

was chosen, as this corresponds to an ECG printed at 25mm/s and 10mm/mV then scanned 58 

using a low-resolution, 150DPI scanner. Modern digital scanners are usually much higher 59 

resolution than this, but 150DPI scanners may still be found in developing health systems and 60 

it was felt to be an appropriate test of robustness of the computerised analysis pipeline. Figure 61 

2 shows an example ECG image generated by this process. 62 

Digitization of image-based ECG signals 63 

A number of approaches to digitising paper ECG signals for subsequent automated analysis 64 

have been explored over previous decades.15 In order to better accommodate the 65 

characteristics of our ambulatory ECG dataset, we developed our own digitization method 66 

based upon established techniques. We hypothesised that the DNN used to interpret the 67 

signals generated by our digitization method would be more robust to noise than most rule-68 

based approaches. We therefore omitted some noise-filtering techniques used by other 69 

authors (e.g. median filtering and interpolation, which Ravichandran et al (2013) applied to 70 

deal with the “salt-and-pepper” noise caused by thresholding).16 71 
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In summary, our approach consisted of scaling, thresholding, binarization and column-wise 72 

pixel searching. A thorough discussion of each of these techniques is provided by Waits and 73 

Soliman, therefore none are discussed in detail here.15 74 

DL model 75 

Current state-of-the-art arrhythmia detection from ambulatory signals has been achieved 76 

using a 34-layer convolutional neural network (CNN) with residual connections between 77 

layers, developed by researchers at Stanford University.6 We therefore selected this model 78 

architecture for our study. 79 

In order to streamline the training process for the model, we were able to obtain pre-trained 80 

weights published by researchers at Oxford University, who had trained a model with the 81 

aforementioned architecture on the raw signals from the Physionet AF Challenge.22 Their 82 

model was not among the highest competition scorers, but we expected to thoroughly retrain 83 

our model and this was simply a step to avoid randomly initialising the entire DNN, which 84 

would have substantially increased the computational and time requirements of this study. 85 

After some experimentation, we modified the model architecture slightly for handling image-86 

derived data, with two fully connected layers each containing 512 nodes interposed between 87 

the final convolutional layer and the fully connected output layer (which contained four 88 

nodes, as this was a four-class problem). The weights of the additional fully connected layers 89 

of the model were randomly initialised. 90 

Training and analysis 91 

Model performance was evaluated on the entire dataset prior to any training. This was 92 

necessary to ensure the pre-trained weights obtained from the Oxford team did not cause the 93 

model to over fit the data.  94 
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The model was then trained and evaluated using a five-fold cross validation (5FCV) process 95 

with 80% of the data used for training and 20% for validation during each 5FCV cycle. 96 

During training, the weights of the latter six layers of the network (two fully-connected layers 97 

and four convolutional layers) were progressively unfrozen. Each time a new layer was 98 

unfrozen, the model was trained until five epochs had passed without improvement in the 99 

validation accuracy. 100 

5FCV was chosen because six of the top 10 scoring teams in the AF Challenge published 101 

results from 5FCV on the training set, so we were able to make a direct comparison with their 102 

models. It should be noted that the 5FCV results were published within papers written by 103 

each individual team; the results from the collective scoreboard were based on a hidden test 104 

set to which we did not have access. We therefore did not include any of the official 105 

competition results in our analysis. 106 

As in the competition itself, the single performance metric used to undertake a like-for-like 107 

comparison between models was the combined F1 score, which is the harmonic mean of the 108 

F1 score for each of the four categories (see equation 1). 109 

𝐹1 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 110 

Equation 1 – the F1 score 111 

Results 112 

The model was evaluated on the full image-based dataset upon initialisation with pre-trained 113 

weights. The results were in keeping with random chance, with a combined F1 score of 114 

approximately 0.5. 115 
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Following training, the mean combined F1 score and 95% confidence interval across the five 116 

cycles of this process was 0.78 (+/- 0.02). Readers can find the source code and reproduce the 117 

experiment from https://github.com/docbrisky/af-challenge. Figure 1 gives a visual report of 118 

the F1 score obtained for each of the four categories, plus error bars reflecting the 95% 119 

confidence interval across the 5FCV process. 120 

Official scores from the 2017 AF Challenge were based on a hidden test set, to which we did 121 

not have access. However, six of the top 10 competitors published 5FCV scores obtained on 122 

the training set, which is the same data used to train and validate our model. The mean 123 

combined F1 score of those six teams was 0.83. (See 124 

https://physionet.org/challenge/2017/papers/ for a full list of publications.) 125 

The model produced by the Oxford University team whose weights were used for 126 

initialisation of the convolutional layers of our model obtained a combined F1 score of 0.72 127 

at 5FCV. 128 

Discussion 129 

The results produced by this study suggest that DNN-based arrhythmia detection from 130 

ambulatory ECG images can be undertaken without substantial loss of accuracy compared 131 

with raw signal analysis. This is despite the fact that (i) ambulatory ECG data generally 132 

contains more noise and movement artefact than recordings in a controlled environment,23 (ii) 133 

the ECG signals in this study were plotted into particularly low resolution images to simulate 134 

outdated hardware and (iii) several noise-filtering techniques were omitted from the 135 

digitization approach. We therefore posit that this represents a state-of-the-art result in terms 136 

of image-based ECG analysis.  137 

https://github.com/docbrisky/af-challenge
https://physionet.org/challenge/2017/papers/
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A recent paper in the Lancet provides an apt context for the relevance of this finding. By 138 

undertaking a retrospective analysis of over 600,000 ECGs from nearly 200,000 patients, 139 

Attia et al (2019) used a DNN to predict incipient AF among patients currently in “normal” 140 

sinus rhythm with approximately 80% sensitivity and specificity.24 In this case, the 141 

researchers were investigating a high-incidence endpoint (the development of AF) and were 142 

able to obtain sufficient digital ECG signals without needing to digitise historic ECG images. 143 

However, the obvious question arising from this study is whether patients deemed to be “at 144 

risk of future AF” based on an ECG in NSR have a correspondingly increased lifetime risk of 145 

stroke, and whether they should therefore be prescribed oral anticoagulation. Pending a 146 

prospective study to answer this question, which may take many decades, it is likely to be 147 

beneficial to apply Attia et al’s algorithm to historic ECGs that are already associated with a 148 

lifetime of follow-up data. Such ECGs will inevitably be images rather than digital signals, in 149 

which case the findings of our study would suggest that (i) signals generated by digitizing 150 

ECG images can be used to obtain reliable results from a DL model and (ii) weights obtained 151 

by training a DNN on raw signal data can be expected to transfer well to the task of analysing 152 

image-derived ECG data.  153 

There are, however, important limitations to our study. Firstly, the ECG images were plotted 154 

directly from signal data, rather than being printed and scanned. They therefore contained 155 

minimal visual artefact and were unrotated (although CNNs are known to be translation 156 

invariant). It was the authors’ opinion that any additional artefact within printed and scanned 157 

ECGs compared with the direct-to-image ECGs would be easily overcome with established 158 

image processing techniques, and therefore that the printing and scanning of 8528 ECGs was 159 

unnecessary to produce meaningful results from this study. (Please see figure 2 for an 160 

example ECG image used in this study.) Nevertheless, to confirm that the results obtained 161 
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herein will transfer to printed and scanned ECGs, further work in this area should be 162 

undertaken. 163 

Secondly, the pretrained weights used to initialise the convolutional layers of the network 164 

had, presumably, been exposed to all of the ECG examples in the Physionet Challenge, albeit 165 

in raw signal form. Though three fully-connected layers were appended to the network and 166 

randomly initialised, and the performance of the newly-formed network was then confirmed 167 

to be approximately equal to a random-chance classifier, there is nonetheless a risk that the 168 

early convolutional layers of our network have overfit the data. This may explain why the 169 

results obtained from this experiment were substantially better than those obtained by the 170 

model whose weights were used for initialisation, though we propose that the improvement is 171 

down to a greater level of data augmentation and the two additional, fully-connected layers. 172 

The only way to evaluate this would be to re-train the network from randomly initialised 173 

weights, though any drop in performance of the randomly initialised model could also be 174 

ascribed to the stochastic nature of the training process.  175 

Nonetheless, it is the authors’ belief that the advent of DL-based ECG interpretation, and 176 

particularly its increased robustness to noise and resolution loss, should catalyse a renewed 177 

interest in high-quality, automated interpretation of image-based ECGs. 178 

 179 
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