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Abstract

Passive radar warning receivers use amplitude comparison direction-
finding to determine the angle of arrival of incoming signals. This type of
direction-finding system requires wideband azimuth beams that do not
change in shape with frequency. The subject of this thesis is the synthesis
of wideband beams using a circular array.

In the first part of this thesis the excitation of the circular array is analysed
using the concept of 'phase modes": the orthogonal terms of a spatial
Fourier series. If the variations in phase and amplitude of these modes
with frequency are corrected, azimuth patterns formed from these modes
are instantaneously wideband. Pattern synthesis uses the principle of
linear array equivalence, allowing us to apply low sidelobe techniques
developed for linear arrays to the phase modes.

The design of the experimental system, operating over the frequency range
" 8 to 12 GHz, is subsequently presented. The characteristics of the phase
modes excited on a four element monopoles array were evaluated, showing
that the array could be used to form a low sidelobe beams. The initial
beamformer design used a Butler matrix constructed from microwave
directional couplers to excite the phase modes. By utilising microstrip
compensation networks, the variation in phase and amplitude of these
modes with frequency is corrected. Multiple beams are formed from the
compensated modes by a second matrix. Both theoretical and measured
results showed that the phase and amplitude errors introduced by this
complicated network were unacceptable. Multiple beams were not
demonstrated in this study. A simplified matrix design was developed to
demonstrate a low sidelobe (-28 dB) beam at a single frequency.

A weighted corporate feed was developed to demonstrate instantaneously
wideband pattern synthesis of a single beam. The element excitation
required to form a low sidelobe pattern was calculated using phase mode
theory. The frequency-dependent element excitation was practically
realised using the microstrip networks. Anechoic chamber measurements
of the synthesised wideband beam showed that the variation in the -3 dB
beamwidth across the band 8 to 12 GHz was less than +3°. The sidelobe
level was below -20 dB. Theoretical calculations limit the frequency
bandwidth for this synthesis technique to about one octave.

A wideband sin(Nx)/Nsin(x) pattern was also produced to demonstrate the
versatility of this synthesis technique.
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Chapter 1

Introduction

1.1 Background

For many years phased array antennas have been used to form radiation
patterns, with shapes tailored to fulfil a wide variety of roles. One
advantage is that beams from a phased array can be scanned, without
having to mechanically move the antenna. Many different physical layouts
of the phased array elements have been used, the simplest being the linear
array of elements equally spaced along a straight line. At the other end of
the scale, the most complex physical layout is that of conformal arrays,
where the physical layout fits a curved surface, for example the nose of an
aircraft.

Many different beam shapes are required by system designers. For

| example, radar systems require a single high gain beam with low
sidelobes, while monopulse DF (Direction-Finding) systems require a
pattern with two main beams and a sharp null in between. For air traffic
control a beam without nulls in the elevation plane is required, but it must
be shaped so that returns from aircraft at the same horizontal distance are
equal in amplitude. A great deal of work has been done on the synthesis of
radiation patterns using linear arrays. By referring to standard texts, a
system designer is able to determine the excitation of the linear array
required to form the desired radiation pattern.
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Chapter 1 - Introduction

However, a major disadvantage of linear arrays is that they are limited in
bandwidth. Few operate over a wide bandwidth because the shape of the
synthesised beam changes greatly with frequency. As an example,
consider a uniformly excited linear array of N isotropic elements. The

- radiation pattern formed has a sin(Nx)/Nsin(x) shape. The first sidelobe

level (-13.46 dB) is largely independent of frequency, but the -3 dB
beamwidth is given approximately by:

- :
-3dB (N-1d (radians) (1.1)

BW
where d is the inter-element spacing and N is the number of elements. For
an octave drop in frequency, the -3 dB beamwidth of the main beam
doubles.

Over the past fifteen years research has been carried out at University
College London on the subject of circular phased arrays, where the array
elements are located on the circumference of a circle, pointing radially
outwards. The array excitation may be expressed in terms of a set of
orthogonal modes, called phase modes. When a single mode is excited on
the circular array, an omnidirectional radiation pattern is formed in the
azimuth plane, with a linear phase change as a function of azimuth. For a

mode of order m, there are m cycles of phase in one cycle of azimuth.

Davies and Rizk (1978) took advantage of the omnidirectional pattern of
phase modes to use them in mobile VHF communications. Receivers in
such systems can be susceptible to high powered interfering signals. This
problem was overcome in this study by forming nulls in the patterns. The
nulls were formed by combining two phase modes so they add destructively
in the direction of the interference. This study showed that these nulls
could easily be steered around 360° of azimuth using a phase shifter.
Methods of varying the null width were investigated and the bandwidth of
the nulls formed was measured, indicating a 60% operating bandwidth.
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Chapter 1 - Introduction

Guy and Davies (1983a) describe a technique for multiplexing
radiocommunication antennas by taking advantage of the isolation between
phase modes; even though they are omnidirectional, they are essentially
orthogonal to each other.

Rahim and Davies (1982) made the important observation that using
directional elements in a circular array (rather than omnidirectional
elements) improves the potential for wideband performance. If the radiated
amplitude of the phase modes (for an array of omnidirectional elements) is
plotted as a function of frequency, there are periodic nulls that limit the
operating bandwidth. For directional elements these nulls are filled in so
the phase modes can be excited over a very wide bandwidth. |

Guy and Davies (1983b) analysed the four-element Adcock Direction-Finder
in terms of phase modes. They recommended this type of array as the basis
for a wideband direction-finding system. Phase comparison DF is done by
comparing the phase of a mode that cycles with azimuth to the constant
phase (0th order) mode. The DF calculations are complicated by the fact
that the relative phases (and amplitudes) of the modes do change gradually
with frequency, but this can be corrected using an (electronic) look-up table.

The Ph.D study of Karavassilis (1984) developed an HF direction-finding
system based on a circular array using four antennas, each with a cardioid
directional beam shape. This gave an operating bandwidth of 1.2 decades.
However, there is a major problem with phase comparison DF: it operates
on the strongest incident signal, and since the phase modes are
omnidirectional, they are easily jammed. As explained earlier, nulls can
be formed to eliminate a jammer. Using open loop techniques, however,
the nulls were not deep enough and so Karavassilis developed a closed loop
'perturbation technique' that adaptively eliminated the jammer with a deep
null.
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Chapter 1 - Introduction

Cvetkovic et al. (1988) developed the same four-element DF system still
further. By combining three phase modes with adaptive control of their
phase and amplitude, two jammers could be nulled out. Computer control
allowed jammers to be nulled automatically without operator intervention.
This DF system, now part of the C & S Antennas product range, is far
smaller than most HF direction-finding systems and the latest version is
easily portable.

There are many applications where the radiation patterns formed by linear
phased arrays could prove useful, were it not for the limited bandwidth.
From the phase mode analysis of these studies, the operating bandwidth of
circular arrays appears to be much greater. Directional patterns can be
formed using phase modes, forming nulls is a simple example of this. The
subject of this thesis is the application of the wide operating bandwidth of
circular arrays to pattern synthesis.

1.2 Amplitude comparison direction-finding

The most accurate microwave DF systems currently available are phase
comparison direction finding systems. A good example is the wideband
system described by Rehnmark (1984). This system performs DF from

2 to 18 GHz with an accuracy of 2° RMS. Again this is done by comparing

the phases of modes excited on circular arrays.

Phase comparison DF systems are complex and expensive. Most DF
systems in use today use amplitude comparison. These employ a set of
wideband antennas with beams that overlap. Cavity-backed spiral

~ antennas are commonly used, as shown in figure 1.1. In a

simple wideband system, RF detector diodes are connected to the antenna

| outputs. The coarse angle of arrival is determined by the output giving the

strongest signal. The precise angle of arrival is calculated from the ratio of

~ the signal amplitudes received in adjacent antennas. A good example of an

amplitude comparison DF system is the AN/SLR-21, used by the United
States Navy. This system, described by Moncrief (1978), can perform DF

- from 2 to 18 GHz with an accuracy of 10° RMS. Amplitude comparison DF
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Figure 1.1 Amplitude comparison DF using four
wideband antennas for 360° coverage.
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Chapter 1 - Introduction
is cheaper than phase comparison DF, but less accurate.

For accurate amplitude comparison DF wideband antennas with a beam
that does not change shape with frequency are required - changes in the
beamwidth produce DF errors. Most existing amplitude comparison DF
systems use cavity-backed spiral antennas, chosen for their wide operating
bandwidth. These have a -3 dB beamwidth that typically changes by 25%
over a decade bandwidth, as described by Lipsky (1987b). Beams with low
sidelobes are required, mainly to prevent jammers 'swamping' the DF
system: cavity-backed spirals typically have sidelobe levels of the order of
-20 dB. The next section shows that the phase mode analysis of circular
arrays can provide beams suitable for an amplitude comparison DF réle,
beams that are potentially better than those of cavity-backed spirals.

1.3 Pattern synthesis using circular arrays

As an introduction to pattern synthesis using arrays, let us first consider
pattern synthesis with a linear array. For isotropic array elements the
radiation pattern is the spatial Fourier transform of the array excitation.
This pattern is called the 'array factor' {(9,0). Practical array elements are
not isotropic, but have a directional radiation pattern G(¢,6). For the
common case where all the elements are identical and are similarly
oriented in space, the far field radlatlon pattern F(¢,0) is simply the product
of the array factor and the element pattern. The array factor for a linear
array of N equally spaced isotropic elements in the azimuth plane (6 = 0°) is
given by:

m-z%i- sin (¢)

-171
c<¢=§ f‘- .

where ¢ is the azimuth angle
d is the inter-element spacing

A is the wavelength
I is the excitation current of the n'" element
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Chapter 1 - Introduction

As an example, the array factor formed by exciting the elements with

uniform amplitude and equal phase can be expressed in the form:

Nz—id- sin ¢
sin —

&(¢) = omd .
> sin ¢
e

1.3)

To form different beam shapes with linear arrays, theoretical analyses
calculate the element currents required to form the desired pattern. Much
of the theory centres on the correct positioning of the (N-1) nulls in the
radiation pattern. For the pattern of (1.3), the -3 dB beamwidth of this
radiation pattern is half the distance between the first nulls. If a reduction
in the -3 dB beamwidth is required, the nulls on each side of the main beam
should be moved closer together. Sidelobe levels are reduced by clustering
nulls closer together, inevitably increasing the beamwidth of the mainlobe.
Even null-free radiation patterns may be formed by careful placement of the

nulls - in imaginary space.

Let us now consider pattern synthesis with a circular array. The simplest
way of exciting phase modes on a circular array is to use an electrical
network called a Butler matrix. This network has N outputs (each
connected to a circular array element) and N inputs. Exciting one of these
inputs with an RF (Radio Frequency) source excites a single phase mode on
the circular array. The Butler matrix was originally developed for
beamforming with linear arrays. Connecting one to a linear array excites
an orthogonal set of beams, but these have a narrowband sin(Nx)/Nsin(x)

radiation pattern.
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tnapter L - Introduction

Exciting a single phase mode on a circular array with a Butler matrix
forms an omnidirectional radiation pattern, with m cycles of phase change
in one cycle of azimuth. This radiation pattern can be expressed in the

form:

-
F(¢) =A K_ (e’ 1.4

A_ is the amplitude of the RF source exciting the mth phase mode port of
the Butler matrix. K ,(f) is a dimensionless complex term, called the
‘phase mode coefficient'. The coefficient is a function of the mode order m,
and generally changes with frequency. The magnitude of this coefficient is
determined by factors such as the array radius, the directional pattern of
the element and mutual coupling. Suppose N coherent RF sources are
used to excite the other phase mode ports of the Butler matrix. The
radiation pattern produced by exciting all the phase modes up to the order
+M is the superposition (sum) of the separate patterns:

M .
Fo)= T A_K_(£)e’™

m=-M 1.5)

As practical circular arrays have a finite number of elements N, only a
finite number of phase modes can be excited. The highest order modes that
can be excited are the M = +N/2 and M = -N/2 modes. Thisisa
manifestation of the Nyquist sampling theorem. To receive (or excite) a
spatially periodic mode of order M, it must be sampled 2M times by the
array in one cycle of azimuth, so N = 2M elements are required for the Mth

mode.
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Since the phase mode coefficient (K_ ) for each mode changes as a function
of frequency, the shape of the beam changes as the source frequency
changes. However, if the RF excitation A, of each of the modes is weighted
to correct for the change in the phase mode eoefficient with frequency: -

1
A =——r
mK_() (1.6)
then the radiation pattern of (1.5) can be written:
M imo
F(¢o)= 3 e
m=-M
This radiation pattern can be expressed in the form:
. ¢
sin| {2M + 1}5
F(9) = —o
(2M + 1)sin (5) amn

This is the same shape as the pattern formed by uniformly exciting an N
element linear array (where d = A/2), except for a change of scale. While
the pattern is formed by a linear array in 180° of sin(¢) space, the radiation
pattern of a circular array is formed directly in ¢ space.

There is no frequency dependent term in (1.7), unlike the linear array
equation of (1.3) where A is present. The radiation pattern remains the
same over the frequency band for which the phase mode excitation meets
the requirement of (1.6). Patterns with a perfectly constant -3 dB
beamwidth can theoretically be formed with a circular array. This is
exactly what is required for an accurate amplitude comparison DF system.

The pattern of (1.7) is formed from 2M + 1 modes and has 2M nulls. All the
weighting functions developed for linear arrays can be applied to the
placement of these nulls. By applying an amplitude taper to the excitation
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Chapter 1 - Introduction

of the phase modes, radiation patterns with sidelobes lower than the -20 dB
level of cavity- backed spirals can theoretically be formed with a circular

array.

For linear arrays, mutual coupling between elements changes the array
excitation, often increasing sidelobe levels and generally degrading the
shape of the radiation pattern. Well known effects of this include active
impedance, where the apparent impedance of an element changes as a
function of the beam scan angle, as described by Hansen (1983). Even 'blind
spots' can occur, directions in which the beam cannot be formed because
the real part of the array impedance drops to zero. Since phase modes are
orthogonal terms, these problems do not arise. The excitation of one mode
in no way affects the excitation of the other modes. Mutual coupling
between circular array elements does, however, modify the impedance of
each element. This study investigates the impedance characteristics of
modally excited arrays.

Clearly for wideband patterns it is desirable that the phase mode
coefficients (the K;s) do not change with frequency or, if this is
unavoidable, that the changes are easy to compensate. This study
investigates the circular array structures needed to achieve this. The
design of RF networks to compensate for changes in K| with frequency is
also considered.

Very wide bandwidth RF components and measuring equipment are
expensive. At UCL, however, microwave components and measurement
systems operating in the frequency range 8 to 12 GHz are available, so the
study concentrates on this particular frequency range. The potential for
wider bandwidth operation is investigated by determining the upper and

lower limits on the bandwidth of this synthesis technique.

Practical circular arrays have a finite number of elements. When a single
phase mode is excited on such an array, the radiation pattern given by
equation (1.4) is not exact. Why is this ? The reason is that as well as the
fundamental modes with an order m between -N/2 and +N/2, higher order
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harmonics are also excited as well. They manifest themselves as a periodic
amplitude ripple superimposed on the azimuth pattern of the fundamental
mode. The effect of these spatial harmonic terms on directional radiation

patterns is investigated in this study.

Since a fan of overlapping azimuth beams is required for amplitude
comparison DF, beamformers that can synthesise multiple beams from
circular arrays are investigated. The orthogonal properties of multiple

beams formed from phase modes is also studied.

A schematic diagram of the proposed system is shown in figure 1.2. The
practical side of the project can be divided intoiﬁve main areas.

. A circular array that operates over the band 8 to 12 GHz.

. A microwave Butler matrix to form the set of phase modes.

o Microwave frequency compensation networks.

. Weighting networks to apply an amplitude taper.

. A beamformer to synthesise multiple beams from the phase modes.
The proposed beamforming network of figure 1.2 is very complex. It
contains a long chain of passive devices, each of which contribute
significant errors. Some components have errors in thgir transmission
amplitude and phase. Others are not a perfect match, introducing
reflections, and yet the beamformer must operate over a wide bandwidth.
The effect of beamformer errors on synthesised beams is evaluated. In this

study the design of less complex RF networks to perform wideband pattern
synthesis is considered.
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Figure 1.2 Block diagram of the proposed

wideband pattern synthesis system.
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1.4 Thesis structure

Chapter 2 looks at the theory of pattern synthesis using linear arrays, and
considers how this may be applied to the synthesis of wideband radiation
patterns using the phase modes of circular arrays.

The results of this study lead to the design, in chapter 3, of a circular array
that operates over the frequency range 8 to 12 GHz. The measured phase
mode characteristics for a four-element array constructed at UCL are

compared to theoretical values.

Chapter 4 investigates the design of the microwave beamforming networks
used to form instantaneously wideband beams. The evolution of the
beamformer design during the course of this study is described, illustrating
a move towards simpler networks which is necessary to realise low sidelobe

beams.

The results of measurements on beams synthesised using wideband
beamformers are presented in chapter 5. Reducing the sidelobe levels of
wideband beams by applying an amplitude taper is demonstrated. The
effect of beamformer errors, and changing the elevation angle on the shape
of the wideband beam are determined. The results are compared to the
theoretical performance.

Chapter 6, the concluding chapter of this thesis summarises the results of
this study. This pattern synthesis technique is compared with alternative

approaches. Ideas and proposals for future work are presented. The last

section draws the conclusions of this study.
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Chapter 2

The application of phase mode theory to pattern synthesis

2.1 Pattern synthesis using linear arrays

2.1.1 Introduction

Linear arrays of discrete elements have been used in the synthesis of
directional radiation patterns for many years, and the theory behind this
has been developed to a high level of sophistication. This review section
follows the analysis of Elliott (1981a).

The radiated fields of a discrete linear array are the sum (superposition) of
the fields radiated by each element. The field of an element is determined by
an excitation parameter, for example the current on a dipole. In the
notation used here, the excitation vector is given as an amplitude and phase
at each element of the array, with the excitation of one element defined as a

phase reference.

For isotropic array elements the radiation pattern is the spatial Fourier
transform of the array excitation. This pattern is called the 'array factor'

£(9,8). Most discrete elements have a directional radiation pattern G(¢,9).
For the case where all the elements are identical and are similarly oriented

in space, the far field radiation pattern F(¢,0) is the product of the array
factor and the element pattern:

F(6,8) = {(¢,0) G(¢,0)

In this section, the radiation pattern of a linear array of isotropic elements

is considered.
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Chapter 2 - ‘Ihe application of phase mode theory to pattern synthesis

Most feeds produce a 'free excitation' of the linear array, where the drive
voltages are fixed and the excitation currents are determined by the
element self and mutual impedances. In this case the element has an
‘active’ impedance. For example, the element impedance changes with
angle as a synthesised beam is scanned. In this section only a 'forced’
excitation of a linear array is considered, where the drive voltages are
individually adjusted so that each excitation current is exactly the value
réquired. As we shall see later on in this chapter, the concept of a forced
excitation is applicable to pattern synthesis using circular arrays.

2.1.2 The radiation pattern of a linear array

Figure 2.1 shows the array factor for a five element array. The array factor

for a linear array of N equally spaced isotropic elements is given by:

N-171 . .
£(6) = z T,_l_eJan sin(¢)
n=0 0 (2.1.1)

where ¢ is the azimuth angle
d is the inter-element spacing

K =2/A
I, is the excitation current of the ntl element

For a linear array, peak directivity of the main beam is obtained by exciting
the array elements with uniform amplitude and equal phase. The array

factor is then:

N-1

()= 3 O
n=0 (212)
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Figure 2.1 Geometry of a linear array of isotropic radiators, showing
the array factor for a uniformly excited five-element array.
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Putting u = Kdsin(¢) and w = eiu:

(N—1)[ N —l“-]

N-1 (N-1)

_w -1 2 w2 -w 2

C(¢)—H§O =G =V T 1
w2 —w 2

Extracting the constant amplitude factor wiN - 1)/2;

sin (&)
)

N2/
(o= N sm(

2 (2.1.3)
As an example, consider the radiation pattern formed by a linear array of

five uniformly excited elements where the inter-element spacing is A/2.
Figure 2.1 plots the power pattern:

P(¢o») =10 log1

{ F(¢) . F*(¢) }
0 * max
[F(9). F*(9)] (2.1.4)
where the denominator [F(¢).F*(¢)]™M2% is the peak power of the beam, in the
direction ¢ = 0°. The gain relative to isotropic in the direction ¢ = 0° is given
by the directivity of the beam, 2Nd/A. Throughout this thesis, radiation
patterns are plotted using the normalised power pattern of (2.1.4).

The 21° half power beamwidth is calculated by inserting {(¢) = 1/(N2) into
(2.1.3). For a uniformly excited array the -3 dB beamwidth of the mainlobe
can be plotted as a function of N, as shown figure 2.2. The level of the first
sidelobe level in figure 2.1 is -12.1 dB. As the number of elements in the
linear array increases, the first sidelobe level reaches a limiting value of
-13.26 dB, as shown in figure 2.2,
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Figure 2.2 Plots used to calculate the -3 dB beamwidth

and sidelobe ratio for a uniformly excited linear

array of N isotropic elements.
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The beam formed by the cophasal excitation of (2.1.2) is a broadside beam.
A beam is steered by applying a linear progressive phase slope to the linear
array elements. If the element amplitudes are equal then the excitation
has the form:

_ - jno.
I, -Ioe

where a is the progressive phase factor. The array factor now becomes:

N-1

L@)= 2

n=90

ejn{Kd sin (¢) — al

n(NOL= )

&(9) = N sin((u ; a))

The mainlobe of this pattern is oriented in the direction ¢ = a. The sidelobe
levels of this pattern are the same as those of a broadside beam (a=0). The
mainlobe increases in width as the beam is scanned off broadside, the
beamwidth between nulls being determined by the projected length of the
array in the plane at right angles to the beam direction.

Large inter-element spacings (d > A/2) produce additional main beams,

called grating lobes. The mainlobe peaks are located where (u - ) = nx. If
d/A and a are chosen properly, only the mainlobe (n = 0) will be in the visible
range -90° < ¢ < 90°. If the beam is to be scanned close to end-fire, the inter-

element spacing must be less than A/2.
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2.1.3 Schelkunoff's unit circle representation

A useful representation of the linear array excitation was given by

Schelkunoff (1943). If w = e/* (where u = Kdsin(¢)) is inserted into (2.1.1),
then the array factor can be written:

OE Z f’l
Lot na g w2 Iy
== W +—=w +... +—
I I0 0

where I, is complex. This polynomial can be factorised to give the array

factor in the form:

S = (W= W) (W W) (VW) (W Vi) (2.1.5)

The (N - 1) roots of this polynomial can be plotted on the complex w plane,
as shown in figure 2.3. Real space corresponds to the function w = e/

traversing a sector of the unit circle given by:
-Kd <u <Kd

Thus a A/2 spacing allows us to traverse the unit circle once. If the (N - 1)
roots are placed on the unit circle (within the range w = ) a pattern with
(N - 1) nulls will result. If all the roots are placed off the unit circle, then a
pattern devoid of nulls will be formed. As an example figure 2.3 shows the
root positions for a uniformly excited five-element array with an inter-
element spacing of A/2. The roots are found on the unit circle at the
positions +21/5 and +47/5. The magnitude of F(w) at a point w on the unit
circle (that is, real space) is given by the product of the four distances d,, d,,
d; and d4, as shown in figure 2.3. As w moves along the unit circle this

product changes, mapping out the array factor in u space. At the root
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Chapter 2 - The application of phase mode theory to pattern synthesis

locations there will be nulls in the pattern. In this plot the product is a
maximum for u = 0; the peak of the mainlobe. The height of a sidelobe is
calculated from the product when w is about half way between adjacent

Zeros.
2.1.4 Dolph-Chebyshev synthesis of low sidelobe patterns

For many applications, such as radar and communications, radiation
patterns with sidelobes considerably below -13 dB are required. The |
Schelkunoff unit circle representation is a useful tool in the synthesis of low
sidelobe patterns. For a linear array with 2N + 1 elements, the 2N roots can
be placed on the unit circle in complex conjugate pairs, forming a
symmetrical beam pattern. The sidelobe level is reduced by clustering the
roots close to u = &, although this will result in a widening of the main
beam. For many applications the suppression of all sidelobes is equally
important, so the optimum design is one where the sidelobes are of equal
height. Further reduction in the sidelobe level can only be done by
increasing the width of the main beam. The problem of seeking the proper
root positions to give uniform sidelobes at a specified height was solved by
Dolph (1946). This solution uses the Chebyshev polynomials, which can be
expressed in the form:

(-1)" cosh(n arc cosh [ x| ) x<1

Ty(x) = { cos(n arc cos(x)) | x| si

cosh(n arc cosh(x)) x21 (2.1.6)

Within the range x = +1 there are oscillations of unit amplitude, while
outside this range the polynomial increases monotonically (figure 2.4). If
the variable x can be made to correspond to the angle variable u, then a
pattern with uniform sidelobes can be formed. A direct correspondence
cannot be made, however, as the main beam must have zero slope at the
centre. The asymptotic response is therefore mapped onto the side of the

mainlobe, while the oscillatory portion covers the sidelobe region. A linear
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array with N elements produces a pattern with N - 1 zeros, so an N - 1
degree Chebyshev polynomial is used. The transformation from the

Chebyshev function Tpn.1(x) to the array factor F(u), with u = Kdsin(¢) is:

X = X cos(w/2) (2.1.7)
The voltage sidelobe ratio SLR is given by:
SLR =TN_ 1(%0)

from which x is calculated. Inserting x, into (2.1.6) allows us to determine
the location of the roots on the unit circle. As an example, consider the

excitation of a five-element array with an inter-element spacing of A/2,
where a pattern with sidelobe levels of -20 dB is required. xis calculated to
be 1.2933. From (2.1.7) the roots on the unit circle are at the positions:

u ==+ 88.82°,+145.16°

These roots are plotted on the w plane in figure 2.5. Taking the product of
the roots using (2.1.5), the tapered element excitation is:

Element 1

- ol -

I,(A) 0.517 0.833 0.833 0.517

o v oo > -
Y TR

The array factor for this excitation is depicted in figure 2.5. As for a
uniform distribution, the beam is steered by applying a uniform progressive
phase o to the amplitude distribution. As for a uniform excitation, large
element spacings (d = A/2) will produce one or more additional main beams
(grating lobes). Again only the mainlobe will be in the visible range of u if

d/A and o are chosen properly.
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Figure 2.5 Theoretical array factor for a five-element linear
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-20 dB sidelobe pattern.
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A novel application of the Chebyshev polynomial to pattern synthesis is
described by Milne (1987), where it is used as a 'scanning function' that is
convolved with the desired pattern shape to give low sidelobes. The
resulting linear array excitation has a non-linear phase progression - the

phasing of the elements is employed as an additional degree of freedom.

The equivalent of the Dolph-Chebyshev array factor for a continuous line
source was developed by Taylor (1955). The procedure determines the
aperture distribution for a pattern with a single main beam and sidelobes at
a speciﬁedile?el. For a uniformly excited line source, a pattern with the
first sidelobes at -13 dB is formed, with the outer sidelobes dropping off
according to the function u'l. Taylor devised a synthesis technique that
suppressed the levels of the innermost sidelobes, while leaving the outer
(low level) sidelobes unchanged. As an example figure 2.6 depicts a Taylor
pattern with a -20 dB sidelobe level. This continuous excitation can be
sampled and applied to a discrete linear array. The excitation specified
using this technique is generally easier to realise than a Dolph excitation

with the same sidelobe level.
2.1.7 Difference patterns

Difference patterns used for monopulse DF systems can be synthesised
using linear arrays. This pattern has two lobes symmetrically oriented on
either side of a central null, as shown in figure 2.7. To form this pattern
the two halves of the array are excited in antiphase. Arrays with an odd
number of elements are not suitable for forming difference patterns
because of the presence of a centre element. In the case where all the

elements are excited with equal amplitudes the pattern has the form:

) sin -%L}tcos(‘b))
B sin(-’zc—di COS(¢)) (2.1.9)

where L is the array length. The high sidelobe level of -9.5 dB is due to the
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choice of equal amplitudes on the elements. Figure 2.7 shows the excitation
of (2.1.9) depicted using the Schelkunoff unit circle representation. One root
is located on the unit circle at ¢ = 0°, while the others form complex
conjugate pairs equispaced on the unit circle. All the roots are double roots,
except the single root at ¢ = 0° - a very inefficient root placement. If a
tapered distribution is applied to the amplitudes, then the sidelobe levels
can be reduced. Bayliss (1968) describes a technique for synthesizing low
sidelobe difference patterns. As for patterns with a single mainlobe a
uniform progressive phase eJn® can be applied to steer the null pattern, but
with the two halves of the array still in phase opposition, .

2.1.8 Null-free patterns

Some antenna applications require radiation patterns that are free of nulls.
For air traffic control a beam without nulls in the elevation plane is
required, but with a cosecant shape so that returns from aircraft at the
same horizontal distance are equal in amplitude. The Woodward synthesis
technique (1947) can be used to produce null-free patterns with a linear
array. The pattern is formed from a fan of overlapping orthogonal beams.
Each beam is formed from a uniform amplitude and linear phase
distribution, producing a sin(Nu)/Nsin(u) type beam. For a linear array of
N elements, if the beams are spaced by 2n/N in u space then the first null in
each beam is filled by the peak of the adjacent beam. If the nth beam is
excited with an amplitude F, then the pattern is simply:

N sin{N(u—an)}]
H(u) = F -
Ve Z, “[Nsm{w-an)}

An example of this (showing only the mainlobes of the overlapping beams)
is depicted in figure 2.8. The amount of ripple on the null-free pattern is

controlled by the element spacing.
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Figure 2.8 The synthesis of a null-free pattern using the
Woodward synthesis technique (after Elliot (1981a)).
For clarity only the mainlobes are shown.
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2.1.9 Superdirective arrays

A uniform excitation of a linear array with equal phase gives the
maximum mainlobe gain. While excitations that produce a higher
directivity can be realised, in practice the absolute gain is reduced by losses.
This type of excitation is termed a superdirective excitation. Using the
Schelkunoff unit circle analysis, consider a linear array with a very small
inter-element spacing, so the excursion of w on the unit circle is small.
The (N - 1) roots of an N element array can still be placed within the range
of w so a pattern with a prescribed beamwidth and sidelobe level can be
formed. The current distribution will not be uniform, because for a
uniformly excited array, the -3 dB beamwidth is approximately A/Nd. If the
impedance of the array elements is calculated for this excitation, a major
reduction in the radiation resistance is observed. If the loss resistance of
the element becomes significant, in comparison to the radiation resistance,
the efficiency drops. As an example, Elliott (1981b) considers the case of a
five-element array, uniformly excited to produce a -13 dB sidelobe pattern.
Let us assume that the loss resistance results in a 1% reduction in
efficiency for an inter-element spacing of A/2. If the spacing is reduced to
A/4 and the excitation adjusted to form the same array factor, the same loss
resistance results in the dissipation of 80% of the input power. For a
spacing of A/144 (u = 1°) the losses are over a million times as large as the
radiated power. In addition the radiation patterns of superdirective arrays
are sensitive to errors in the excitation and the positioning of elements.

2.1.10 The orthogonality of overlapping beams

Multiple beams can be formed using a single linear array. An N element
array can generate up to N independent beams. RF networks to form
multiple beams include the beamformer developed by Blass (1960) and the
well-known matrix of Butler and Lowe (1961). It is desirable for reasons of
efficiency that the overlapping beams of a multiple beam antenna should be
independent: the radiation pattern resulting from exciting two or more of

the input ports should be a linear superposition of the radiation pattern
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obtained when the ports are excited separately. Additionally, applying
power to one of the beam ports should not result in any power output at the
other beam ports. White (1962) explains that this condition can only be
fulfilled if the individual beam patterns are orthogonal in space. The
orthogonality relation can be expressed:

2

T n/2
do J F,(0,0) . Fy(0,6) cos d8 =0
°om (2.1.10)

where ¢ is the azimuth angle,
0 is the elevation angle.
F|(6,0) is the radiation pattern associated with the jth input terminal.
Fi*(9,0) is the complex conjugate of Fy(¢,0).

A pattern with well defined orthogonal properties is the sin(Nu)/Nsin(u)
pattern. A pair of these beams produced by a linear array are orthogonal

provided the azimuth spacing in u space is:
Kdsin(¢) = 2N, sin(¢) = A/Nd (21.11)

For this spacing the mainlobes are at the same angle as the first nulls of
the adjacent beams and the crossover level between adjacent beams is about
-4 dB. If an amplitude taper is applied to the array excitation to lower the
sidelobes, then the beam spacing for orthogonality increases. For example,
if a cosine shaped amplitude taper is applied to the excitation, the
orthogonal spacing is given by u = 47/N. For some excitations the radiation
patterns do not have an orthogonal spacing, for example an excitation that
linearly tapers to zero at the ends of the array.

Before applying linear array theory to pattern synthesis with circular

arrays, the 'phase mode' analysis of circular array excitations must be

discussed.
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2.2 The phase mode excitation of a circular array

2.21 The theoretical characteristics of phase modes

This theoretical analysis considers the excitation of a circular array
required to form a desired radiation pattern in the far field. By the
reciprocity theorem, the synthesis results obtained here are equally valid
for receiving arrays, such as amplitude comparison DF systems. The
array excitation is expressed as a series of spatial Fourier terms. Davies
(1983) examines the properties of these orthogonal terms, called 'phase

modes’.

First consider a continuous circular array. If y represents the angle
around the array, then the function F(y) represents the excitation of the
array. F(y) is periodic in y with an angular period of 2r radians so it can be
expressed as the sum of a series of Fourier terms:

Fy = A ™
W= 2 Ay @.21)
where
1 - jmy
Ap=oe [Fope dy
0

If a single term of the first equation is considered, such as Amejmw, it can
be seen that it represents an excitation of constant amplitude, with a linear

phase change of m cycles of phase around the array.
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Let us consider the radiation pattern formed if a single phase mode is
excited around a circular array, for the case where the array elements have

omnidirectional radiation patterns. The array excitation is of the form:

Fy=A, ejmw

where A, is the excitation amplitude. If the distance P from the centre of
the array to a point in the far field (at an angle ¢) is used as a reference,

there is a path difference Ar from an element at an angle y to this point.
This path difference modifies the phase of the element excitation in the far

field by AP:
AP = ejBr cos(y - ¢)

where B= 2n/A. and r is the array radius. The far field excitation at an

angle ¢ is given by summing contributions from all parts of the array:

2n

1 Brcos(y-¢) jmy
F(\V)=§E IAme ( )e dy
0

This expression can be evaluated using the integral identity:

2n ; j
[ JBreos(y-9) jmy dy=2rj" J_(Br)e’™
0

where J_(Br) is a Bessel function of order m and argument pr. Hence:

F(¢) =A " J_(Br)e’™

_ jme
=ApKne (2.2.2)
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The radiation pattern is also a phase mode of order m, but weighted by K,
a dimensionless complex number called the 'phase mode coefficient’. For a
given array radius r, the amplitude of the mth phase mode coefficient can be
determined from a plot of the Bessel functions (figure 2.9). As a general
rule, J_(Br) is small for arrays where m > Br. For an array of radius r, the
amplitude of the mth phase mode coefficient is zero for the wavelengths

where J_(Br) = 0, so the mode cannot be excited at those frequencies.

The use of directional elements in an array can be incorporated in the
analysis by including the directional pattern, G(y) of the elements in the
phase mode expression. Here we consider the case where the boresight
direction of the elements point radially outwards. Since the element
pattern is also spatially periodic with a period 2x, it too can be expressed as

a Fourier series:

+p ity
Gy = E BieJ
i=-p

where

- jiy d

1 2n
B,=3= [Gwe ' dy

0

Bach and Hansen (1969) show that if this array is excited by a single mode
of order m, the radiation pattern again has the phase mode form:

F(¢) =A _K_e™ 2.2.3)

where K is now given by;

+p .
.Jm-=1
K. = Y B.j Jm_i(Br)
i=-p (2.2.4)
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(a) Omnidirectional elements.

(b) Directional elements with a radiation pattern:
G(y) =1 + cos(y).
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The complex phase mode coefficient K, is no longer proportional to a single
Bessel function, but to a sum of Bessel functions. Rahim and Davies (1982)
showed that for some directional elements the mode amplitudes change
much less with frequency compared with an array of omnidirectional
elements. As an example of this, figure 2.9(b) shows the amplitude of the
phase mode coefficients (in dB) for an array of elements with a directional

pattern: G(y) =1 + cos(y).

If the directional pattern of the antenna elements has reflective symmetry

in the boresight direction, i.e. G(y) = G(-y), then B_; = B_; and it can be
shown that K_ =K_ .

2.2.2 Amplitude modes

If we excite two phase modes of order +m and -m with equal amplitude
A_/2, and the same phase, from (2.2.3) the radiation pattern is the
superposition (sum) of the orthogonal excitations:

A mo A 5
F(¢) = 2K e ™ + S K e 7™

m 2 m
=A_K ., cos(m¢) _ (2.2.5)

This cosine function is periodic in angle with m cycles of amplitude
variation in 2r radians. This term is called an amplitude mode and is a
term of a cosine/sine Fourier series. If we excite two phase modes of order
+m and -m with equal amplitude A/2 and in antiphase, the radiation
pattern has the form:

—Am K_e im®

A .
=jA K, sin(m¢) (2.2.6)

This amplitude mode is the mth order sine term. The 'cosine type'
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amplitude modes are used to synthesise symmetrical patterns with a single
mainlobe. The 'sine type' amplitude modes are used in the synthesis of odd
patterns, like the monopulse difference pattern. Throughout this thesis the
cos(¢) mode is called the C1 mode, cos(2¢) the C2 mode and so on.
Correspondingly, S1 is the sin(¢) mode and S2 is the sin(2¢) mode.

2.2.3 Phase modes formed by discrete element circular arrays

Practical designs for circular arrays have a finite number of elements
equally spaced around the circumference of a circle. The excitation of a
discrete array can be analysed as a sampled continuous array. Let S(y)
represent a series of uniformly spaced delta functions at those values of y
where the elements are located. The modal excitation of an N element
discrete array can be expressed as:

< jmy NG! 2nrn
FwSw = 3 Cpe’™ T §(v-22)
m= —oco n=0

(2.2.7)

where 8(y - 2nm/N) is periodic with period 2r. Bach and Hansen (1969)
show that for this discrete excitation by a mode of order m the radiation

pattern F(¢) has the form:

o0 . _ N )
_ j(m - 2N)¢ j(m - N)¢
=AnN[ . +K( oo +K (e

¥m)é (m +N)o j(m +2N)¢
+K(m)e +K(m+N)e +K(m+2N)e +... :l

(2.2.8)
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For a discrete array, a phase mode has the same phase mode coefficient as
the corresponding phase mode of a continuous array, but higher order
harmonics are also excited. The order of the harmonic terms is

determined by the number of elements in the array.
2.2.4 The Butler matrix

The RF matrix of Butler and Lowe (1961) was developed to generate multiple
beams with linear arrays. It can also be used to excite the phase modes of a
discrete circular array. A Butler matrix is a network with N input ports
(the mode ports) and N output ports, that are connected to the element
feeds. Figure 2.10 shows a 4 x 4 Butler matrix. While the early matrix
designs were narrowband, Withers (1969) developed designs for wideband
matrices. Butler matrices can excite circular arrays with any number of
elements in the series 1, 2, 4, §, 16, ...... 21, Generally matrices are
constructed from a network of directional couplers and fixed wideband
phase shifts. For an N element array, at least {(N/2) log,(N)} couplers are
required. If the mth mode port is excited by a source of amplitude A, the
output at the nth element port is given by:

2n(n -1)
V.= AmeJ N

T VN (2.2.9)

Figure 2.10 plots the transmission phase characteristics of a 4 x 4 matrix.
When an array is excited using a Butler matrix, the currents excited on the
elements are determined by the element impedance, which is considered in

the next section.
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2.2.5 The phase mode impedance of circular array elements

As with linear arrays, mutual coupling between the array elements
modifies the driving point impedance of the elements. King, Mack and
Sandler (1968) show that for a circular array of dipoles excited by a single
phase mode the driving point impedance of all the elements is identical.
The element has an impedance that is a function of the mode order, termed
the 'phase mode impedance' and calculated using:

N j(21t(k—1)m)
Zm= 2 zlke N
k=1 (2.2.10)

where z;; is the mutual impedance between element 1 and the kth element
of an N element array. As an example, let us consider the phase mode
impedances of the four-element array depicted in figure 2.11. From (2.2.10)
the phase mode impedances are:

ZO =211+ 2Z12 + 713

Z%h = Z' =2y - 23

Z+2 = Zz =711 - 2212 + 213 (2.2.11)
Since the modes are orthogonal, exciting (for example) the 2nd grder mode
has no effect on the impedance of the Oth or 15t order modes. Phase mode
impedances are fixed, unlike linear array elements that have 'active'

impedances, that are a function of the array excitation. The power radiated

by a circular array element is given by:

Prad =12 R'rad

I is the current at the input terminal of the element and R4 is the
radiation resistance of the (modally excited) element. The radiation
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Figure 2.11 The relationship between the mutual
impedances and the phase mode
impedances for a four-element circular
array of vertical dipoles or monopoles.
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resistance of an element is the real part of the phase mode impedance
R(zm). For dipoles and monopoles the values of the self and mutual
impedances have been extensively tabulated, for example by King (1956).
For close-spaced dipoles (<A/2) the real part of the mutual impedance is
positive, and increases as the element spacing becomes smaller (or as the
frequency decreases). At a minimum frequency f,;, the array will not be
able to support the higher order modes. For the 274 order mode excited on a

four-element array this occurs when (from (2.2.11)):

R (211 +213) -R(2219) = 0

In this case the real part of the 274 order phase mode impedance tends to
zero - i.e the mode cannot be radiated. If only the 0th and 15t order modes
are required, fi,;, for a four-element array occurs when:

R(z11) - R(213)=0

For the 0th order mode alone there is no f;, - the radiation resistance does

not drop to zero as the frequency decreases.

To conclude, the phase mode impedance determines the lowest operating
frequency for an array with a fixed radius r. If we wish to excite modes up
to the order m = M, then as the frequency decreases, the real part of the Mth
phase mode impedance drops, until the array cannot adequately support
this mode. These results are equivalent to those for a linear array with a
superdirective excitation; there is a rapid change in phase of the excitation
across the (discrete) aperture, resulting in a low radiation resistance and a

corresponding loss of efficiency.
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2.3 Pattern synthesis using phase modes

2.3.1 Linear array equivalence.

The phase mode analysis of a circular array is ideally suited for
synthesising directional radiation patterns. Any directional radiation
pattern (which is a periodic function with period 2r) can be expressed in
terms of a series of phase modes. Using a Butler matrix-fed circular array,
the orthogonal modes are excited at the appropriate phase mode port. The
amplitude and phase of each mode excitation is chosen to realise the
desired directional pattern. The radiation pattern produced by exciting
modes up to the order £M is given by:

A jmé
F(o)= 2, A K_e ,
m=-M (231)

where Ap, is the excitation of the m'h mode port and Kp, is the mth phase
mode coefficient.

The use of this Fourier technique means that the pattern synthesis
techniques developed for linear arrays can be applied to circular arrays. In
section 2.1 it was noted that exciting an N element linear array with
uniform amplitude produces a sin(Nu)/Nsin(u) type pattern. Davies (1983)
shows that this type of pattern can be produced in ¢ space with a continuous
circular array of omnidirectional elements. Suppose that (2M + 1) phase
modes are excited on the array with an excitation:

1
A =—— (-M<m<M)
™ 7T _(Pr)

63



Chapter Z - ‘lhe application of phase mode theory to pattern synthesis

This corresponds to exciting all the modes to the same level in the far field,

resulting (from (2.1.3)) in a directional pattern:

. o

M - M sin{{2M + 1}~

F@)= 3 Apid"(Be™= I J™- nf 2)
m=-M m=-M (2M+1)sin(%) (2.3.2)

This produces a directional pattern with a beamwidth ¢ = 2r/M, as for a
uniform linear array, but the pattern now extends over 360° and relates to a
¢ variable. As an example, figure 2.12 shows the radiation pattern formed
when a continuous circular array is excited with five phase modes from -2
to +2.

It is useful to visualise the modes as the 'elements’ of a linear array,

radiating into ¢ space, also depicted in figure 2.12. Let us consider the
properties of this linear array:

Phase modes are omnidirectional in azimuth, so the 'elements' are also
omnidirectional. The radiation pattern corresponds to the array factor
for this 'linear array'.

e If the mth phase mode port is excited by a source of amplitude A, the
radiated phase mode is weighted by a complex term K;,. As shown in
figure 2.12 this can be represented by a two-port network in the feed of the
mth linear array 'element’, with a transmission amplitude and phase

corresponding to K.

e Phase modes are orthogonal functions, so there is no mutual coupling
between the 'elements' of this linear array. The input impedance at the
two-port network of the mth 'element' has a fixed value (the mt? phase

mode impedance, Z™M) whatever the array excitation.

e The radiation patterns formed from phase modes have the same shape

(in ¢ space) as those formed by a true linear array (in u space) with an
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Figure 2.12 Representation of phase modes as the "elements"
of a linear array, showing the radiation pattern

formed when the mode excitation is chosen so the
"elements" are uniformly excited.
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inter-element spacing of A/2. This is illustrated by comparing figure 2.1
and figure 2.12, which show the radiation patterns for a uniformly
illuminated linear array and for uniformly excited modes of a circular
array respectively. The -3 dB beamwidth for the pattern of figure 2.12 is
found by reference to figure 2.2 for the beamwidth of an N (= 2M + 1)
element linear array, giving a figure of 65°. The first sidelobe level of
-12.1 dB is also found by reference to figure 2.2, giving the sidelobe levels
for an N element linear array.

* For a linear array u = Kdsin(¢) changes with frequency (that is, the
effective inter-element spacing changes). For the modes of a circular
array the function u = ¢ is independent of frequency, so the effective
spacing of the 'elements’ of figure 2.12 is A/2 - whatever the frequency.

¢ Davies (1965) has shown that any directional pattern synthesised from
phase modes can be electronically rotated by applying a phase slope to the
phase mode inputs of the Butler matrix. To form an azimuth beam in a
direction «, the phase applied to the mt? mode is e Mm%, Unlike linear
arrays the effective 'element’ spacing is independent of angle, so the
radiation pattern does not deform as the beam are steered. Grating lobes
do not appear, and there is no change in the -3 dB beamwidth.

2.3.2 Applying an amplitude taper to phase modes

While a uniform excitation of the modes gives the maximum directivity in ¢
space, it has rather high (-13 dB) sidelobe levels. Referring again to the
linear array theory of section 2.1, lower sidelobes are formed by applying a
taper to the mode excitation:

>
1}

wl =
=}

m 2.3.4)

where Wy, is the amplitude taper applied to the mth mode.
As for a linear array, radiation patterns with equal level sidelobes can be

formed by applying the Dolph Chebyshev amplitude taper of section 2.1.

66



Cnapter < - ‘Lhe application of phase mode theory to pattern synthesis

Consider a continuous circular array with modes up to M = +2 excited. The
taper required for a beam with -20 dB sidelobes is:

Mode order -2 +1 +2

Taper (V) | 0517 0.833 0.833 0.517

-~ o

b o - v - -

- > o Q>
- - - wl e > - 4

(2.3.5)

This -20 dB sidelobe pattern, plotted using (2.3.1), is depicted in figure 2.13.
The -3 dB beamwidth is wider than that of a uniform excitation; as for
linear arrays, there is a trade-off between sidelobe levels and mainlobe
beamwidth.

For small radius arrays the higher order modes are excited with reduced
amplitudes, providing an inherent amplitude taper. The array radius can
be selected to produce the desired taper on the modes. For example,
inspection of figure 2.9 gives the amplitudes of the phase mode coefficients
(in dB) for a continuous array of elements with a 1 + cos(y) directional
pattern. Considering the 0th order mode as a reference, the relative
amplitudes (K,,) of the modes for fr = 2.75 are:

Mode order 2 E 1 0o , +1 E +2
Relative mode E : N E
amplitude 0545 , 0837 , 1 » 0837 | 0545

Required \ \ N :

taper (V) 0517 , 0.833 : 1 v 0833 0517

So by choosing the array radius carefully, the amplitude taper of (2.3.5)
required for a Chebyshev -20 dB sidelobe pattern is (almost) realised.The
array radius can be chosen to realise the 15t order mode taper exactly, or the
20d grder mode taper exactly, but not both.

The main aim of this study is to form wideband low sidelobe patterns.
However, to illustrate another application of linear array theory let us
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Figure 2.13 Theoretical synthesis of a -20 dB sidelobe pattern
formed by applying a Chebyshev taper to the phase
modes of a circular array.
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consider the synthesis of difference patterns using phase modes. For a
linear array, the two halves of the array are excited in antiphase, so the
modes of order -m are excited in antiphase to the modes of order +m. The
0th order mode corresponds to the centre 'element’ of a linear array and
cannot be used in the synthesis of difference patterns. As an example, the

theoretical excitation:

Mode order -2 ' -1 +1 +2

IApKpn! D 1 v 4 +1 +1

s > > o > - 4
> o> > e

produces the difference pattern of figure 2.14.

2.3.3 The orthogonality of overlapping beams formed from phase modes

Multiple beams can be formed from the phase modes of a circular array.
As for a linear array, an N element circular array can generate up to N
independent beams. A second N x N Butler matrix provides the linear
phase progressions required to form N beams. Figure 2.15 illustrates this
for a 4 x 4 matrix. With a four element array four identical beams, spaced
90° apart in azimuth can be formed. As explained in section 2.1.10, it is
desirable that the overlapping beams of any multiple beam antenna should
be orthogonal. The coupling between beams may be determined from
equation (2.1.10). Sin(N¢/2)/Nsin(¢/2) beams produced by uniformly exciting
N phase modes have an orthogonal spacing of ¢ = 21/N, calculated using
(2.1.11). As for linear arrays the mainlobes are at the same angle as the
first nulls of the adjacent beams, and the crossover level between adjacent
beams is about -4 dB. For the pattern of figure 2.12 (formed with a uniform
excitation of modes up to the order M = +2) the orthogonal spacing is 5n/2
(72°). Beams with lower sidelobe levels have wider orthogonal spacings,

again calculated using (2.1.11).
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Figure 2.14 Theoretical synthesis of a difference pattern
using a circular array. The phase modes are
excited with uniform amplitude and
antisymmetric phase.
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Linear phase progression applied to
modes by a second 4x4 Butler matrix
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Figure 2.15 The synthesis of a fan of beams using a
second Butler matrix to supply the linear
progressive phase slope.
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If N orthogonal beams are formed using a second Butler matrix, these
beams could in principle be used to synthesise null-free patterns, in a
manner analogous to the Woodward synthesis technique described in
section 2.1.8 for linear arrays. However, such a technique is beyond the
scope of this study.

The Schelkunoff unit circle analysis can also be applied to circular arrays.
This technique is useful in considering the effect of higher order harmonics
on the synthesised pattern, considered in the next section.

2.3.4 Pattern synthesis using the phase modes of a discrete circular array

Phase modes up to the order M = £N/2 can be excited using a discrete
circular array with N elements. By considering figure 2.12, it is clear that
the patterns formed from these modes are equivalent to those formed by a
linear array with N + 1 elements. When a mode is excited on a discrete
array, higher order harmonics are also excited, as discussed in section
2.2.3. Let us consider the effect of these harmonics on pattern synthesis:

* For a discrete array, exciting a single mode port excites a periodic
sequence of modes. If we consider the modes as the 'elements' of a linear
array, the harmonics correspond to additional 'elements’, as shown in
figure 2.16. The effect of these additional elements on the synthesised
patterns can be predicted by extending M in (2.3.1) to include the
harmonic terms. The radiated amplitude and phase of the mt? order
harmonic is determined by the mth phase mode coefficient. For small
radius arrays, only the lower order harmonics will be of significant

amplitude.

* The N phase mode excitations of an N element circular array form a set
of orthogonal functions, even with the harmonics present. Inspection of
(2.2.8) shows that each harmonic 'element' is excited by just one
fundamental. Every phase mode excited by a continuous circular array

is excited by a discrete array of the same radius, only not independently.
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* An N element circular array can form radiation patterns with the same
shape as a linear array with N + 1 elements. This is illustrated in figure

2.15, where a four-element circular array excites five modes, from -2 to
+2.

* The highest order fundamental mode (M = N/2) is a cosine type
amplitude mode, formed by exciting the +N/2 and -N/2 modes from the
same port. Ignoring higher harmonics, inserting M = N/2 into (2.2.8)
gives a radiation pattern of the form:

F(0) =A ,N| K JF-Np o (T
" LEY (%)
=2AmN[K(%)°°s{('I;L)¢}]

(2.3.6)

This amplitude mode cannot be used in steered beams. It can be used to
form beams in fixed directions, where the linear progressive phase

o = £21/N, +47/N. This corresponds to the angular locations of the N
array elements.

¢ The corresponding sine mode of order M = N/2 cannot be excited on an
N element circular array, as the array elements are located at the
angular positions of the nulls in this pattern. Although the sine term is
missing, the cosine term can be used to form difference patterns in the
directions where ¢ = n/2M. For example, the difference pattern of figure
2.14 can be formed using a four-element discrete array in the fixed

directions ¢ = +45°,-45°,+135° and -135°.

¢ All the phase modes lower in order than the M = N/2 mode can be
used in steered beams. The harmonic terms deform the azimuth pattern
as the beam is steered, because the uniform progressive phase (e Jm)
applied to the mth 'element’ is also applied to the harmonics of (2.2.8).
The deformation of the synthesised pattern can be predicted using (2.3.1).
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Karavassilis (1984) and Cvetkovic et al. (1988) developed a phase comparison
DF system using a discrete circular array. In this type of system the
harmonics can introduce errors in the measured DF bearing. They
concluded that the effect of the harmonic ripple could be taken into account
with the aid of electronic look-up tables provided the inter-element spacing

was less than A/2 at the highest operating frequency.

For pattern synthesis these harmonics can, in principle, be used to improve
the synthesised pattern. The harmonics can be thought of as additional
elements in a wider effective aperture, so they could be employed to provide
a narrower beam or reduce sidelobe levels, particularly as the reduced
amplitude of the harmonics provides a taper. In practice, this is very
difficult. As an example, let us consider a four-element array of
omnidirectional elements with an array radius of fr = 1.88 - an inter-
element spacing just below A/2. If a Chebyshev taper is used to produce a
pattern with -30 dB sidelobes, figure 2.17a depicts the radiation pattern
formed by the fundamental modes. The effect of harmonics on the pattern
can be predicted using (2.3.1), as shown in figure 2.17b. This shows that the
mainlobe is severely deformed, and the sidelobe levels are increased to

-15 dB.

To contribute to a low sidelobe beam oriented in the direction ¢=0 the modes
should have equal phase. For the direction ¢ = 0° the two 374 order modes
are in antiphase with the two 15t order modes. While there are directions
for which the 15t and 374 order modes are cophasal (¢ = +45°,+135°), to make
use of the 20 order amplitude mode as well the beam must be formed in

different azimuth directions (¢ = 0°, £90° or 180°).

The Schelkunoff unit circle analysis of (2.1.2) can be used to depict the
radiation patterns formed by a modal excitation, using the variable w = i,
Again the unit circle corresponds to real space, and one traverse of the unit

circle corresponds to a single revolution in ¢ space. Harmonics are
represented as additional roots. As an example figure 2.18 depicts a -20 dB

sidelobe pattern synthesised using a four-element array of omnidirectional
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Figure 2.17 Theoretical calculation of the effect of harmonic modes
on a -30 dB Chebyshev pattern for a four-element

circular array of omnidirectional elements Br =1.88, an
inter-element spacing slightly less than /2.
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elements, this time on a smaller array radius (Br = 0.63). The 3'd harmonic
level of -29.8 dB increases the sidelobe level by 1.5 dB. If the excitation is

factorised using (2.1.5), and the roots plotted on the w plane, two of the roots
are placed well off the unit circle. By adjusting the position of the roots that
are on the unit circle, using an iterative technique, the sidelobes can be
reduced to -20 dB, at the expense of a small increase in the mainlobe
beamwidth (figure 2.18).

In addition to degrading the pattern, any solution that includes the
harmonics will be narrowband. In the case of a four-element array of
omnidirectional elements, the amplitude of the third harmonic | J3(pr) |

relative to the first order fundamental |J;(Br)| changes greatly with
frequency, as shown in figure 2.9. This cannot be corrected, as they are

excited at the same phase mode port.

To conclude, if the amplitude of the harmonic is the same as the sidelobe
level, there will be a large increase (up to 6 dB) in the sidelobe level. The
harmonics must be considerably lower in amplitude than the desired
sidelobe level. As the theoretical phase mode coefficients for the harmonics
are known, equation (2.3.1) can be used to calculate their effect on a
synthesised pattern.

2.3.5 Wideband pattern synthesis with phase modes

To form patterns instantaneously across a wide frequency band requires a
mode excitation Ap, that changes as a function of frequency to correct for
the change in the phase mode coefficient Kj,(f). From (2.3.4):

moKp) (2.3.7)

where W, is the amplitude taper applied to thef mth mode. As an
example, consider the theoretical synthesis of the pattern of figure 2.12
using a four-element array of omnidirectional elements over the frequency
range 8 to 12 GHz. The array radius chosen is 5.25 mm. The theoretical
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mode amplitudes are plotted in figure 2.19, showing that the harmonics of
order three and above are negligible in magnitude. For the pattern of figure
2.12 modes up to the order M = 2 are excited with uniform amplitude in the
far field. From (2.3.5) the required excitation of the modes is plotted in
figure 2.19 as a function of frequency. The synthesised pattern has a
constant beamwidth of 65°. By comparison, for a uniformly excited linear
array there is a large change in the -3 dB beamwidth. For a five-element
linear array, with an inter-element spacing of A/2 at 10 GHz, the -3 dB
beamwidth changes by 50%, from 17° at 12 GHz to 26° at 8 GHz.

2.4 Polarisation and elevation characteristics of phase modes

2.4.1 The polarisation of phase modes

In the previous analysis we have assumed that the radiation pattern
produced by exciting a single phase mode is a scalar quantity. In fact the
radiation pattern is a vector quantity with a certain polarisation. Any
polarisation can be expressed as an orthogonal pair of polarisations,

commonly vertical and horizontal.

Suppose an array element has a measured directional pattern Gy(y) when
illuminated by horizontally polarised radiation, and a pattern Gy(y) when
illuminated by vertically polarised radiation. For a given array radius r,
the phase mode coefficients Ky, and Ky, for these orthogonal
polarisations can be determined from (2.2.4). From (2.2.3), when the phase
mode is excited by a source of amplitude A, the radiation pattern has the

form:
F(¢) =A (K Vme"“‘" +K e jmé ) 2.41)

For an amplitude comparison DF system the radiation patterns formed
should ideally be the same for both vertical and horizontal polarisations
(that is, Kyp = Kym).
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For many elements, for example cavity-backed spirals, the gain pattern is
the same for vertical and horizontal polarisations. For the circular array
proposed here, the inter-element spacing is less than /2, so the effect of
mutual coupling on polarisation must also be considered. As an example,
consider a circular array of dipoles, mounted at 45° to the vertical. The
radiation pattern of a lone dipole at 45° of tilt is the same for both horizontal
and vertically polarised radiation. Since the radiation pattern is the same,
the phase mode coefficients Ky, and Ky, should be the same. However,
when the element is located in the array it couples to the adjacent elements.
There are electric and magnetic modes of coupling for slant dipoles. These
different modes of coupling make the element radiation pattern different for
vertical and horizontal polarisations. Borgiotti (1983) discusses the 'modes
of coupling' between elements on cylindrical surfaces, although calculation
of the changes in the radiation pattern is beyond the scope of this study.

Since array elements for which Ky, = Ky, are not realisable, the solution
adopted here is to use linear elements that are sensitive only to vertically
polarised signals (that is, Ky, = 0). The reason for selecting vertically
polarised elements, rather than horizontally polarised elements becomes
clear when we consider the effect of the elevation angle on polarisation.
This is done in the next section.

2.4.2 The elevation characteristics of phase modes

Horizontal dipole elements are sensitive only to the horizontally polarised
component of an incident signal at 0° elevation. However, as the elevation
angle increases, these elements detect a component of the vertically
polarised component, as shown in figure 2.20. As described above,
elements sensitive to two polarisations are undesirable. Conversely, figure
2.20 shows that vertical dipole elements are insensitive to horizontally
polarised incident signals, whatever the elevation angle. Elements

sensitive to vertically polarised signals were adopted for this study.
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Figure 2.20 A comparision of the cross-polar
performance of horizontally and
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When a single phase mode is excited on a circular array, the phase mode
coefficients calculated in section 2.2.1 are for 0° elevation. If the azimuth
pattern is measured at an elevation angle 0 the radiation pattern is still a
phase mode, but the phase mode coefficient Ky, will have changed. For

isotropic circular array elements the phase mode coefficient at an elevation

angle 0 is given by Davies (1983):
Kn(8) = j™J  (Brcosd) (2.4.2)

For our DF application, directional azmuth patterns that do not change
shape with elevation are required. If the modes are excited with the
weights required to form a pattern at 0° elevation, the changes in K, with
elevation alter the pattern shape. As an example, consider the -20 dB
sidelobe pattern of figure 2.13, formed at 0° of elevation using a four-element
array where r/A = 0.175 - sufficiently small for the effect of harmonics to be
neglected. If the changes in the mode coefficients are calculated using
(2.4.2) the changes in the pattern with elevation can be predicted. Figure
2.21 shows the azimuth pattern measured at elevation angles of +20° and
+40°, While J(Brcos6) increases in amplitude with elevation, the
amplitudes of the higher order modes decrease, producing a steeper
amplitude taper. This produces a gradual increase in the -3 dB
beamwidth, from 77° at 0° elevation to 83° at +40° elevation. The average
sidelobe level initially drops, because of the increased taper, but at +40°
elevation one sidelobe becomes dominant, with an amplitude of -17 dB. If
directional elements are adopted, the changes in the phase mode
coefficients with elevation will be less pronounced. Inspection of figure 2.9
show that the variations in K,,, with the effective radius are smaller for

elements with a directional pattern of the form (1 + cos(y)).

Most practical elements have a radiation pattern G(¢,0) that changes in
gain with elevation. Let us consider the effect of this on the phase modes.
Most antennas used in DF applications have higher directivity for low
elevation angles (below 40°) and reduced directivity at high elevation angles.

The gain of the phase modes will change correspondingly, with higher gain

83



o  0°devation
Mode Radiated
amplitude (dB)
s -3dB BW 75° 0 040
Za +1 -1.587/0
=8 +2 -5.73 L0
i, -20 dB
.30 | J
-180 -90 0 90 180
Azimuth angle
(degrees)
0 . +20° devation
Mode Radiated
amplitude (dB)
é,\ 10 L o 0 +0.36 L0
% 2 -3 dB BW 78 +1 -1.967L0
5 2 +2 -6.7.0
-20
_30 \ 4 l /\ [
-180 -90 0 90 180
Azimuth angle
(degrees)
0 +40° devation
B Mode Radiated
amplitude (dB)
o o 0 +1.25 éO
1 +1 -3.347/0
— -
—“g’ 3dBBW 83 +2 -9.94/0
=
5 -20
.30 ] ] ] i
-180 -90 0 90 180
Azimuth angle
(degrees)

Figure 2.21 Prediction of changes in a -20dB sidelobe Chebyshev
pattern with elevation. Pattern synthesised with a circular

four-element circular array (Br =1.1).
84



Cnapter < - 'Lne application of phase moae theory to pattern synthests

at low elevation angles. Since the gain of all the phase modes is affected
equally, this does not affect the azimuth shape of the synthesised patterns,
only the variation in the gain with elevation.

As an example, if vertical dipoles are used as the array elements (rather
than isotropic elements) then at 0° of elevation the gain of all the modes is
increased by the directivity of the dipole: 2.1 dB. Vertically above the array
(90° of elevation) all the modes have zero gmplitude, because the elements
do not radiate in this direction. The change in gain of a phase mode G;™

with elevation is now given by:

m E ~
G, (0 =G, (8)J , (Br cos(8)) (2.4.3)

where G;E is the gain of the element at an elevation angle 6 and Jy,
is the corresponding Bessel function.
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Chapter 3

Circular array design and analysis
3.1 Introduction

In section 3.2 the properties of antennas used in existing DF systems are
reviewed. In particular the main sources of DF error are identified, since
any reduction in the DF errors is commercially desirable. This information
is used to specify the beam shape to be formed for the amplitude comparison
DF réle. The number of phase modes needed to form the wideband beam is

determined.

Section 3.3 considers the design of the circular array required to excite
these phase modes. The array radius and array element type to be used are
chosen to produce a circulgr array that can excite the phase modes across
the frequency band 8 to 12 GHz.

Because the beams used in amplitude comparison DF are wide, their
directive gain is low. Matching the feed impedance to that of the (modally
excited) elements can potentially improve the gain. Section 3.4 investigates
how the impedance of the circular array elements changes with frequency.
A technique for calculating the phase mode impedances is compared to
directly measured values. Measurements of the bandwidth over which the

mode impedances can be matched are made.

As explained in chapter 2, the relative amplitudes and phase of the modes
change with frequency, and accurate information about these changes is
essential, so that the compensation required can be evaluated. In section
3.5 the measured radiation patterns for the array elements are compared to
theory, both in the azimuth and elevation planes. A technique for
calculating the amplitude and phase of the radiated phase modes is

compared to directly measured resuits.

86



Chapter 3 - Circular array design and analysis

3.2 Th f directi 1 li mparison D

3.2.1 Anintroduction to amplitude comparison DF

The aim of this study is to synthesise wideband beams for an amplitude
comparison DF system. This is done using a circular array in place of the
wideband antennas used in existing systems. This type of DF system was
first described by Watson-Watt and Herd (1926). Consider two vertical loop
antennas, A and B, oriented at right angles to each other, both having a
beam pattern with a cosine amplitude variation with azimuth angle. A
plane wave, amplitude E incident from a direction ¢, produces voltages at
the element feeds:

V = E cos (¢)cos (8)

V 5= E c0s (90 + ¢)cos (6) = -E sin (¢)cos (6)

where 0 is the elevation angle. Comparison of these voltages (using an
oscilloscope X-Y display) gives an indication of the azimuth bearing. With
simple loop elements there is an ambiguity of 180° that can be eliminated by
adopting unidirectional elements. Developments of this basic system are
used by most of the current radar warning systems, as described by Baron,
Davis, and Hofmann (1982). A typical system consists of four wideband
antennas covering 360° of azimuth, as shown in figure 3.1. Gross angle of
arrival is determined by the antenna receiving the strongest signal. The
precise angle of arrival is calculated from the ratio of the signal amplitudes

received by adjacent antennas.
3.2.2 Amplitude comparison DF using Gaussian-shaped beams

Lipsky (1987a) analyses the relation between the signal amplitudes received
by adjacent antennas and the calculated bearing. Many modern amplitude
comparison DF systems use wide bandwidth cavity-backed spiral antennas.
The gain and beamwidth of a typical cavity-backed spiral antenna is
illustrated in figure 3.2. These antennas can operate over a bandwidth of
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close to a decade. The beam of a cavity-backed spiral antenna is

approximately Gaussian in shape, with a power pattern of the form:

7o =] ()

where ¢, is half the antenna -3 dB beamwidth (in radians) and K is a
constant of proportionality (typically K = 0.69). The power received by

antenna 1 is;

b, /2+ 2
o (25
0 (3.2.1)

Here the azimuth angle of arrival ¢ is measured from the crossover point
between adjacent beams, and ¢ is the angular separation between the
antenna beams. The amplitude ratio R, also called the monopulse ratio, is
given by the ratio of the received amplitudes in dB:

P
P
1

= }th)—g—l-(-{exp{(q)—; + w)z- (%5 - ‘P)z}]

%

R= 1010g10

20K¢ ¢ log 1 0(e )
= 2 (p
L (3.2.2)
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For Gaussian beams the amplitude ratio (in dB) is therefore a linear

function of the azimuth angle ¢. For a measured value of R the calculated
azimuth angle ¢ is given by:

z

3.2.3)

The linear slope C is determined by the angular separation ¢ and the
antenna -3 dB beamwidth (2¢4) alone. Using a look-up table the calculated
angle of arrival @ can readily be determined from the amplitude ratio R. If
the antenna has a constant beamwidth over the operating frequency band,
and the boresight direction of the beams does not change with frequency,

just one look-up table is required. In an ideal system ¢ = ¢. Let us
consider the main sources of error in a practical amplitude comparison DF
system.

3.2.3 DF errors in an amplitude comparison system
The effect of amplitude imbalance between channels on DF accuracy

If there is a difference in gain between the two channels that give the
amplitude ratio, the DF error A¢ is determined by calculating the partial
derivative of ¢ with respect to R. From (3.2.3):

2
I, 9,
d 66 .
and
2
A o= {h} AR
60 (3.2.4)
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The effect of an imbalance AR on DF accuracy is plotted in figure 3.3 for a
four-antenna DF system, showing that imbalance errors can be greatly

reduced by using beams with a narrower -3 dB beamwidth. The beams

' must, of course, be wide enough to overlap with the adjacent beams.

The effect of changes in the angular separaﬁon of beams on DF accuracy

The boresight direction of wideband beams can squint with frequency,
resulting in changes in the angular separation between beams. The
resulting DF error is determined by calculating the partial derivative of o
with respect to ¢¢ from (3.2.3):

' 2
99,  Re, 94

0, " g2 0y

so the magnitude of the DF error Ag, is a function of the incident angle:

)
Ap = - [ A0
| be (q’s ° (3.2.5)

Figure 3.3 shows a plot of the DF error as a function of the error in the
angular separation for antennas with a 90° -3 dB beamwidth Gaussian

beam.
The effect of changes in the antenna beamwidth on DF accuracy

Changes in the -3 dB beamwidth (2¢,, ) with frequency introduce a DF error

that is calculated from the partial derivative of ¢ with respect to ¢,. From
(3.2.3):

a(pc 2¢ 0R

¥ -
0 60,
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Substituting for R gives:
_ o %
A c= 2 b Ad 0
0 (3.2.6)

The DF error introduced by a variation in the -3 dB beamwidth (Ady/20,) is
plotted in figure 3.4 for a four-antenna DF system.

In the boresight direction of antenna 2 the the ratio Po/P; is at a maximum
Rmax S0 from (3.2.2):

(3.2.7)

For Gaussian beams with a -3 dB beamwidth of 90°, where ¢, =90°, R_ is
12 dB. For narrow beams the change in the ratio R with azimuth dR/d¢ is
large. This reduces the effect of imbalance errors, as depicted in figure 3.2.
So from accuracy considerations the -3 dB beamwidth should be small.
However, this does mean that more beams are required to cover 360° of

azimuth.

Signal processing on weak signals suffers from two problems: first it may
be buried in noise, a problem considered in the next section. Secondly,
signals picked up in sidelobes may disturb the DF operation. Signals
incident from azimuth angles outside the mainlobes are received on
sidelobes. This is analogous to active radar systems, where jammers
'inject' signals into sidelobes after the main radar beam has passed,
introducing an error into the azimuth angle. The same problem affects
amplitude comparison DF systems.

As an example consider an amplitude comparison system of using four
beams with a -3 dB beamwidth of 90° and a sidelobe level of -20 dB. Suppose

a weak signal is incident from a direction of 0°, the boresight direction of
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Figure 3.4 DF errors introduced by changes in the -3 dB
beamwidth in a four-element amplitude
comparison DF system (after Lipsky (1987a)).
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element 1, with a received amplitude x dBm. The amplitude received by
beam 2 is (x - Ry ,,) dBm. This ratio R, accurately indicates the signal
to be in the 0° direction. Suppose a jamming signal with an intensity of

y dBm is received by element 4 from the ¢ = 180° direction and this signal is
picked up by a -20 dB sidelobe of element 2, with an amplitude (y - 20) dBm.
The output of the receiver connected to element 2 is increased, shifting the
indicated bearing of the signal from 0° towards +90°. If the jamming signal
is strong i.e. if (y - 20) 2 (x - R ,4), gross DF errors will occur. This
problem can be alleviated by the use of thresholds to detect when strong

signals are present. For larger values of R the DF accuracy is more

max’
susceptible to jammers. Reducing sidelobe levels, one of the main aims of

this study, is clearly beneficial.

A jammer incident from an angle within adjacent mainlobes does not affect
- amplitude comparison DF - the system provides an accurate indication of
the jammer bearing. If both signal and jammer are incident on adjacent
beams, the indicated DF bearing will lie between the angles of the two
signals, at an angle closer to the stronger signal.

The effect of noise on DF accuracy

In an instantaneous amplitude comparison DF system each channel has
its own dedicated intercept receiver. Noise introduced by the receiver
components limits the DF accuracy for low amplitude signals. The noise
characteristics of receivers is beyond the scope of this study. However, we
will briefly consider the effect of noise on DF for the simplest receiver; the
wideband video detector diode with the equivalent circuit of figure 3.5.
There are three main types of noise generated by a diode. If the diode is
unbiased, the output is just thermal noise, 4KTAf, where K is Bolzmann's
constant, T is the temperature in degrees Kelvins and Af is the noise
bandwidth of the detector diode. If the diode is biased, shot noise
proportional to the bias current is generated. This simple analysis will
neglect the third type of noise; flicker (or 1/f noise). Torrey and Whitner
(1948) calculate the noise output from thermal and shot noise. The shot
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L s is the lead inductance
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Figure 3.5 The equivalent circuit of a detector diode
(after Lipsky (1987c)).

97



Cnapters - (urcular array aesign and analysis

noise power Ng introduced by the junction resistance is defined as:
N_.=2elIR.Af
S J

where I is the total diode current
e is the charge on an electron, 1.6 x10-12 C
Af is the noise bandwidth of the detector diode
Rj is the diode junction resistance of figure 3.5

The total thermal and shot noise power output N for the equivalent circuit
of figure 3.5 is:

R.N_ +R KTAf
N=""R_+R
d

3.2.8)
where R, is the base spreading resistance of figure 3.5

One measure of the sensitivity of a detector diode is the "Tangential
Sensitivity', defined as the RF input required so that the amplitude of the
signal plus noise just exceeds the peak noise level. Typically an RF input of
-50 dBm is required for a video bandwidth of 2 MHz.

Lipsky (1987d) computes the DF error produced by a given noise level.
Expressing the error in the calculated azimuth angle in terms of the

signal-to-noise ratios in the two DF channels:

2
ho 00 N N
? rMs o
® Sl S2

The diode noise power Ny is the same for both channels. The DF error is a
minimum at the crossover point where S, =S; =S and is a maximum in the
boresight direction of an antenna. The signal-to-noise ratio is also a
function of the incident field strength. For a given signal-to-noise ratio _
(S/N) the DF error can be plotted as a function of azimuth. Figure 3.6 plots
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the effect of noise on DF error, for a selection of signal-to-noise ratios, for a
four-beam system where the -3 dB beamwidth of the elements is 90°,
Clearly for larger values of R_,,, the DF accuracy is more susceptible to

noise.

3.2.5 The synthesis of beams for amplitude comparison DF using phase
modes

From this analysis of amplitude comparison DF systems the required
radiation pattern can be specified. For this study to have a practical
application to amplitude comparison DF, the synthesised beams should
have wideband properties significantly better than the cavity-backed spiral
antennas currently used:

* The phase comparison DF system of Karavassilis (1984) demonstrated a
four-element circular array operating over an HF bandwidth of 1.2
decades; wider than the (decade) bandwidth of a cavity-backed spiral.
The microwave components available for this study operate over the
frequency range 8 to 12 GHz, so pattern synthesis can only be
demonstrated over half an octave bandwidth. Nevertheless, the potential

for wider bandwidth operation can be analysed in this study.

* The mainlobe of the synthesised pattern should have a Gaussian
shape so (from (3.2.2)) the change in the amplitude ratio with azimuth is
a linear function. This allows us to adopt the intercept receivers and
signal processing components of existing amplitude comparison DF
systems. The mainlobe does not have to be perfectly Gaussian. Minor
deviations mean that the change in the DF ratio with azimuth will not be
perfectly linear. This can be corrected by a modified look-up table. The
boresight direction of the synthesised beams should not change with
frequency.

* The absolute gain of the beam should be better than that of existing DF
elements such as cavity-backed spirals - see figure 3.2. A figure of 0 dBi
is acceptable. A degree of variation in the absolute gain with frequency is
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acceptable, since this does not affect the amplitude ratio of (3.2.3).

The maximum value of the DF ratio Rp,,, occurs for signals incident
from the boresight beam direction. For the cavity-backed spiral R ax i8
about 14 dB. This is a good compromise between good DF accuracy on
strong signals and sensitivity to noise on weak signals. For a Gaussian
beam this corresponds to a beamwidth of about 360°/N, where N is the
number of beams.

The synthesised beams should have a constant -3 dB beamwidth as a
function of frequency. Any change will seriously affect DF accuracy.
Inspection of figure 3.2 shows that for a cavity-backed spiral the -3 dB
beamwidth changes typically by £10° over the frequency range 8 to 12
GHz. In theory radiation patterns with a perfectly constant beamwidth
can be formed with a circular array, provided changes in the phase mode
coefficients with frequency are compensated - see section 2.3.5.

The synthesised beam should have an azimuth beamwidth that

does not change when a cut of the azimuth beam is measured at elevation
angles above 8 = 0°. In this case a single wideband look-up table of
indicated angle ¢, against amplitude ratio R will suffice. The theoretical
variation in the azimuth -3 dB beamwidth with elevation of Chebyshev
beams synthesised from phase modes is analysed in section 2.4.2. This
predicted a variation of less than +4° on a -3 dB beamwidth of 79°, over the
elevation range from 0° to +40°.

The synthesised pattern should have low sidelobes. This reduces the
susceptibility of the system to jamming by high powered wideband
sources. Typically cavity-backed spiral antennas have sidelobes of about
-20 dB. By applying linear array equivalence to phase modes any desired
sidelobe level can be realised, albeit at the expense of an increase in
beamwidth. A sidelobe level of -30 dB will be aimed for in this study,

10 dB lower than that of cavity-backed spirals. The reason for this choice
of sidelobe level becomes clearer later; both spatial harmonics and errors
in the excitation of the array by the beamformer set this sidelobe level.
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* Cavity-backed spiral antennas are circular polarised. As
explained in section 2.4.1 the circular array will use elements that are
sensitive to vertically polarised signals only, so the horizontally
polarised component of an incoming signal is not detected.

The beam of figure 3.7 can be formed using a four-element circular array.
Applying a Chebyshev amplitude taper gives equal level -30 dB sidelobes, as
described in section 2.1.4. This plot shows that the mainlobe of the
Chebyshev mainlobe is approximately Gaussian in shape. The DF
calculations of section 3.2 remain valid, although the wideband look-up
table of indicated angle ¢, against amplitude ratio R will not be perfectly
linear. If four overlapping beams are used, the -3 dB beamwidth of 82°
gives a maximum DF ratio Ry, 0of 15 dB. The theoretical study of section
2.4.1 predicted that beams formed from compensated phase modes do not
squint, either as a function of frequency or elevation. The absolute gain will
depend on the gain of the array elements selected, considered in the next

section.

3.3 Circular array design

3.3.1 The number of elements

Butler matrices excite circular arrays with a number of elements N in the
series 1, 2, 4, 8, 16, ...... 20, For an N-element array, the highest order
phase mode that can be excited independently is M = N/2. Since the
complexity of the Butler matrix increases rapidly as the number of
elements increases, the number should be kept to a minimum. The
simplest circular array uses just two elements connected to a single 180°
coupler. This forms the Oth order mode and one amplitude mode with a
cos(¢) azimuth pattern. This array can form radiation patterns with two
(non independent) nulls, insufficient for this study. A four-element
circular array connected to a 4 x 4 Butler matrix can excite the oth, +1 and
+2 order phase modes, forming patterns with four nulls. The -30 dB
sidelobe pattern of figure 3.7 can be formed with these modes. Since a
second 4 x 4 Butler matrix can form four beams with the required
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separation of 90°, all the requirements for an amplitude comparison DF
system are fulfilled.

An eight-element circular array connected to an 8 x 8 Butler matrix can
excite phase modes up to the 4th order. These can be used to form a
narrower (~45°) beamwidth Chebyshev beam suitable for an eight-beam DF
system. With narrower beams greater DF accuracy is possible and
tolerance to jammers is improved. A second 8 x 8 Butler matrix can form
eight beams, spaced 45° apart in azimuth. This system would require two 8
x 8 matrices with (N/2) log, (N) couplers, 24 altogether. A four-element
circular array was chosen for this study for two reasons. First, the cost of
24 couplers was prohibitive. Secondly, considerable difficulty was
encountered in building microwave 4 x 4 Butler matrices, simple RF
networks compared with 8 x 8 matrices. The problems encountered in the

construction of beamforming networks will be discussed in chapter 4.
3.3.2 The array radius

As described in section 2.3.4, the upper limit on the array radius is
determined by the magnitude of the harmonic terms. The magnitude of the
harmonic, relative to the fundamental, should be less than the specified
sidelobe level, -30 dB in this case. For a four-element circular array the 37d
order mode is the most significant harmonic, as it has the highest
amplitude. The amplitude of the 3™ harmonic is determined by its phase
mode coefficient. The amplitude of this harmonics is plotted in figure 2.9
for both arrays of omnidirectional elements and elements with a (1 + cos(y))
directional pattern. In either case the effective array radius (1/A) must be
less than 0.15 for the 3'¢ harmonic to be below -30 dB in amplitude. So at
the top of the band (12 GHz):

r/A <015 (3.3.1)

giving a radius below 3.75 mm and an inter-element spacing of 5 mm. For
this small inter-element spacing the phase mode coefficient for the second
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order mode is low in amplitude (~ -15 dB) relative to the 0th order mode.
This is because the real part of the phase mode impedance for this mode
(calculated in section 2.2.5) is small for close-spaced elements. As the
frequency drops, this mode becomes a superdirective excitation of the
circular array, with a rapid change of phase (r radians) between elements
less than A/4 apart. While a large amplitude taper on the 2" order mode is
actually needed for the Chebyshev beam, the problem of exciting the mode

with the strict tolerance required for a superdirective excitation remains.

Increasing the number of elements in the array does little to reduce the
problem of harmonics. Theoretical synthesis studies based on equation
(2.3.1) showed that the effect of the 5th order harmonics on Chebyshev
beams formed by an eight-element array were very similar to the effect of
3rd order harmonics on Chebyshev beams formed by a four-element
circular array. The eight element system has a small advantage because
the narrower mainlobe has a higher directive gain, and consequently the

relative level of sidelobes caused by harmonics is lower.

Let us briefly consider the circular array design for a different application.
Suppose a sin(Nx)/Nsin(x) pattern was required, by exciting the phase
modes with equal amplitudes. If four omnidirectional elements are used,
an array radius of about r/A = 0.3 is suitable. For this radius the oth 1st and
2nd grder modes have theoretical amplitudes (figure 2.9a) within 5 dB of one
another. For this radius the 3" order mode has an amplitude of about -23
dB, but the effect on -13 dB sidelobes of this harmonic would be small. The
gain could be improved by adopting elements with a directional pattern,
possibly by using a pillar at the centre of the array to act as a simple
reflector. With a shallow {1 + cos(¢)} element pattern the 0th, 15t and 2nd
order modes have theoretical amplitudes (figure 2.9b) within 2 dB of one
another, for an array radius of r/A = 0.353. The 3rd order mode, at an
amplitude of -15 dB increases the first sidelobes by about 2 dB to -10.2 dB,
calculated using (2.3.1).
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3.3.3 Selecticn of the element type

As explained in section 2.4.1, elements with a single linear polarisation are
required. The microwave antennas considered included horns, slots,
dipoles, monopoles and the 'Vivaldi Aerial' of Gibson (1979). The
separation of the element phase centres needed is just 5 mm. This small
inter-element spacing severely limits the choice of elements. Most of the
elements considered were physically too large to meet this criterion. Since
the element aperture is small the elements will have radiation patterns
that are omnidirectional, or with low directivity.

For an antenna facing an infinite flat reflector, the phase centre of the
image lies behind the plane of the reflector. The possibility of using
elements such as horns, but facing a central reflector was considered, but
rejected because of its complexity. This idea is discussed further in chapter
6.

The only elements small enough to fit 5mm apart were vertically oriented
dipoles or monopoles. Even with dipoles, the semi-rigid coaxial feeds were
very large relative to the size of the array, causing location problems. An
array with four vertical monopoles located on a ground plane 50 ¢cm in
diameter was finally adopted. The monopoles were fed from under the
ground plane by the 0.3 mm wide centre conductor of a semi-rigid cable,
with the outer soldered to the ground plane. Monopoles 7.5 mm long,
resonant at the centre of the band (10 GHz), were chosen to maximise the
gain. Elliott (1981c) notes that the real part of the monopole impedance is
largely independent of the monopole thickness, but the change in the
reactive component with frequency is less for thick monopoles. For this
study 1 mm diameter monopoles were used. Figure 3.8 is a photograph of
this array (constructed at UCL).

Rahim and Davies (1982) recommend the use of directional elements,
rather than omnidirectional elements for wideband performance. To make

the elements directional, the use of a central pillar as a reflector was
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Figure 3.8 A photograph of the four element circular array of monopoles.
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investigated. The image of the element in the reflector acts as a second
monopole, excited in anti-phase. The close spacing of the primary element
and the image results in an inefficient element with a low radiation
resistance. This drastically increased the measured mismatch of the
element to the feed. The calculated reduction in gain was unacceptable. In
any case the measured element patterns of section 3.5 show that additional

directivity is not needed.

3.4 The phase mode impedance of the array elements

3.4.1 Calculation of the phase mode impedance

When a circular array is excited by a single phase mode the element
impedance is a function of the mode order m. In section 2.2.5 the phase
mode impedance is calculated from the self- and mutual-impedances of the
array elements, expressed in terms of the open circuit z parametei's. For a

four-element array:

7%= 711 + 2219 + 213

zl-2z1= 211 - 213

72 =21 - 2215+ 243 (3.4.1)
At microwave frequencies, measuring the open circuit z parameters

directly is impractical. However, z parameters can be derived from

measurements of scattering parameters using the matrix transformation:

-1

[
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Measurements were made of the s parameters at the semi-rigid feeds for
the four elements using an HP 8410B network analyser over the frequency
range 8 to 12 GHz, as shown in figure |3.9(a). Unused element ports were
terminated in 50 Q loads. To correct for the length of the element feed
cables, the element drive points were shorted to the ground plane and the
reflection measurements repeated to provide a phase reference plane. The
z parameters were calculated using a Fortran matrix solution routine, and
are plotted in figure 3.10. The theoretical self-impedance of a monopole is
also plotted, using the equation of Tai (1961) for calculating the input
impedance of a centre fed dipole. The monopole impedance is half that of a
dipole of corresponding length. At the centre of the band the measured real
part of the element self-impedance Q{(zn) is close to the theoretical value of

36.5Q for a A/4 monopole, while the imaginary part crosses through zero at
about 9 GHz.

The theoretical mutual-impedances of closely spaced monopoles are also
plotted, calculated using the technique of Brown and King (1934) for two
coupled linear parallel antennas. For both the self- and mutual-
impedances there are quite large differences between the theoretical and
measured results, particularly at the ends of the frequency band. These
differences can be attributed to several factors:

* Neither of the theoretical techniques take account of the feed structure.
The monopoles used here were fed by the 0.3 mm wide centre conductor
of a semi-rigid cable, with the outer soldered flush to the top of the ground

plane.

* The calculations of Brown and King used here to determine the mutual-
impedances of monopoles assume that 'thin' monopoles are used. The
monopoles used here have a diameter of /30 at 10 GHz. While the self-
impedance calculations do take account of the diameter, 2/30 is close to
the limit for these equations.
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* The theoretical results assume that the current distribution along the
elements is sinusoidal. The elements are in close proximity, just A/6
apart, and this will disturb the current distribution. Changes in the
current distribution may explain the rapid changes in the impedance
close to 11 GHz.

Alternative theoretical techniques might improve the agreement between
the theoretical and measured impedances. For thick monopoles the
current distribution is not sinusoidal, although this is a good
approximation. To find the current distribution an integral equation is
derived and solved, usually by Moment Method techniques, as described by
Balanis (1982a). Applying these theoretical techniques is time consuming
and beyond the scope of this study. Nevertheless, the approximate
equations used here provided a useful prediction of the element
impedances, and hence the phase mode impedance. For elements with a
more complex structure, such as spiral antennas, little theoretical
information is available about the self- and mutual-impedances, so

measured results must be used.

The phase mode impedances calculated from the measurements of the
scattering parameters using (3.4.1) are plotted in figure 3.11. This
technique for calculating the phase mode impedance can be applied to
circular arrays with more elements by inserting the required value of N
into (2.2.10). This technique can also be applied to arrays of elements with a
directional radiation pattern. This technique may not work with elements
where there are different 'modes of coupling’' between adjacent elements,
as discussed in section 2.4.1 on the polarisation of phase modes. To check
the calculated phase mode impedances, a technique for the direct

measurement of the phase mode impedance was devised.
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3.4.2 Direct measurement of the phase mode impedance

If a Butler matrix is used to excite a circular array, there is a mismatch
between the characteristic impedance of the feed (50 Q) and the phase mode
impedance of the array elements Z™. This results in a reflection. If the
array is excited by a single mode of order m the amplitude and phase of the
reflection from the array element is given by the equation:

z" -7
I
™ A/
0 (3.4.2)
where Zj is the characteristic impedance of the matrix feed. By symmetry
the magnitude and phase of the reflection from all of the array elements is
identical. The reflection from the four elements appears at a single output
port of the Butler matrix. Taking into account the electrical length of the

matrix:

2Bl is the two-way propagation phase of the matrix. In practical layouts the
length of the element feeds should also be included in the calculations.

If the +1 phase mode port of a 4 x 4 Butler matrix is excited, analysis of the
matrix transmission phases show that the reflection appears at the
conjugate -1 phase mode port. This conjugate reflection is true for any
phase mode. In the case of the 2nd grder amplitude mode (C2) formed by a
4 X 4 Butler matrix, the reflection returns to the same input port (C2). This
is true for all amplitude modes, including the 0th order mode. The mode
impedances of the mth amplitude mode and the mth phase modes are

identical
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To perform measurements of the phase mode impedance for the four-
element array a 4 x 4 'amplitude mode matrix' was connected to the
circular array, as shown in figure 3.9. This matrix, described in greater
detail in chapter 4, is very similar to the familiar wideband Butler matrix,
but is made from just one type of hybrid coupler, and uses fewer
components. This matrix forms the 15t order cosine and sine (C1 and S1)
amplitude modes, rather than the +1 and -1 phase modes formed by a
Butler matrix. The mode impedances were calculated from reflection (s,;)
measurements using an HP 8410B network analyser. Short circuits at the
element drive points were used to define a phase reference plane, enabling
the length of the matrix and element feed cables to be calculated. The
measurements were performed over the band 8 to 12 GHz, the operating
band of the amplitude mode matrix. The calculated phase mode
impedances are plotted in figure 3.11, allowing comparison with those
calculated from the self- and mutual-impedances of the array elements.
Agreement is generally very good. Differences can be attributed to
component errors in the matrix feed. The (two-way) transmission
amplitude and phase errors of the hybrid couplers change the amplitude
and phase of the signal returned to the mode port. The Butler matrix was
set up to have the correct transmission amplitude and phase at the centre of
the band, so the results close to 10 GHz are very good. Of course, these
errors do not affect the impedances calculated from the element self- and
mutual-impedances, where the network analyser was connected directly to
the element feeds.

For the 0th order phase mode excitation, R(z%) is about 90Q - mutual
coupling increases the real part of the element impedance. For the 1st
order phase mode R(z*1) is reduced by mutual coupling to about 12Q. For
the 204 order mode R(zC2) is very low, only 1 or 2Q. The small negative real
impedances registered at 10.75 GHz for R(zC2) are attributable to an
imperfect calibration short. The reference short was applied by using a
loop of malleable wire to short the bottom of the array element to the ground
plane. This short may have been imperfect at microwave frequencies,

resulting in the erroneous negative impedance of the 2nd grder mode.
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3.4.3 Phase mode impedance matching

The magnitude of the reflection from the element mismatch is given by
(3.4.2). Ideally, if the characteristic impedance of the feed is matched to the
phase mode impedance, then there is no reflection at the element feed.
This gives the maximum transfer of power from the feed to the array
elements. For a feed with a given characteristic impedance, the loss of
efficiency (in %) caused by the mismatch can be calculated using:

P d
E=P—”’-x1oo

m

2
out
= l—gyj—n% x 100

(A m) (3.4.3)

A_ is the input voltage at the mtP mode port, and V"“‘"m is the voltage of the
reflection from the element/feed mismatch, seen at the same mode port.
For the 2Md order mode the efficiency will be low, as there is a large
mismatch between the real phase mode impedance of 1 Q to 2 Q and the
50 Q feed, as well as the reactive mismatch. Davies (1983) considered
impedance matching at the phase mode port as a technique for reducing
the mismatch loss. For maximum efficiency, the input impedance at the
mode port should be matched to the complex conjugate of the phase mode
impedance Z™*. In this case the voltage at the element drive point VEis
given by:

E A
v =Am(—m——mTJ
Z +Z

and there is no reflected signal. The electrical length of the Butler matrix
feed must also be taken into account. Unless the length is small compared

with a wavelength, this will act as an impedance transformer, so the input
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impedance of the matching network should be matched to the transformed

phase mode impedance:

i

m
Z7() = 4 +iZ tan(pl)

Z,+iZ" tan(Bl) (3.4.4)

where Z is the characteristic impedance of the Butler matrix and Pl is the
effective electrical length of the matrix. Table 3.1 below compares the
electrical lengths of microwave matrices with the lengths of VHF and UHF
matrices (all constructed at UCL).

Electrical length in x;vavelengths

Xband . UHF \ VHF
@10GHz , @300MHz | @60 MHz
7334 | 06150 | 0261
\ \

Table 3.1 The electrical length of 4 x 4 Butler matrices.

The microwave matrix is very long in terms of wavelengths. Titze (1988)
measured the change in the match with frequency caused by the electrical
length of the matrix. The mode ports of the 4 x 4 amplitude mode matrix
were matched using a triple stub tuner, as depicted in figure 3.12. The
tuner input impedance at 10 GHz was the conjugate of the (transformed)
mode impedance. Figure 3.12 depicts the measured change in the
reflection coefficient with frequency, showing that the magnitude of the
reflection coefficient increases to -3 dB within just 50 MHz of 10 GHz. This
is in good agreement with theoretical calculations of the change in match
with frequency, also plotted in figure 3.12. The theoretical plot used
equations based on (3.4.4).
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Figure 3.12 Impedance matching at an amplitude mode port, showing

the match bandwidth produced by a triple stub tuner at the
C2 amplitude mode port (after Titze, 1988).
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These measurements show that amplitude mode impedance-matching is
narrowband at microwave frequencies. The amplitude mode impedance
seen at the mode port changes very rapidly with frequency, transformed by
the long electrical length of the matrix. Over this small frequency range,
changes in the true phase mode impedance, as seen at the element port,
were small by comparison. Another disadvantage of this matching
technique is the presence of standing wave fields in the transmission paths

of the matrix, leading to greater transmission losses.

As stated by Guy and Davies (1983a) it is attractive to have full orthogonality
between phase modes. He suggested a technique for eliminating the
reflection of signals at the conjugate port using circulators. The loss of
orthogonality can also be corrected by impedance matching. If the 15t order
C1 and S1 amplitude modes, formed by a amplitude mode matrix, are
matched using stub tuners, they can then be combined using a quadrature
coupler. This produces the familiar 4 x 4 Butler matrix layout. The +1 and
-1 phase modes will now be (narrowband) matched, so for an input at the
+1 phase mode port, there is no reflection seen at the conjugate -1 phase
mode port. At lower operating frequencies, wide bandwidth operation
might also be feasible.
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3.5 Characteristics of the of the radiated phase modes

3.5.1 The radiation pattern and gain of the monopole elements

Measurements of radiation patterns were made using the anechoic
chamber facilities at UCL. Full details of the measurement system are
given in section 5.1 of chapter 5. First the azimuth pattern of the monopole
element was measured. For these measurements a 50 Q impedance feed
was used, and the three unused elements were terminated in 50 Q loads;
the characteristic impedance of the Butler matrix. For an array located on
a finite ground plane the peak gain is located above the horizon, so the
azimuth radiation pattern of the monopole element was measured at a
fixed elevation angle of +8°. Plots of the azimuth radiation patterns at 1
GHz intervals across the frequency band are plotted in figure 3.13. An
isolated vertical monopole is theoretically omnidirectional in azimuth. The
measured radiation pattern is not perfectly omnidirectional; at 10 GHz the
pattern has a front-to-back ratio of 2.5 dB. The -3 dB beamwidth of the low
gain mainlobe changes by about 20° across the band. At 8 GHz the gain is
actually slightly higher in the ¢ = 180° direction, compared with the ¢ = 0°
direction.

The elevation pattern of the monopole is plotted in figure 3.14, for a

frequency of 10 GHz. Also plotted is the theoretical radiation pattern of a A/4
monopole element:

cos {-’2£ cos (9)}

F(6) = sin(0) . 351)

Agreement between the two patterns is fair, although there is a ripple on
the measured elevation pattern, with a periodic spacing in elevation of
about 9°. This is a result of using a finite ground plane 50 cm in diameter
(16 wavelengths). Storer (1952) predicts that for a ground plane of this size,
an amplitude ripple with a periodic spacing of about 8° in elevation will be
produced. The measured mainlobe peak is at about +13° of elevation,
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Figure 3.13 Anechoic chamber measurements of
monopole radiation patterns across the
band 8 to 12 GHz.
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Figure 3.14 Measured elevation pattern of a monopole
element at 10 GHz, with the other array

elements terminated in 50 Q loads.
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rolling off by -6.5 dB at 0° elevation. This can be compared to the theoretical
drop of -7.4 dB for an isolated monopole, given by Tai (1961). These
measurements were repeated across the band 8 to 12 GHz, revealing only

minor changes in the elevation pattern with frequency.

The theoretical directivity D of a A/4 monopole on an infinite ground plane is
1.64, relative to an isotropic antenna. This is the same directivity as that of
a half wavelength dipole in free space. The directivity changes with
frequency, as the effective length of the monopole changes, but over the (half
octave) operating bandwidth used here the change is small. Even for an
infinitesimal dipole the directivity is only 0.3 dB lower than that of a half
wavelength dipole. For a lossless monopole element the gain over isotropic

GiE is the same as the directivity, but in practice losses reduce the gain:
GiE(¢,9) = e; D(¢,9)

where e, is the total antenna efficiency. This contains three main

components:
* Conduction losses, due to the finite resistance of the element.
* Dielectric losses, for elements using dielectric materials.

* The mismatch between the element impedance and the feed
impedance (50Q).

Since the monopoles are not matched to the 50Q feed the most significant
loss is the mismatch loss. The other losses are very difficult to calculate
theoretically and are in any case small (< 1%) for short copper monopoles
(or dipoles), as calculated by Balanis (1982b). The reduction in gain due to

the mismatch is calculated using:
GEe.p=1- |p|2)D6W

where p is the mismatch between the element self-impedance and the 50Q
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impedance of the network. Figure 3.15 plots the theoretical monopole gain,
using the theoretical element self-impedance of figure 3.10 to calculate the
mismatch. The theoretical gain is plotted at two elevation angles, 0° and

+13°. This is to allow comparison with the measured peak gain, at +13° of

elevation because a finite ground plane was used (figure 3.14).

Figure 3.15 also plots the change in the measured monopole gain with
frequency. This was measured in an anechoic chamber using the
techniques described in section 5.1. A standard gain horn was substituted
in place of the array to provide a gain reference. The monopole gain is
greatest at the centre of the band, where it is resonant. The results are in
fair agreement, except at the top of the band where the measured gain is
lower by 1.5 dB. Theoretical results do not take into account the presence of
the other three monopoles, terminated in 50 Q loads for this measurement.
Coupling to the other elements will result in a loss of gain and the radiation
pattern is no longer omnidirectional, as shown in figure 3.13. Determining
the changes in the theoretical gain caused by the presence of the other
monopoles is a complex task, and would have contributed little to the main

aim of this study.
3.5.2 Calculation of the phase mode coefficients

Inspection of equation (2.4.3) shows that the directivity of a phase mode is
the same as that of the array element, but weighted by a complex term,
called the phase mode coefficient. The peak directivity is at the same
elevation angle as that of the element, +13° for the monopoles used here due
to the finite ground plane. Figure 3.16 plots the theoretical gain of the 0th
order mode across the frequency band 8 to 12 GHz calculated using the

equation:

GT(0) =G (O) , (Br cos ()

G;E is the theoretical gain of the<i monopole element, including
mismatch losses. For comparison the measured gain of the 0th order mode
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Figure 3.15 A comparison between the measured gain of a
monopole element, and the theoretical gain.
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Figure 3.16 A comparison between the measured gain of the
zero order phase mode, and the theoretical gain.
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is also plotted in figure 3.16. There is a discrepancy between the two
results, with the measured results low by 1 dB ( at 8 GHz) and

2 dB (at 12 GHz). Two reasons for this can be identified. First there are
losses in the matrix feed, each hybrid coupler introduces a loss of 0.8 dB
maximum. Secondly, the measured gain of the monopole is about 1.5 dB
lower than the theoretical value at 12 GHz, hence the 2 dB of loss at the top
of the band, compared to the theoretical result.

Let us now consider the gain of the higher ofder modes. To perform
pattern synthesis with a circular array, the phase mode coefficients for our
array must be known, as these determine the relative amplitudes and
phases of the modes. As monopoles are omnidirectional in azimuth the
phase mode coefficients for the array should be those depicted in figure 2.9,
for an array where r = 3.53 mm. However, as shown in figure 3.13 earlier,
the radiation pattern of an element 'embedded’ in a circular array is
different to that of an isolated element, due to mutual coupling. King, Mack
and Sandler (1968) calculate the effect of mutual coupling on the current
distribution for a circular array of thin dipole elements. For directional
element types, the mode coefficients have been measured experimentally,
using a Butler matrix feed to excite the array. For example Rahim, Guy
and Davies (1981) give the measured mode amplitudes for a UHF circular

array with directional elements.

The technique of Jones and Griffiths (1988) calculates the phase mode
coefficients from measurements of the radiation pattern of an array
element, located in the array environment. Any excitation of a circular
array can be expressed in terms of a series of phase mode terms, so exciting
a single array element with an RF source is also a modal excitation of the
array. Appendix 1 proves that exciting a single element of a four-element

circular array can be expressed modally:

m=+oo

F = K ejmq’
(@) m;-oo m (3.5.2)

This is the phase mode expression for the measured monopole radiation
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pattern of figure 3.13. This radiation pattern is the same as that formed by
connecting a Butler matrix to the array, and exciting the four phase mode
ports with equal amplitude. As the radiation pattern of (3.5.2) is the sum of
a Fourier series, the complex coefficient K, , for the +m order mode can be

calculated using the standard integration:

2n
K, n= 71,; ({F(¢) ™™ do ' (3.5.3)
Both phase and amplitude information is required for this calculation. By
repeating this integration for all values of m the mode coefficients for all the
fundamental and harmonic terms can be calculated from this single
azimuth measurement. For element patterns that exhibit symmetry about
the radial boresight axis (which is generally the case) the mode coefficients
for the -m modes are the same as those of the +m modes. The integration
was done on the data of figure 3.13 using an HP 85 desktop computer with a
BASIC program using Simpson's rule. By repeating the calculations at 1
GHz intervals across the frequency band, changes in the mode coefficients

as a function of frequency were calculated, and are plotted in figure 3.17.
3.5.3 Direct measurement of the mode coefficients

To verify these results the phase mode coefficients were measured directly
by exciting the amplitude modes using a 4 x 4 amplitude mode matrix, as
described in section 3.4.2. The 0th, 1st and 2nd order amplitude modes were
excited in turn, and the radiated mode characteristics were measured in
an anechoic chamber, again at 1 GHz intervals across the band. Figure
3.18 depicts the radiated amplitude modes at 10 GHz. From this figure the
direct plot of the mode coefficients (figure 3.17) is taken. There is good
agreement between the coefficients calculated from the monopole
measurements and those measured directly, within 1 dB and *5° for the
Oth, 1st and 2nd order modes. Differences are mainly due to component
errors in the matrix feed. These affect the directly measured coefficients,

but not those calculated from measurements of the element patterns.
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Figure 3.17 A comparison between phase mode coefficients
measured directly, and those calculated from
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amplitude modes at 10 GHz.
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The 34 order ripple on the 15t order mode was not immediately apparent.
Numerical integration of the 15t order C1 amplitude mode pattern using
(3.5.3) showed that there was a third order harmonic component with an
amplitude of about -30 dB, as predicted. Both sets of measurements showed
that the mode coefficients for harmonics of order four and above were of
negligible magnitude (< -40 dB below the 0th order mode). For ¢ = 0° the
measured phase of the C1 mode is -114° (figure 3.18), while the plotted
phase is +66° in figure 3.17. This -180° discrepancy is explained by the
amplitude mode matrix transmission phase (see table 4.7 in chapter 4).
This effect also explains the -90° discrepancy for the C2 mode.

The measured mode coefficients are not the same as those expected for a
circular array composed of elements that are, in isolation, omnidirectional.
For example, the magnitude of the 2"d order mode relative to the Oth order
mode is about 10 dB higher than that theoretically calculated for
omnidirectional elements with an inter-element spacing of A/6. Clearly
mutual coupling plays a major role in determining the mode coefficients.

Let us consider the theoretical gain of directional beams formed from phase
modes. The directive gain of beams is higher than that of the
omnidirectional modes. From Balanis (1982c¢) for a uniformly excited

linear array of N isotropic elements, the directivity is:
2 N (d/A) (3.5.4)

so for a five-element linear array with an inter-element spacing of A/2 the
directivity is 7 dB. For a circular array where five phase modes are excited
with equal amplitude the directivity D is the same, despite the change in
scale from sine(¢) space to ¢ space. The absolute gain, however must take
into account the gain of the phase modes. For a uniform excitation of the
modes G;0 = G;! = G;2 = G;™. The gain of the beam is the product of the
directive gain of the beam D and the gain of the phase modes:

b m
G;=D;G; (8.5.5)
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For linear arrays, applying a taper reduces the directivity. Balanis (1982d)
calculates the directivity for a Chebyshev beam. For a five-element linear
array, with an inter-element spacing of /2 and a -30 dB sidelobe level the
directivity D is 3.5 dB. This is also the directivity of the Chebyshev beam
formed by the five phase modes of a four-element circular array. The
theoretical gain of the Chebyshev beam will be 3.5 dB higher than that of the
Oth order mode, plotted in figure 3.16.

One final factor must be taken into account in predicting the gain; the
amplitudes of the higher order modes. At 8 GHz the 274 order mode is

-15 dB in amplitude, relative to the 0th order mode, but the Chebyshev taper
requires the 24 order mode to be -9.94 dB in amplitude. Since the use of
wideband amplifiers was not planned, the 0th order phase mode must be
attenuated by 5 dB to realise the correct taper, with a corresponding loss in
the gain of the synthesised beam. Thus the gain of the beam Gy, becomes:

Gy,(dB) = D(dB) + G;%dB) - A, (dB) (3.5.6)

where A, is the attenuation applied to the 0th order phase mode, in dB. At 8
GHz the absolute gain of the Chebyshev beam is reduced to -3 dBi.
Attenuation of the Oth order mode is not necessary above 10 GHz , as the 2nd
order amplitude mode is above -9.94 dB in amplitude. This problem does
not arise with the 15t order mode, since the mode amplitude is higher than

the specified taper across the band

To conclude, the monopole array is suitable for pattern synthesis over the
frequency range 8 to 12 GHz. The relative amplitudes of the Oth, 15t and 2nd
order modes have approximately the right taper for a -30 dB Chebyshev
pattern. The amplitude of the 274 order mode is rather low

(-15 dB) at the bottom of the band. This could be altered by increasing the
array radius, but the 374 order harmonic is already rather high (at -30 dB)
and increasing the radius increases the amplitude of this harmonic.
Changes in the relative amplitudes and phases of the modes across the
band are monotonic and smooth, and should prove amenable to

compensation, as has been considered in the next chapter.
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Chapter 4

Wideband beamformer design

4.1 Introduction

This chapter considers the design of wideband beamformers to form
radiation patterns using a phased circular array. Section 4.2 is a
theoretical study of the effect of beamformer errors on the synthesised
beams. This information is used to evaluate the beamformer designs in the
rest of this chapter.

Section 4.3 describes the evolution of the beamformer design over the course
of this study, the prime aim being to reduce excitation errors to acceptable
levels, as defined in section 4.2.

As explained in chapter 2, the array excitation required to form a wideband
radiation pattern changes as a function of frequency. This is necessary to
compensate for changes in the phase mode coefficient. Section 4.4
considers the design of RF networks to compensate for these changes.
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4.2 The effect of theoretical beamformer errors on synthesised
beams

4.2.1 Beamformer parameters that degrade the shape of the synthesised
beam

The theoretical study of chapter 2 showed that radiation patterns that do not
change shape with frequency can be formed using a circular array.
However, errors in the excitation of the array change the synthesised
pattern. Beamformer errors can alter the beam in five ways:

o The peak gain of the beam is changed.
. The -3 dB beamwidth is changed.

. Sidelobe levels are increased.

. Nulls are filled in.

. The beam squints.

Changes in the peak gain, compared with that of overlapping beams
reduces the DF accuracy of an amplitude comparison DF system, as
calculated in section 3.2. Changes in the -3 dB beamwidth also reduces the
accuracy. Increased sidelobe levels and filled-in nulls increase the
susceptibility of the system to interfering signals.

Figure 4.1 illustrates the beamformer design initially chosen to form
wideband beams using the four-element monopole array, based on the
general design of figure 1.1. The network can be divided into three sections

(overleaf):
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* A wideband 4 x 4 Butler matrix used to form the orthogonal phase

modes.

* Two-port frequency compensation networks connected to each of the
phase mode ports. These correct changes in the amplitude and phase
of each of the modes with frequency. These also apply the taper to form
a low sidelobe pattern.

* A second wideband 4 x 4 Butler matrix used to form four overlapping

beams from the compensated modes.

Figure 4.1 shows a wideband Butler matrix design containing three 180°
couplers and one 90° coupler. Omni Spectra 180° couplers type 2031-6335-00,
were purchased for this matrix. The manufacturers specification for this

device is given in given in table 4.1 below.

Frequency range 8.0t012.4 GHz
Coupler amplitude imbalance +0.5 dB

Phase error +6°

Insertion loss +0.8 dB
Isolation between inputs 17dB

Input VSWR (Max) 1.40

Table 4.1 The manufacturers specification for Omni-Spectra
180° couplers type 2031-6335-00.

The formation of wideband Chebyshev beams is one aim of this study.

i Errors in the hybrid couplers degrade the wideband pattern. Three main
| sources of error can be identified from this specification (overleaf):
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* Errors in the transmission amplitude and phase of the device.

* Imperfect matching of the device to the 50 Q characteristic impedance
of the beamformer

e Imperfect isolation between input ports.

The insertion loss reduces the absolute gain of the synthesised beam, but
does not affect the shape. This was observed in figure 3.16, where the gain
of the zero order mode was reduced by 1 dB due to this loss. In this chapter
an insertion loss of +x dB is commonly called a transmission amplitude of
-x dB.

4.2.2 The effect of compensation network errors on synthesised beams

Let us first consider transmission phase and amplitude errors. The
simplest errors to analyse are transmission errors in the compensation
networks, as opposed to those in the matrix. The specified (complex)

compensation required is calculated using (2.3.7):

" Knlf) (4.2.1)

K_,(f) is the phase mode coefficient for the circular array. W_, is the
amplitude taper applied to the m*? order phase mode. The theoretical
radiation pattern at a frequency f is calculated using:

M .
F(¢)= . \ A_K_(f) el™?

m=-M (4.2.2)

The amplitude of the compensation can be specified in polar form, with an
amplitude 20 log( | A_, | ), and a phase arg(A ). Suppose that the specified
compensation of one of the modes is -2.5 dB, while only a -3 dB wideband
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attenuator is available. The modified radiation pattern is given by the

equation:

M .
F(o)= 3 A _(HK_eI™
m=-M (4.2.3)

where A’m(f) includes the errors in the transmission amplitude and phase
of the compensation. Let us consider the effect on a radiation pattern of an
amplitude error AA, and a phase error AP. While the equations above are
general, this analysis will concentrate on patterns formed from the 0th, 1st
and 24 order phase modes; the modes of a four-element circular array. In
this analysis it is assumed the four phase modes are of equal amplitude,
rather than tapered - this is the worst case for vector errors. Equation
(4.2.3) can easily be adapted to include amplitude tapers.

The effect of transmission errors on nulls

At azimuth angles ¢ where there is a null in the ideal radiation pattern the
vector sum of the terms in (4.2.2) adds up to zero. The effect of phase and
amplitude errors is to leave a resultant R that fills in the nulls. For a given
amplitude error AA, and phase error AP the magnitude of the resultant R
is calculated using (4.2.3). Figure 4.2 shows the amplitude of the resultant
relative to the mainlobe peak gain. Clearly, if sidelobes below -30 dB are
required, the nulls between them must also be below -30 dB, placing a limit
on the tolerable amplitude and phase errors.

The effect of transmission errors on sidelobe levels

At the peaks of sidelobes the vector sum of the terms in the exact equation
(4.2.2) adds up to a (small) finite vector value. Phase and amplitude errors
in the compensation change this value. The changes in amplitude can be
considered as the vector sum of the sidelobe vector and the error resultant
R, plotted in figure 4.2. Let us consider the case where the vector R has the
same magnitude as the sidelobe level. In some cases the two vectors will
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cancel, turning the sidelobe into a null, or at least reducing the sidelobe
level. In other cases the two vectors will add, increasing the sidelobe level
by 6 dB. On average, the sidelobe level will increase by 3 dB - the result of
quadrature addition of the two vectors. Figure 4.2 plots the increase in
sidelobe levels as a function of the resultant amplitude R, showing that
small phase and amplitude errors can greatly increase the sidelobe level.
As an example, consider a phase error of 2° in the mode compensation.
The produces a -30 dB resultant. If the beam has a theoretical -30 dB
sidelobe level, in the worst case this small phase error will increase the
peak sidelobe level by 6 dB to -24 dB.

The effect of transmission errors on peak gain

At the peak of the mainlobe, the phase modes of (4.2.2) are in phase, so the
vector sum is a maximum. An error AP in the phase compensation of
(4.2.3) reduces the peak gain, as the modes are not then exactly in phase.
Figure 4.3 depicts the reduction in gain as a function of the phase error.
The reduction in gain may be different for adjacent beams, giving rise to a
channel imbalance error. This reduces the DF accuracy of an amplitude
comparison DF system, as calculated in section 3.2. As an example, a
phase error of 15° in the compensation introduces a peak loss of -0.5 dB, so
the worst case variation in gain will be £0.25 dB, introducing a DF error of
about 1°.

The effect of transmission errors on the -3 dB beamwidth

Phase and amplitude errors in the compensation change the -3 dB
beamwidth. In the worst case, the effect of an amplitude error AA on the

-3 dB beamwidth is to change the amplitude taper applied to the higher
modes, relative to the zero order mode. If the taper is reduced, the beam
becomes narrower, while if it is increased, the beam becomes wider. Again
the change can be calculated using (4.2.3). Figure 4.3 shows the change in
the -3 dB beamwidth as a function of the amplitude error AA, for a -30 dB
sidelobe Chebyshev pattern formed from the 0th, 15t and 2nd grder phase
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Effect of compensation network
errors on the mainlobe gain

Figure 4.3 The effect of compensation network errors on the peak
gain and -3 dB beamwidth of the synthesised beam.
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Chapter 4 - Wideband beamformer design

modes. As an example, in the worst case an amplitude error in the
compensation of 0.5 dB introduces a 2° change in the -3 dB beamwidth.
This in turn introduces a DF error close to 2°, calculated using the

equations of section 3.2.

Phase errors increase the -3 dB beamwidth of the mainlobe. Again the
change can be calculated using (4.2.3). Figure 4.3 predicts the change in
the -3 dB beamwidth as a function of the phase error AP for a Chebyshev -30
dB sidelobe pattern. The effect of the change in the -3 dB beamwidth on DF
accuracy can be calculated using the equations of section 3.2.

4.2.3 The effect of Butler matrix transmission errors

Let us now consider the effect of an error in the transmission paths of a
Butler matrix. For a perfect matrix, exciting the Ot order phase mode port
excites the four array elements with equal amplitude and phase. Now
suppose that the path between the 0P order phase mode port, and element 3
is +10° in error, compared with the other three paths at 0°. The radiation
pattern formed by exciting the Oth order mode will not be a perfectly
omnidirectional pattern, with constant phase. Nystrom (1987) proposed an
analysis of this type of error that assumes the matrix is perfect, and the
matrix error alters the mode excitation i.e. the compensation weights.
Clearly in the excitation discussed here with a 10° phase error, the zero
order mode is dominant, but small components of other modes are present

as well.
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Chapter 4 - Wideband beamformer design

This study used computer modelling to calculate the transmission
scattering parameters for the complete beamformer. Figure 4.1 depicts the
matrix beamforming network, with the phase mode compensation in place.
Consider the excitation of a single beam port, to form a single wideband
azimuth beam. If a signal Vp is applied to the pt! beam port, the output at
the nth element port is calculated as:

m=-M (4.2.4)

stmp is the transmission amplitude and phase for the second matrix

between the pth element port and the mth mode port.

s™Mo, = A (D) - the transmission amplitude and phase for the compensation
network connected between the mth mode port of the first matrix, and
the corresponding mode port of the second matrix (including the
amplitude taper).

lenm is the transmission amplitude and phase for the first matrix

between the mth mode port and the ntP element port.

The element excitation can now be expressed as:

- +
Vn =Vpsnp
where
M
s = Z MZSm M1
P mp 21 nm
m=-M (4.2.5)

For a four-element circular array, the excitation is now expressed in terms
of four scattering parameters, defining the transmission amplitude and
phase between the beam port and the four element ports. Errors in the
transmission parameters for either of the matrices can be inserted into
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Chapter 4 - Wideband beamformer design

(4.2.4) and the changes in the scattering parameters calculated using the
computer program. Either theoretical or measured data can be used.

Once the errors in the amplitude and phase of the transmission
parameters are known, the change to the radiation pattern is determined
by calculating the excitation of the phase modes required to generate this
set of scattering parameters, in effect performing (4.2.4) in reverse, and

assuming that the matrices are perfect:

N .
A’m(f)= z S,np(f)eﬂn(n—l)m/N

n=1 (4.2.6)

The 'effective’ mode compensation of the beamformer calculated here can
be compared to that theoretically specified by 4.2.1. The effect of
compensation amplitude and phase errors AA and AP on the radiation
pattern are predicted by repeating the analysis of section 4.2.2.
Alternatively the change in the pattern can be plotted using (4.2.3).

If sidelobe levels below -30 dB are required, the error in the phase mode
excitation (whatever the source) must be less than +2° and +0.3 dB. For
these errors, the peak DF error introduced by changes to the mainlobe is
calculated as +4°. If sidelobes of -20 dB are required, the mode
compensation must be realised to better than +6° and 0.8 dB. The peak DF
error introduced by changes to the mainlobe is £20°. An individual 180°
coupler has the phase and amplitude errors of table 4.1. Since each signal
passes through four couplers in total, the cumulative peak errors will be
large - transmission errors of 20° and 2 dB can be expected, without even
considering the compensation network errors. Inspection of figures 4.2
and 4.3 show that this level of error is unacceptable. Design changes that
reduce transmission errors are described in section 4.3.
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Chapter 4 - Wideband beamformer design

4.2.4 Isolation and mismatch errors

The computer simulation of section 4.2.3 assumes that the input ports of the
180° couplers are isolated and matched. The manufacturer's figures (table
4.1) give an isolation of 17 dB, while the input VSWR is 1.35:1.

Ideally a signal entering from element 1 is isolated from element 3.
Imperfect isolation transmits a signal between the two, as shown in figure
4.4. If the transmission between the input ports of the coupler is given by
So1 = Sigo)» the amplitude of the signal leaving element port 3 will be:

If this signal was simply re-radiated by element 3 the synthesised beam
would be unaffected, but there is a large mismatch between the mbnopole
element and the 50Q characteristic impedance of the matrix system,
particularly at the ends of the frequency band. If the self-impedance of the
monopole element is represented by the scattering parameter sEn Then the
signal reflected back to element port 3 is given by:

+ _ E
V3 = VI Sisol 8711

This signal is now transmitted to the output ports with an amplitude given
by the scattering parameters of (4.2.6) for the coupling of the input port 1 to
to the output ports. For the pth port:

- - + E
Vo =V3" Sis15711 5p1

So in addition to the signal transmitted directly from element port 1 to the
beam ports, there is an error signal Ap transmitted from element port 1 to
the beam ports via element port 3. This signal will modify the transmission
scattering parameters. Let us calculate the approximate magnitude of this

error signal. From table 4.1 the isolation between the inputs of a hybrid
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with the element mismatch at  element
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Figure 4.4 An illustration showing how the imperfect isolation
of the input ports degrades the transmission
amplitude and phase of the network.
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Chapter 4 - Wideband beamformer design

coupler is 17 dB. The impedance measurements of section 3.4 show that
the return loss of the element (sE,,) is as high as 3 dB. So relative to the
main transmission path, the isolation error is -20 dB in amplitude. This
will modify the transmission parameters by as much as 0.9 dB, in
amplitude, or 5.7° in phase, depending on the relative orientation of the two
vectors. The effect of this error on the synthesised pattern can be calculated
using the analysis of section 4.2, where the effect of transmission

amplitude and phase errors on the synthesised pattern is calculated.

The predicted effect of imperfect isolation on the synthesised pattern was
unacceptable. To reduce this, isolators operating over the band 8 to 12 GHz
were installed in the element feeds. Omni-Spectra isolators type ML 3221,
with a peak return loss of 17 dB were used. This reduced the return loss of
the elements from 3 dB to 17 dB, giving an error signal amplitude of -34 dB -
acceptable for this study. '

The match at the input port of a hybrid coupler is not perfect. From table
4.1 the VSWR (max) for a hybrid coupler is 1.35, corresponding to a return
loss of 17 dB. For a signal entering the hybrid coupler from the element
port, a significant proportion of the signal is reflected back to the element,
and then reflected again by the element, which does not present a good .
match across the frequency band. The effect of this is to change the
transmission parameters in exactly the same way as the isolation error.
This error manifests itself as a ripple on the amplitude and phase
response, when plotted as a function of frequency. At certain frequencies
the main signal and the reflected signal add in phase and the transmission
amplitude is increased. At other frequencies the main signal and the
reflected signal are in antiphase and the transmission amplitude is
reduced. In between these frequencies the amplitude error is reduced but
the phase error is a maximum. Indeed, the physical distance between the
mismatches can be calculated from the period of the amplitude ripple in the
frequency domain. As for isolation errors, the effect of mismatch errors is

largely eliminated by using isolators in the element feeds.
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4.3 The evolution of the beamformer design

4.3.1 The design and evaluation of a microwave wideband Butler matrix

To form the phase modes a 4 x 4 Butler matrix operating over the frequency
band 8 to 12 GHz was required. The matrix design of Butler and Lowe
(1961) is depicted in figure 2.10. This matrix is a narrowband design,
unless the single 90° phase shift is also wideband. The wideband design of
figure 4.5 eliminates the single 90° phase shift by substituting a 90°
(quadrature) coupler for one of the 180° couplers. This wideband matrix
was developed to operate in the UHF frequency range by Chow and Davies
(1967). This design was adopted for this study, using microwave directional
couplers. Figure 4.5 also depicts the 8 x 8 wideband Butler matrix for
feeding eight-element arrays.

Three Omni-Spectra 180° couplers type 2031-6335-00, with the specification
of table 4.1 were used in the matrix. One Anaren 10018-3 quadrature
coupler was used, with the specification of table 4.2 below.

Frequency range 8.0t012.4 GHz
Coupler amplitude imbalance 10.5dB

Phase error 16°

Insertion loss +0.5 dB
Isolation between inputs 18dB

Input VSWR (Max) 1.40

Table 4.2 The manufacturers specification for Anaren
quadrature couplers type 10018-3 operating over
the frequency band 8 to 12.4 GHz.

There is a significant difference in the transmission phases of microwave

180° couplers, compared with HF 180° couplers, illustrated by table 4.3

overleaf.
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Coaxial element feeds
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Quadrature
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Figure 4.5 Schematic diagrams of4 x 4 and 8 x8 Butler matrices. If

the couplers in the shaded areas are removed, the matrices
are turned into wideband amplitude mode matrices.
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C D 3(0) 4(0180)
A 0 180 1(A) +90 90
B 0 0 2(2) 0 0
Transmission phases Transmission phases
for HF "magic tee" for microwave hybrid
coupler coupler

Table 4.3 A comparison between the transmission phases of

HF and microwave 180° couplers.

At HF frequencies the 180° coupler is based on a transformer with a centre-
tapped secondary. At microwave frequencies the 180° coupler is a -
quadrature (90°) coupler with an additional +90° wideband phase shift in
the line to output three (0°). The +90° wideband phase shift is supplied by a
second coupled A/4 section, developed by Schiffmann (1958). Both the
coupler and phase shift are built on stripline. The phase transfer
characteristics of a microwave matrix is compared with that of an HF
matrix in table 4.4 overleaf.
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Phase mode Phase mode
0 +1 2 -1 0 +1 2 -1
2 1 0 0 0 0 £ 1 0 +90 -90 0
g, 2| 0 49 18 9 E 2| 0 18 +9 -9

&
Q

= 3| o 18 o0 18 Z 3| 0 -9 -9 -180
4 0 90 180 +90 4 0 0 +90 +90
Transmission phases Transmission phases
for 4 X 4 HF wideband for 4 x 4 microwave

matrix wideband matrix

Table 4.4 A comparison between the transmission phases of HF

and microwave wideband Butler matrices.

The only difference these phase shifts make is to alter the wideband phases
of the +1 and C2 modes, relative to the zero order mode. Wideband phase
shifts of -90° and +90° are now required in the mode compensation to bring
them back into phase alignment. The transmission amplitude of HF and
microwave matrices is the same, barring errors. For an input of 0 dBm at

an element port, there is an output of -6 dBm at each of the mode ports.

Figure 4.6 is a photograph of a 4 x 4 matrix constructed for this study.
Sealectro semi-rigid cable type AA50141 of 0.141 inch diameter was used to
connect the couplers together. All 16 paths through the matrix must be the
same electrical length, to preserve the wideband phases of the modes. Fine
adjustments were done using four Midisco 1089-1 line stretchers with
screw adjusters. The change in length was accommodated by loops of
semi-rigid cable, visible in the photograph. The completed matrix was
enclosed in a die-cast box. The (-6 dB) transmission amplitude to the mode
ports was realised to within +1 dB. The phase transmission characteristics
of table 4.4 were realised to within £10° across the frequency band. Since
the individual couplers contributed 0.5 dB and +6° of transmission error,
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Chapter 4 - Wideband beamformer design

these figures were expected. The isolation and mismatch performance will
be considered later in this section.

A second 4 x 4 matrix identical to the first was built to form the four beams

from the compensated phase modes, as shown in figure 4.1.

Section 4.2 describes a technique for comparing the measured beamformer
transmission amplitude and phase to the theoretical transmission
parameters. This allowed the performance of the complete beamformer to
be evaluated. At this stage of the project the frequency compensation
networks were not ready. Rather than wait, the matrices were connected
together without any compensation networks, as shown in figure 4.7. The
transmission scattering parameters were measured using a network
analyser. These results were compared to those predicted by the computer
model based on equation (4.2.4). In the computer model the figures:

|An® ] =1
Arg(A (D) = 0° (4.3.1)

were inserted in place of the theoretical frequency compensation. The
computer program showed that this beamformer has unusual
transmission characteristics. Consider a signal of 0 dBm fed into element
port 1 of the first matrix. The theoretical output amplitude at each of the
output beam ports is given in table 4.5 overleaf.
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Figure 4.7 The transmission amplitude and phase of a pair
of Butler matrices connected together:
(a) The ideal case.
(b) Measured results.
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Output port Ideal transmission response
number 's1(aB) L(S)
3
1 0 dBm E o-2iblm
2 wdB | -
; e |
4 wdB ' -

Table 4.5 The theoretical wideband transmission parameters for
a pair of Butler matrices, connected together without

compensation.,

At beam port 1 there is an output of 0 dBm, while the other three outputs
ports are quiescent; there is no output. This is illustrated graphically in
figure 4.7. Equally, if a 0 dBm signal is fed to element port 2, there is a

0 dBm output at beam port 2, and ports 1, 3 and 4 are quiescent. The phase
of the output signal is determined by the electrical length of the two
matrices, 2Bl . This system is effectively a spatial Fourier transform
immediately followed by an inverse Fourier transform. If this beamformer
was connected to a monopole array, the beams 'synthesised’' from the phase
modes would have a shape identical to the radiation pattern of the monopole

elements - a remarkably pointless exercise.

Table 4.6 (overleaf) gives the results of network analyser measurements for
the beamformer. Delay lines were used to correct the wideband phase
shifts of the +1 and C2 modes (table 4.5) so these result are narrowband. By
adjusting the delay line length, measurements were made at 8, 9, 10, 11
and 12 GHz. Worst case results are given in each case, with the frequency
at which it occurred. The ideal figures, supplied by the computer program,

are in brackets
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. Theoretical
g/gax‘.grge tor parameters for Measured

ideal system parameter

Transmission 0dB -40dB @12 GHz

amplitude

Output at -0 dB -14dB@11 & 12 GHz

quiescent ports

Isolation between -0 dB 15dB@12 GHz

element ports (dB)

Return loss at -« dB 14dB@12 GHz

element ports

Electrical length g "2iblm 2x7.332 @10 GHz

of matrix ‘including line

stretchers

Table 4.6 Network analyser measurements of the Butler matrix

pair.

The isolation between beam ports was 15 dB. Table 4.1 shows that the worst
isolation between coupler ports is 17 dB. However, added to this is a second
signal, reflected from the mismatch of the next coupler down the line. This
reflection is -23 dB in amplitude (peak) at the isolated element port. If this
reflection adds in phase with the (-17 dB) isolation, the isolation between the
element ports is reduced by as much 3.5 dB.

The return loss was 14 dB. This compares with 17 dB for a single coupler.
Again, the 3 dB increase was due to secondary reflections adding to that of

the first coupler.

The peak beamformer loss of -4.0 dB is to be expected. The peak loss
introduced by each hybrid coupler is about 0.5 dB, so each matrix had a
measured loss of about 1.5 dB, including the connectors. Another 0.5 dB
can be attributed to the line stretches and coaxial lines connecting the two

matrices. The transmission phase and amplitude errors sent -14 dB
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(maximum) to the other beam ports, reducing the main signal by about 0.5
dB.

The peak amplitude at the quiescent port was -14 dB, attributable to
imperfect phase and amplitude transmission errors. While the isolation
and mismatch errors can be eliminated with isolators, transmission errors
present a greater problem. Referring to figure 4.2, a resultant of -14 dB will
grossly increase sidelobe levels and distort the shape of the main lobe. The
-14 dB result at 12 GHz was actually at beam port 3, for an input at element
port 1. By 'tweaking' the length of the connecting lines (i.e. adjusting the
transmission phase of the compensation) this was reduced to -20 dB.
Unfortunately the output at beam port 2 then increased to -13.5 dB at 12
GHz. Similar difficulties were encountered in chapter 5, where these
matrices were used for pattern synthesis. Optimising the output at one
beam port made the other three worse.

These results show that the beamformer of figure 4.1 cannot synthesise low
sidelobe beams for an amplitude comparison DF system, due to the
transmission errors. For this reason, the design of beamformers with

smaller transmission errors was investigated.
4.3.2 The design and evaluation of a microwave amplitude mode matrix

For the pair of Butler matrices, connected as shown in figure 4.7, the
systematic errors in the transmission amplitude and phase of the
directional couplers add cumulatively. Thus at the ends of the frequency
band some of the 16 paths between the four inputs and four outputs have
errors close to +2 dB and +24°. Mosko (1984) looked at the design of
'symmetrical' beamformers, where the errors introduced by the couplers of
the beam forming network cancel the errors introduced by the couplers of
the mode forming network. The Butler matrix is clearly asymmetrical,
with just one 90° coupler. If this 90° coupler is removed the resulting
matrix can be drawn as shown in figure 4.8. While the 0th and 2nd order

modes remain unchanged, the other two outputs are clearly not phase
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Figure 4.8 Transmission amplitude and phase for a
microwave 4 x 4 amplitude mode matrix
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modes; they combine signals from opposing array elements in antiphase.
Figure 4.8 shows that this is the sampling of the four-element array
required to excite the 15t order sine and cosine amplitude modes. Since
every mode excited by this matrix is an amplitude mode, the name
‘amplitude mode matrix' was chosen for this design. (N.B. the zero order
mode is a special case, as it is both an amplitude mode and a phase mode).

The_ transmission amplitude and phase for this device is given in table 4.7

below.
Phase mode Phase mode
0 C C2 s 0 Ci1 C2 St
d - - -00 ) -
S 1 -6 3 6 2 1 0 180 90 .
g, 2 6 - 6 3 £ 2 0 - 490 180
&
= 3| 6 =3 w = 3| 0 0o 90 .-
4 8 -0 6 -3 4 0 - +90 0
Amplitude (dB) Phase (degrees)

Table 4.7 Wideband transmission amplitude and phase for
an amplitude mode matrix made using three
Omni-Spectra 180° couplers type 2031-6335-00.

This matrix design is one of a family. Figure 4.5 shows the 8 x 8 Butler
matrix. If the 90° couplers in the shaded areas are removed and replaced
by coaxial lines to give the correct delay, the resulting matrixis an 8 x 8
amplitude mode matrix. Several workers have noted that amplitude modes
are formed by combining the +m and -m phase modes. In fact the reverse
is true; the +m and -m phase modes are formed by combining the cosine
and sine amplitude modes in a 90° coupler. The amplitude mode matrix

has several advantages over a Butler matrix (overleaf):
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. Fewer components are required, just three couplers for a 4 x 4
matrix.

. The matrix is built from just one device; the 180° coupler.

. Amplitude modes of the same order are perfectly orthogonal. For

phase modes exciting the +m mode results in a reflection at the -m
mode port, unless the array elements are perfectly matched. For
amplitude modes the reflections return to the same amplitude mode

port.

. As demonstrated in chapter 3 amplitude modes can be impedance
matched with an impedance-matching network at the mode port.

o Theoretical calculations using equation (4.2.4) showed that
systematic errors in the phase and amplitude of the coupling sections
cancel. Provided the coupling sections of the couplers in the second
matrix have the same systematic errors as the first, the errors will

cancel.

Systematic errors introduced by the Schiffmann section in one arm of the
coupler remain, and do not cancel. The amplitude mode matrix has one
major disadvantage over a Butler matrix. Davies (1965) has shown that
directional patterns synthesised from a circular array can be electronically
rotated by applying a linear phase progression to the phase mode inputs of
the Butler matrix. This only applies to phase modes. Amplitude modes

cannot be steered using a linear phase progression.

The amplitude mode matrix was constructed from the Butler matrix in the
photograph of figure 4.6, with the quadrature coupler removed. Longer
semi-rigid cables compensated for the removed coupler. The 180° coupler
uses a stripline structure. Because the group velocity of this type of guide is
different to the TEM mode of the semi-rigid cable, the relative phases of the
0th and 27d order modes (generated by two couplers in sequence) is slightly
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different to that of the C1 and S1 modes (generated by a single coupler).

This error is minimised by adjusting the line stretchers, introducing a very
small phase slope. Even with this error, the phase transmission
characteristics of table 4.7 were realised to within +10° and the amplitude
transmission characteristics to within +£1 dB. The peak errors, compared
with a Butler matrix are not reduced. The aim is to cancel them in the

second matrix.

A second 4 x 4 amplitude mode matrix identical to the first was built to form
the four beams. To evaluate this system the matrices were again connected
directly together, as shown in figure 4.9. This time a wideband 180° phase
shift in the 2"d order phase mode path was used to make the beamformer
operation instantaneously wideband. Wideband 1 dB attenuators (Midwest
type 444) were used in the C1 and S1 paths to compensate for the insertion
loss of the second 180° coupler forming the 0th and C2 modes. Table 4.8
below gives the measured network analyser results for the beamformer.

. Theoretical

Maiggeter parameters for Maera;g;:gr

P ideal system p
Transmission 0dB -40dB @12 GHz
amplitude
Output at -<dB -20dB @12 GHz
quiescent ports
Isolation between - dB 15dB @12 GHz
element ports (dB)
Return loss at -« dB 14dB@12 GHz
element ports
Electrical length e ~Aiblm 2x 7.331 @10 GHz
of matrix plus wideband phase

compensation

Table 4.8 Network analyser measurements of the amplitude mode

matrix pair.
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Figure 4.9 A pair of amplitude mode matrices connected together to
form a wideband Fourier transform/inverse transform pair.
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The signals at the three quiescent ports are at -20 dB at worst, 6 dB better
than the Butler matrix beamformer. Several factors limited the

improvement to 6 dB:

(i) Transmission errors in the Schiffmann section.

| (ii)  The 90° couplers used to form a 180° phase shift in the compensation

of the 2d order mode.

(iii) Phase and amplitude transmission errors caused by imperfect
connectors and by reflections from mismatches within the matrix.

The level at the quiescent port is only -16 dB down on the (-4 dB)
transmission amplitude. This resultant has the same effect on beams as
the resultant R plotted in figure 4.2. The minimum sidelobe level will be
-16 dB and the effect of this error on the -3 dB beamwidth will also be large.
These results show that although the amplitude mode matrix is a
considerable improvement (6 dB) over the Butler matrix, in terms of
transmission errors, the results are not good enough for wideband
synthesis of low sidelobe patterns. The predicted peak sidelobe level is in
the region of -16 dB, and errors introduced by the frequency compensation

networks have not even been considered yet. To achieve wideband patterns

with low sidelobes, further work is required on the beamformer (section (4.3.3)).

Foti and Macnamara (1989) describe the design of hybrid 180° couplers with
a transmission phase error of just 1°, over a 26% bandwidth around 1
GHz. The amplitude errors are as large as those for the 50% bandwidth
couplers used here, but these cancel in the amplitude mode matrix
beamformer. At HF frequencies a symmetrical 180° coupling structure is
used, based on a transformer with a centre-tapped secondary. There are no
Schiffmann sections and no 180° wideband phase shift is required in the
compensation, so errors (i) and (ii) above are eliminated. Phase errors
introduced by connectors etc. are lower, so (iii) is reduced. The potential of
the amplitude mode matrix at HF frequencies may well deserve further

investigation.

163



cnapielr & - vvidepana oeanyormier aesygn

Guy (1985) describes in principle a synthesis technique using a single
Butler matrix with circulators placed in the element feeds. The
compensation networks are terminated in short circuits, so the signals are
reflected back through the lone matrix, forming beams at the 374 port of the
circulator. The network of figure 4.9 is perfectly symmetrical about the
dotted line drawn through the centre of the compensation networks, so this
approach could be applied to this network, where the transmission errors
cancel. Unfortunately the four isolators available for this study had a peak
isolation of just 17 dB, so the beam formed would here been the sum of a
Chebyshev 30 dB sidelobe pattern with an omnidirectional monopole
pattern, -17 dB down in amplitude.

4.3.3 Exciting phase modes using weighted corporate feeds

In the last two sections equation (4.2.4) was used to calculate the ideal
transmission amplitude and phase for the beamforming network, but
without any phase mode compensation. Let us now use this equation to
calculate the theoretical transmission amplitude and phase, but with the
compensation. Table 4.9 below calculates the amplitude mode
compensation required to form a Chebyshev beam at 10 GHz. This
amplitude taper forms a beam with a -3 dB beamwidth of 82° and -30 dB
sidelobe levels, as depicted in figure 3.7.

Mode 0 : ca . c2 |
order ) : N

Mode 0dB.0° | 0dB,+66° 1-9.3dB+161° | 0 dB, +66°
coefficients ’ N ’ Vo \ ’

Mode com- | 54p g° | _299dB,-66°1-0.64 dB, -161° -2.29 dB, -66°
pensation \ \ .

Final mode | 448 g° ! -2.29dB,0° : -9.94dB,0° ' -2.29dB, 0°
weights N : \

Table 4.9 The amplitude mode compensation used in the synthesis
of a -30 dB sidelobe Chebyshev pattern.
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The mode coefficients are taken from figure 3.17 - they are the same for

phase modes and amplitude modes. To form four Chebyshev beams in the
directions ¢ = 0°, 90°, 180° and 270° the element excitation is given in table
4.10 below. This was calculated using a computer model based on (4.2.4).

Element

number 1 : 2 : 3 : :
' ! X
%%?m 1 7.8 dB, 0° E -6.0 dB, +89°!-10.9 dB,+210°, -6.0 dB, +89°

-6.0 dB,+89° 110.9 dB, +2105

Beam 2 o! [
(90°) -6.0 dB, +89 : -7.8dB, -0

L}
‘

Beam3  |10.9dB, +210% -6.0 dB, +89°
(180°) #2107 6045, +

\
L}

-7.8dB, -0° | -6.0 dB,+89°

-> - -

\ ]

g%g)l 4 | .6.0dB,+89° -10.9dB, +210°% -6.0 dB, +89° + -7.8 dB, -0°
' N N

\ ) N

Table 4.10 The theoretical element amplitude and phase
required to form four Chebyshev beams at 10 GHz.

For each beam the element facing the rear of the beam has the lowest
amplitude: -10.9 dB. Inspection of the excitations for each beam show they
are identical, with just the numbering of the elements transposed.
Realising these transmission parameters with the amplitude mode matrix
of figure 4.9 is described in the results section 5.2. This proved difficult,

even at a single frequency, as predicted by the results of section 4.3.2.
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As an aside, the excitation of table 4.10 resembles a beam cophasal
excitation of the four-element array. To form a cophasal beam in the
direction of element 1, the excitation is:

Element N : ;
number 1 N 2 : 3 : i
oo 6.0dB, 0° ! -6.0dB, +43°,-6.0 dB,+86° | -6.0 dB, +43°

Compared with this, the mode excitation applies a (small) amplitude taper
and a more rapid phase progression. Of course, the modal analysis is
superior, since it takes account of mutual coupling, and can be used to form

low sidelobe patterns.

Provided the transmission amplitude and phase of table 4.10 is realised, the
network used to form the beam is actually immaterial. Figure 4.10 depicts
the substitution of a corporate feed for a Butler matrix feed. Although this
network can only form one beam, the transmission errors are far less than
those of the Butler matrix. The Wilkinson splitters used in this network are
symmetrical devices, and the phase and amplitude balance between the
outputs is very good. Network analyser measurements showed an
accuracy of £2° and £0.1 dB. The excitation required changes with
frequency. By repeating the calculations of table 4.9 across the frequency
band the changes in the excitation were predicted. These are given in table
4.11 (overleaf), for a wideband beam in the direction ¢ = 180°. This direction
was chosen so the excitation of element 3 was the 0° phase reference. The
reason for choosing element 3 as the phase reference will become clearer in
section 4.4.3.
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A beamformer where the phase A weighted corporate feed
modes are formed by a Butler to form a single beam

matrix and beams formed by a .
second matrix ' For a Chebyshev beam the amplitude and phase

of W;, W,, W3 and W are given in table 4.10.

b2 N\

37 17 49 29

rof;

oo

»
» >
o (o]

%
>
301 2

O

4

\
X

\
\

311 4( 2
o (V] 6 o Vm &
Vin
Beam port of Single beam
second matrix port

Figure 4.10 The replacement of a Butler matrix feed by a
corporate feed to synthesise a single beam.
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Element ' : \

number 1 ‘ 2 ' 3 X 4
8 GHz -8.6 dB, -102° g -6.0 dB, +134°§ -9.2dB, 0° § -6.0 dB, +134°
9 GHz -9.4 dB, -128° § -6.0 dB, +105°§ -9.3 dB, 0° 5-6.0 dB, +105°
10GHz |-10.9dB, -150°§ -6.0 dB, +89° § -7.8dB, 0° § -6.0 dB, +89°
11 GHz |-11.9 dB,-160°§-7.1 dB, +84° § -6.0 dB, 0° § -7.1 dB, +84°
12GHz |-11.6dB,-1 66°§ -7.8dB, +79° ; -6.0 dB, 0° § -7.8 dB, +79°

Table 4.11 The theoretical element amplitude and phase
required to form a single wideband Chebyshev beam.

The peak transmission amplitude of the corporate feed is -6 dB. The results
of table 4.11 have been normalised to this peak value. The change in the
amplitude of the excitation with frequency is plotted in figure 4.11a. The
non-linear responses are difficult to realise. By accepting a reduction in the
peak gain at the ends of the frequency band, more realisable frequency
responses can be plotted - figure 4.11b. Although the peak gain is reduced,
the relative amplitude of the modes is unchanged, compared to figure 4.11a,
so the shape of the beam is unchanged across the band.

The phase response of table 4.11 is plotted in figure 4.12a. The relative
phases change monotonically with frequency. Linear phase responses are
desirable, but unfortunately the change is not perfectly linear. Figure 4.12b
plots the same relative phases at each frequency, but adjusted relative to the

other frequencies to produce a more linear phase response.

The process used to determine the element excitation for a Chebyshev beam

was also used to determine the excitation required to form a sin(x)/Nsin(x)

168



Theoretical excitation
amplitude, optimised for
maximum gain

4 -
i Excitation
6 | R - eattind - Rualirees 3 amplitude
o)) A for element 3
< T TR
'.g ~ .8 F “%. Excitation
=, % amplitude
£ Nt for elements
< 10 F 2and 4
Excitation
12 - amplitude
i for element 1
_14 " 1 i L i l " 1 L ]
7 8 9 10 11 12 13
Frequency
(GHz)

——— = Third order
interpolation of mode

coefficients
Theoretical excitation
amplitude, optimised for
smooth frequency responses
4 -
) r P i ] Excitation
S | e T \E amplitude
et o for element 3
= 8L e
3 ® Excitation
= amplitude
g-' 10 for elements
=Y r 2and 4
<
12 Excitation
amplitude
for element 1
14 | ] 1 ]l 1
8 9 10 11 12
Frequency
(GHz)

Figure 4.11 Amplitude of element excitation required
to form instantaneously wideband -30 dB
sidelobe Chebyshev beam:

(a) For maximum gain.
(b) For smooth amplitude responses.
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Figure 4.12 Phasing of array elements required to form
instantaneously wideband -30 dB sidelobe
Chebyshev beam:
(a) Element 3 phase as a reference.
(b) For linear phase responses.
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beam. This excitation is plotted in figure 4.13. Again, reduction of gain at
the ends of the band was necessary to produce a realisable amplitude
response. While a sin(x)/Nsin(x) is not suitable for amplitude comparison
DF, the demonstration of a second pattern was considered desirable to
emphasise the versatility of this wideband synthesis technique. The next
task was the design of the networks to realise the array excitations specified
in this section.

4.4 The design of frequency-compensation networks

4.4.1 The principles used in building compensation networks

To synthesise a Chebyshev beam, the element excitation of figure 4.12 must
be realised, using the weighted corporate feed of figure 4.10. To form the
beam at a single frequency, say 10 GHz the amplitude weighing can be done
using attenuation of 1.7 dB in the feed of element 3, and 5 dB in the feed of
element 1. Delay lines can be used to realise the specified element phasing.

The phase delay P introduced by a length of transmission line 1 is given by:

p__2m

g 4A41)

where Xg is the guide wavelength. The delay line does not affect the
amplitude of the excitation significantly, but the physical length of the
attenuator introduces an additional phase delay. This is corrected by
reducing the length of the coaxial cable feeding the attenuator by a
corresponding amount. While this technique cannot realise the wideband
response of figures 4.11 and 4.12, some narrowband beams plotted in
chapter 5 were formed using this simple technique.

For wideband synthesis of a Chebyshev beam, the frequency responses of
figures 4.11 and 4.12 must be realised. The classical approach to realising
a transfer function is to fit a polynomial to the voltage transfer function,

express the function in terms of z (or y) parameters, then design a lumped
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Figure 4.13 Amplitude and phase of element excitation
required to form instantaneously wideband

sin(5¢/2)/sin(¢/2) azimuth pattern.
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element network. It is difficult to apply this approach here, as the element
excitation is rigidly specified in phase as well as amplitude across the
frequency band.

Filters can be used to give amplitude responses that change with frequency.
In figure 4.11 the compensation for element 3 requires a filter with a high
pass characteristic, so there is greater attenuation at the bottom of the
band. The other three elements require filters with a low pass
characteristic. The requiréd amplitude responses are shallow curves,
similar to those at the 'knee' of a filter. The steepest response is that for
element 1, with just a 5 dB roll-off from 8 to 12 GHz i.e. 10 dB per octave. In
the stop band of a filter, the theoretical roll-off is 6N dB per octave, where N
is the number of elements in the filter. For these shallow responses, filters
with only one or two elements are required. Filters components can be
selected so they present a 50 Q match within the pass band, but most are
unmatched within the stop band. These mismatches will lead to unwanted

reflections in the compensation network.

Consider the phase response for elements 2 and 4 in figure 4.12, where the
phase of element 3 is defined as the 0° reference. This has an (almost
linear) slope of -42° across the half octave frequency range i.e. 10.25°GHz.
Phase slopes can be introduced by a length of delay line, as shown in figure
4.14. The phase slope dP/df introduced by a length of transmission line 1 is
given by:

dP 2nl

B Ve (4.4.2)
where Vg is the group velocity for the transmission line. A positive phase
slope can be applied by reducing the length of semi-rigid cable, compared
with the reference path. A slope of -10.25°%GHz is obtained with 5.9 mm of
UT 0.141 semi-rigid cable (V g= 0.69¢).
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Figure 4.14 Introducing a phase slope by changing the
length of a transmission line, compared to

a reference line.
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After insertion of the delay slope the phase of element 1 (relative to that of
element 3) is -102.6° at 10 GHz, calculated using (4.4.1). The phase required
by figure 4.12 is +89° at 10 GHz. A wideband phase shift of +191.6° is
required in the path to element 3, without changing the phase slope.
Substituting a directional coupler for one Wilkinson splitter in the corporate
feed introduces a wideband phase shift. A 180° coupler splits the signal
equally between the outputs, but with a relative phase shift of +180°. Now
the path is only 11.6° in error. Using quadrature couplers as well,
wideband phase shifts of 90°, 180° and -90° can be implemented. While this
approach is useful for getting the coarse phase correct, components that
can 'fine-tune' the wideband response are required. The design of

microwave wideband phase shifters is considered in the next section.

Provided the delay lines and wideband phase shifts are well matched, they
have no effect on the amplitude response. However the effect of amplitude
compensation on the transmission phase must be considered. A filter has
a phase response that changes with frequency, while the phase response
(figure 4.12) required to form a Chebyshev beam is nearly linear.
Generally, the steeper the response, the more rapid the change of phase
with frequency. The Chebyshev filter, with a very sharp knee, has a less
linear response than a Butterworth, while the Bessel filter is designed to
produce a linear phase response. As described in section 4.3.3 the specifed
amplitude response of figure 4.11 was adjusted to give a smooth change
with frequency. Filters with an acceptably linear response over the half

octave band can produce these very smooth responses.
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As with all devices, the finite length of the filter introduces a phase slope.
This is corrected by reducing the length of the coaxial cable feeding the
filter by a corresponding amount. However this does not produce a phase of
0° across the band. The group delay of the filter acts as a wideband phase
shift. This phase must be corrected using a wideband phase shift.
Allowing for all the parameters, the wideband phase shift required AP is
given by:

AP =AP _+AP .- AP, - AP
s d f c (4.4.3)

where:
AP, is the phase shift specified by figure 4.12 for the element

excitation (for the Chebyshev beam).

AP, is the (negative) phase shift introduced by the delay line to
produce a phase slope.

AP; is the phase shift introduced by the filter network, invariably
positive.

AP, is the coarse phase correction of +30°, 180° or -90° introduced by
the substitution of a directional coupler for the Wilkinson splitter.

Let us consider the design of these compensation networks in the frequency
band 8 to 12 GHz.

4.4.2 Components used in microwave compensation networks
Power splitters
The corporate feed of figure 4.10 requires three power splitters. Wilkinson

splitters type PN2089-6204-00 were used. Measurements of these devices
showed that the transmission phase balance was accurate to within +2°
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across the band, while the amplitude split was equal to within +0.1 dB
across the band. The return loss for these devices was better than 20 dB.

Directional couplers

As described in section 4.4.1, directional couplers can be used as phase
shifts by substituting them for the Wilkinson splitter. Anaren quadrature
couplers type 10018-3 were used to provide +90° phase shifts. The
characteristics of this device are described earlier in table 4.2. Omni-
Spectra 180° couplers type 2031-6335-00 were also available, but their use
was avoided, as their wideband characteristics were not as good, with a
higher VSWR and a greater change in coupling across the band. This is
because they are constructed from a quadrature coupled section in tandem

with a Schiffmann section, as described in section 4.3.1.
Delay lines

Section 4.4.1 describes the use of delay lines to introduce a phase slope.
UT 0.141 semi-rigid cable was used to connect the microstrip networks to
the isolators at the element feeds. Coarse delays were introduced by
changing the length of the interconnecting cable. Fine adjustments were
done using Midisco 1089-1 line stretchers with screw adjusters. The
change in length was accommodated by a loop of semi-rigid cable.

Attenuators

Midwest wideband attenuators type 444 with values of 1, 2, 3 and 6 dB were
available with a VSWR of less than 1.45. These coaxial devices had SMA
connectors. The measured accuracy was within £0.2 dB over the band 8 to
12 GHz. Variable attenuators were also available, but were not used as
their wideband performance was not as good as that of the fixed
attenuators, with a higher VSWR and a greater change in attenuation
across the band. Fine tuning of the excitation amplitude was done by

altering the microstrip compensation networks.
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Isolators

The mismatch between the element and the feed reduces the efficiency of
the system, and hence the received signal strength. In addition, if the
components of the beamformer are not a perfectly matched to the
characteristic impvedance of the beamformer, the reflections from them are
reflected again by the element mismatch, ultimately disturbing the
transmission parameters. This error manifests itself as a ripple on the
amplitude and phase response, when plotted as a function of frequency.
This was discussed in section 4.2.4. Figure 4.11 depicts amplitude
responses that roll-off by over -3 dB across the band. Since signals that are
blocked by filters are reflected, a 3 dB return loss can be expected at some
frequencies. Isolators were used in the element feed to reduce this
problem. Omni-Spectra isolators type ML 3221 with a return loss of 17 dB

were used.
Computer-aided design for microstrip filters and phase shifters.

At microwave frequencies filter designs are based on the same lumped-
element models commonly used at lower frequencies. For example the
Butterworth, Chebyshev or Bessel polynomials can be used to design filters.
At microwave frequencies the filter elements (inductances and
capacitances) are built using transmission line structures rather than true
lumped elements. Matthaei, Young,and Jones, (1964) describe the
structure of common transmission line filters. At UCL facilities were
available for etching transmission line filters onto a microstrip substrate.
The substrate used was R/T Duroid, with the characteristics of table 4.12
below. The filters were mounted on a jig with SMA to microstrip

launchers, as shown in figure 4.15.

The performance of transmission line filters is not the same as that of
filters built from true lumped-elements. To model these microstrip filters a
computer-aided design package for microstrip circuits, called PUFF, was
used. This package was developed by Compton and Rutledge (1987). In the
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Figure 4.15 Mounting jig for microstrip components.
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program, the user lays out microstrip (or stripline) circuits on the monitor
screen. The circuits can be connected to output 'ports' and the program
calculates the scattering parameters for these ports. The program 'menu'
includes transmission lines, short circuits, lumped-elements and coupled
lines. Corrections are made for RF effects such as the capacitive end
correction at open circuits. User defined components, such as active
devices, can be defined by a set of scattering parameters for the operating
frequency range. This facility was used to model the attenuators, couplers
isolators also used in the compensation network. Table 4.12 below gives a

list of the input data used in the program.

Network type : Microstrip
Dielectric constant of substrate 22
Dielectric thickness 0.508 mm
Board size 50 mm
Circuit resolution 0.1 mm
Normalising impedance 50 Q
Design frequency 10 GHz
Lower frequency 8 GHz
Upper frequency 12 GHz

Table 4.12 Data used in the computer-aided design of
microstrip circuits with PUFF.

The microstrip artwork is output on a dot matrix printer. To illustrate the
design of a filter figure 4.16 depicts the artwork for a six-element filter
based on the Butterworth lumped-element model. The filter has shunt
capacitors built using short lengths of wide (low-impedance) transmission
line and series inductors formed from short lengths of narrow (high-
impedance) transmission line. To test the PUFF prediction, this filter was
etched onto a R/T Duroid substrate. The measured transmission response
is plotted in figure 4.16, along with the PUFF prediction and also the
lumped-element prediction for the amplitude response. Up to 12 GHz the
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agreement between the PUFF prediction and the measured results are

good. Above 12 GHz more ripple is apparent - the SMA-to-microstrip
launcher was badly matched at these frequencies.

The excitation of element 3 for the Chebyshev beam requires a high-pass
response with greater loss at 8 GHz than at 12 GHz. The series capacitors
and shunt inductors required for high pass networks cannot easily be
realised on microstrip. Band pass filters can be realised on microstrip, the
simplest example being a 50 Q stub. If the length of the stub is \/4 at 12
GHz, there is no transmission loss at that frequency, but at 8 GHz the loss

is significant.
The design of microwave wideband phase shifts

The most commonly used microwave wideband phase shift is the coupled
A4 section developed by Schiffmann (1958). The facilities required to build
the coupled line structure of this device were not available at UCL. An
alternative structure for producing wideband phase shifts is described in a
paper by Wilds (1979). This circuit is an all pass network using both an
open-circuit and a short-circuit stub. The change in impedance caused by
the line discontinuity is corrected by reducing the line impedance along a
A2 section. The paper predicts that wideband phase shifts from +15° to
+135° can be obtained. This is satisfactory for our requirement, since phase
shifts outside this range can be moved into it using the 90° and 180° phase
shifts of directional couplers, as explained in section 4.4.1. This type of
network can be constructed on the same Duroid substrate as the filter
network and can be modelled using PUFF. Rather than use a true short
circuit, one stub is connected to a patch that acts as a low-impedance
capacitor to ground. Figure 4.17 shows the transmission parameters for a
40° wideband phase shift, designed with the aid of PUFF. The theoretical
response is compared to the measured results for this device constructed on
Duroid. This particular phase shifter was used in the compensation of

element 3 to form a wideband sin(Nx)/Nsin(x) beam.
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4.4.3 The compensation networks used for wideband pattern synthesis

The network used to form the -30 dB Chebyshev beam is depicted in figure
4.18. The same microstrip network is used for elements 2 and 4 as the
specified excitation is identical. Figure 4.19 illustrates how this network
progressively builds up the specified amplitude of figure 4.11 and realises
the phase of figure 4.12. For clarity, this illustration works backwards from
the beam port to the element port. Since sy; = s, (except for the isolators)
this makes no difference. Some of the choices of component require

explanation:

. The directional couplers of figure 4.19a apply wideband phase shifts
to the elements, although the need for these only becomes apparent at
the bottom of figure 4.19b.

o The excitation of element 1 is lower in amplitude than the other
elements. Rather than using a 4 dB attenuator (3 dB and 1 dB) with
a wideband +90° phase shift, a 1 dB attenuator in tandem with an
extra quadrature coupler was used. The coupler path has 3 dB of

loss.

o Figure 4.12 shows that the phase response required for elements 1, 2
and 4 has a slight curve. The wideband phase shifter of figure 4.17
has a similar curve, so this type of phase shifter was used in these
paths to meet the phase response. This explains why the
transmission phase for element 3 was defined as the phase
reference, and hence did not require a wideband phase shift.

. There was a second reason for not using a microstrip phase shift in
path 3. The phase shifter match was not perfect and adding this to
the large mismatch of the band pass stub filter significantly altered
the transmission responses of both. Although PUFF could predict
this, the results were not satisfactory. The length of narrow

transmission line spaced away from the main stub acted as a series

184



Semi-rigid feeds to monopole elements

@) o
1 3 T2
Isolators ‘ ‘ ‘
Delay line
giving delay Q
of -150° at
10GHz
Quadrature AC plath
coupler
gives -3 dB ><
loss and +90°
phase shift é
vt
|
Scale:
Half true size
- i i
Broadband phase Scale:
shift of +125°. Half true size
Deliberate mismatch

gives -4 dB loss at 12
GHz.

DC 'Fath AC path

Two delay
lines, both
giving delay
of -105° at 10
GHz

Wilkinson
splitter

Stub acting as high
pass filter giving -3.5
dB loss at 8 GHz.
This filter gives an
effective +115°
broadband phase
shift.

Broadband phase
shift of +120°.
Deliberate mismatch
gives -2 dB loss at 12
GHz.

Quadrature
couplers substituted AC path DC path
for Wilkinson splitters
to provide broadband
phase shifts I %
Beam
port

Figure 4.18 Corporate feed used to synthesise a wideband
Chebyshev beam with low sidelobes. This
network was developed with the aid of PUFF,
used for the design of microstrip networks.
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Figure 4.19a A schematic illustration of how the network of figure 4.18
produces the array excitation of figure 4.20.
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Figure 4.19b A schematic illustration of how the network of figure 4.18
produces the array excitation of figure 4.20. The isolators in
the element feeds are not shown.
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Chapter 4 - Wideband beamformer design

inductor that modified the stub response.

. For the same reason a filter was not used in tandem with the phase
shifter in the path to element 1. Instead the phase shifter response
was degraded so there was 4 dB of loss at 12 GHz, as required by
figure 4.11. This was done with the aid of PUFF by altering the
impedance of transmission line section away from the values
recommended by Wilds (1979). Exactly the same approach was used
to introduce 2 dB of loss at 12 GHz into the excitation of elements 2
and 4.

The measured response of the complete compensation network is plotted in
figure 4.20. For comparison the PUFF prediction is also plotted, showing
good agreement. The transmission amplitudes (specified at 1 GHz
intervals across the band) are realised to within £0.5 dB. The transmission
phases are realised to within £5°. For an excitation with this amplitude
and phase error, a sidelobe level of -20 dB minimum is predicted by figure
4.2. The design sidelobe level of -30 dB will not be attained across the whole
frequency band, although at some frequencies, (notably 9 GHz) sidelobes
closer to -30 dB can be expected, as the phase and amplitude errors are
smaller. The predicted variation in the -3 dB beamwidth is calculated with
the aid of figure 4.3. The amplitude error will change the beamwidth by 2°,
while the phase error introduces an additional 0.5°, giving a worst case
error of 2.5°,

The combination of black isolators, black Duroid and a black baseplate was
difficult to photograph, so an illustration of the beamformer layout is shown
in figure 4.21.

The excitation is specified at 1 GHz intervals across the band. The plot of
figure 4.11 and 4.12 uses interpolation to predict the excitation required at
intermediate frequencies, such as 9.5 GHz. In chapter 5, measurements of
the synthesised beam at intermediate frequencies are plotted to
demonstrate that interpolation of the specified excitation is satisfactory.
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Figure 4.20 Measured excitation of circular array produced
by the beamforming network. This excitation
will form a wideband Chebyshev beam with a
design sidelobe level of -30 dB.
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Chapter 4 - Wideband beamformer design

Figure 4.22 shows the network used to form a sin(5¢/2)5sin(¢/2) beam,
formed by exciting the phase modes with equal amplitudes. This pattern,
shown in figure 2.12 has a -3 dB beamwidth of 65° and a -12.1 dB sidelobe
level. Again one microstrip network is used for elements 2 and 4, as the
specified excitation is identical. The measured response of the complete
compensation network is plotted in figure 4.23. For comparison the PUFF
prediction is also plotted, showing good agreement. The transmission
amplitudes (specified at 1 GHz intervals across the band) are realised to

within +0.5 dB and transmission phases are realised to within +5°.
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Semi-rigid feeds to monopole elements
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Figure 4.22 Corporate feed used to synthesise a wideband
sin(5¢/2)/sin(¢/2) beam with-12.1dB sidelobes. This

network was developed with the aid of PUFF,
used for the design of microstrip networks.
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Figure 4.23 Measured excitation of circular array p}'odt_med
by the beamforming network. This excitation

forms a wideband sin(5¢/2)/sin(¢/2) azimuth
beam.
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Chapter 5

Measurements of synthesised beams

5.1 The radiation pattern measurement system

5.1.1 Anechoic chamber measurements

The measurement techniques described here were also used in
measurements of individual monopoles, described in chapter three.

A schematic diagram of the measurement system is shown in figure 5.1.
The measurements were performed in a microwave anechoic chamber at
UCL. The walls of the chamber were coated in a radar absorbent material
supplied by Emerson and Cuming, Inc. The array was located about one
metre from the back wall of the chamber, equidistant from the twd side
walls. For pattern measurements the array was illuminated by a
microwave horn, located at the far end of the anechoic chamber. A Flann
20 dB standard gain horn model 1624 was used. For measurements of the
radiation pattern in the 'far field' the distance between the source and
receiving antenna must be greater than 2d%/A, where d is the aperture of
the larger antenna. This spacing is four times the Rayleigh displacement
used in the optics field. For these measurements a calculated minimum
spacing of 1 metre was required, based on the aperture of the illuminating
horn. In fact the horn was 3 metres from the array.

The radiation pattern measurements were performed with an HP 8410B
network analyser, in conjunction with an HP 8734B reflection/transmission
test unit. An HP 8620C sweep oscillator was used as the microwave source.
Half the source output was fed to the illuminating horn, while half was
used to provide a reference signal for the network analyser. About +13 dBm
of RF power reached the standard gain horn - losses in the long semi-rigid
feed were significant. The RF signal received by the circular array was fed
to the 'transmission return' port of the network analyser. This

configuration ensured that an adequate dynamic range was available for
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Chapter 5 - Measurements of synthesised beams

the accurate measurement of low sidelobes. By switching in attenuators
during RF measurements on a single monopole element, it was verified
that about 45 dB of dynamic range was available, sufficient for the target
sidelobe level of -30 dB.

To measure azimuth radiation patterns the circular array was mounted on
a turntable. The turntable was motor driven, rotating at 1/2 rpm.
Radiation patterns of amplitude (Y axis) against azimuth (X axis) were
plotted using an HP 7035 analogue chart recorder. The amplitude scale
was checked using calibrated attenuators, registering a measurement
accuracy of +0.2 dB. An analogue voltage output proportional to the angle of
rotation was fed to the chart recorder. The accuracy of the voltage output
was checked using physical markers on the turntable circumference. The
indicated angle was accurate to within £1°. RF connection to the array
used a microwave cable through the centre spindle of the turntable. A
length of flexible RF cable, coiled like a watchspring, allowed free rotation.
Measured changes in the transmission amplitude and phase of the flexible
cable with azimuth angle were negligible. To reduce RF reflections, radar
absorbent material was used to cover the turntable, ground plane supports

and beamforming network.

Several types of measurement were performed using this basic set-up. The
main ones are listed below, indicating the equipment settings and

describing how calibration was performed.
5.1.2 Azimuth radiation pattern measurements

The microwave source was set to a fixed frequency for azimuth radiation
pattern measurements. The frequency was checked using an HP 5342A
counter. Calibration measurements of a standard gain horn with a known
radiation pattern were made. This showed that the -3 dB beamwidth could
be measured to within +1°, and sidelobe levels to within 0.5 dB. The horn
was oriented to produce vertically polarised radiation, co-polar to the
vertical monopoles. To determine changes in the radiation pattern with
frequency the pattern measurements were repeated at fixed frequencies
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Chapter 5 - Measurements of synthesised beams

across the band 8 to 12 GHz.

5.1.3 Phase measurements

In chapter three (figure 3.18) the relative phases of the amplitude modes
are plotted as a function of azimuth. The system of figure 5.1 was used, but
with the vertical scale of the chart recorder connected to the phase output of
the network analyser. To perform phase measurements on radiation
patterns the array must be accurately centred on the turntable, otherwise
the distance between the array and the illuminating source changes with
the angle of rotation, introducing a sinusoidal phase modulation on
measurements of the far field phase. By measuring the transmission
phase to each array element in turn, the array was centred to within +2° of
phase at 10 GHz, corresponding to 0.16 mm. This precision was crucial to
the accurate calculation of the phase mode coefficients described in section
3.5.

5.1.4 Changes in the azimuth radiation pattern with elevation

Amplitude comparison DF systems must operate above (and sometimes
below) 0° of elevation. For accurate DF it is desirable that the azimuth
pattern measured at, say, +20° of elevation is the same as that at 0°. Cuts of
the azimuth radiation pattern at elevation angles above 0° were made to
evaluate changes in the pattern. To do this the illuminating horn was
raised up in height and tilted down to illuminate the circular array. The
elevation angle of the illuminating horn could not be raised above 40°, as the
top of the anechoic chamber was in the way. In any case, most microwave

DF systems do not operate above +35° in elevation.
5.1.5 Cross-polar measurements

To determine the sensitivity of the array to cross-polar signals, the
illuminating horn of figure 5.1 was placed on its side to give horizontally
polarised radiation. Pattern measurements were then made using the

system described in 5.1.2.
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Chapter 5 - Measurements of synthesised beams

5.1.6 Radiation pattern measurements in the elevation plane

To take a section through the beam in the elevation plane the circular array
was mounted on its side, with the ground plane vertical on the turntable.
This was depicted earlier in figure 3.14, showing the plot of the elevation
pattern of a monopole. RAM was packed around the 'rear’ side of the
ground plane to cover the beamformer. Since the monopole elements were
horizontal, the illuminating horn was placed on its side to give horizontally
polarised radiation.

5.1.7 Swept frequency measurements of gain

The HP 8620C source has an analogue voltage output proportional to the
microwave frequency. This was connected to the X (horizontal) scale of the
chart recorder. The Y (vertical) scale again measured the amplitude
received by the circular array, with the peak of the synthesised beam facing
the illuminating horn. This produced a plot of the received peak amplitude
as the frequency was scanned. To provide a reference, a 10 dB standard
gain horn was substituted in place of the circular array with its physical
aperture coincident with the centre of the array.

5.2 Narrowband radiation pattern measurements

5.2.1 Synthesis of a -30 dB sidelobe Chebyshev beam

The beamforming network shown in figure 4.9 was mounted on the
underside of the ground plane, as shown in figure 5.1. The monopoles were
connected to the input ports of the first amplitude mode matrix using four
semi-rigid cables of matched length. As discussed in section 4.3.2, the
phase and amplitude errors introduced by the pair of matrices were too
large to form instantaneously wideband beams, so the network was
optimised to form beams at a single frequency: 10 GHz. Narrowband
compensation was done using variable attenuators for amplitude weighting
and delay lines for phase correction. Four beams were formed by the

second matrix. The wideband compensation networks described in section
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Chapter 5 - Measurements of synthesised beams

4.4 were not necessary for compensation at a single frequency.

The first radiation pattern demonstrated was a Chebyshev -30 dB sidelobe
azimuth pattern, formed by exciting the zero, first and second order
amplitude modes with a steep amplitude taper. This pattern has a
theoretical -3 dB beamwidth of 82°. with the first sidelobes at a level of -30
dB, as calculated using the equations of section 2.1.4. This is close to the
theoretical limit on sidelobes for this array, imposed by the presence of
spatial harmonics with an amplitude close to -30 dB, relative to the
fundamental modes. The calculated amplitude and phase of the mode

compensation required was calculated in section 4.3.3:

Mode 0 ct + c2 ! s
order : ‘

Mode . K ) : —
coefficients | 9dB:0 0 dB, +66° 9.3 dB,+161 : 0 dB, +66

Mode com- | 4p oo | .229dB,-66°'-0.64 dB, -161°, -2.29 dB, -66°
pensation .

1]
]
L]

-9.94dB, 0° , -2.29dB, 0°

Final mode 0 dB, 0°

weights -2.29dB, 0

PP T I SR

Table 5.1 The amplitude mode compensation used in the synthesis
of a -30 dB sidelobe Chebyshev beam.

A second amplitude mode matrix was used to form the beams. For
radiation pattern measurements one of the beam ports was connected to the
network analyser 'transmissidn return' port, as described in section 5.1,
while the unused beam ports were terminated in 50 Q loads. The measured
pattern did not resemble the theoretical Chebyshev shape. One sidelobe was
at -15 dB, and the -3 dB beamwidth was 10° larger.

The complete beamformer was disconnected from the array and the
transmission s parameters, between the beam port and the four-element

ports was measured. As explained in section 4.2, a computer program had
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Chapter 5 - Measurements of synthesised beamns

been developed to calculate the theoretical transmission parameters for an
error-free beamforming network. Table 5.2 below compares the theoretical
s parameters to the measured parameters, for the beam port used first
(port number 3). For clarity, path losses have been omitted. Itis the
relative amplitude and phase of the element excitation that determines the
shape of the pattern.

Element \ ; '
number 1 . 2 X 3 : 4
Theoretical ' \ \
element -10.9dB, +121% -6.0dB, 0° , -7.76 dB,-89°, -6.0dB, 0°
excitation + (reference) N
' ]
\ ' :
Measured X ‘ : X
element -9.6dB, +110% -6.0dB,0° , -8.5dB,-68° . -5.6dB, +12°
excitation + (reference) ! N
\ ' :
Excitation | 41 5dB,-11°! 0dB,0° :-0.74 dB, +21° +0.4 dB, +12°
error : \ N

Table 5.2 A comparison between the measured and theoretical
transmission parameters for the matrix beamformer
(beam port 3).

The amplitude and phase errors introduced by the pair of matrices are very
large. The amplitude of the excitation is wrong by 1.5 dB for element 1, and
the phase of the excitation is wrong by 21° for element 3. Referring to
section 4.2, errors of this magnitude will produce the measured increases

in the beamwidth and sidelobe levels.

Fine adjustments to the amplitude and phase of the compensation were
made to correct the errors in the transmission characteristics of the two
matrices. Table 5.3 overleaf shows the measured transmission parameters

after the adjustments were made.
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Chapter 5> - Measurements of synthesised beams

Element \ \ |
number 1 ' 2 N 3 \ 4
] A
Theoretical : : :
element F10.9dB, +1219 -6.0dB,0° : -7.76dB,-89°' -6.0 dB, 0°
excitation : E + (reference)
\ - !
Measured \ X \
eleglent -11 dB, +120° \ -6.0dB, +1° ! -7.7dB,-90° , -6.04dB,0°
excitation \ : ' (reference)
]
: . 1
e e | ! X
Excitation | .014B,-1°! 0dB,+1°} +0.16dB,-1°\ 04dB,0°
error ' ! \
\ : ‘

Table 5.3 A comparison between the measured and theoretical
transmission parameters for the beamformer after
compensation adjustment (Chebyshev beam with -30 dB
sidelobes).

Considerable time was spent fine tuning the compensation. The study of
section 4.2 showed that even small phase and amplitude errors in the
excitation increase the sidelobe levels above -30 dB. The transmission
amplitude is within 0.2 dB of the specified values, while the transmission
phase is within $1° of the specified values. The beamformer was re-
connected to the array and the azimuth measurement repeated. The
measured Chebyshev beam is shown in figure 5.2. For comparison the
theoretical radiation pattern is also plotted, showing good agreement. The
-3 dB beamwidth of the measured pattern is within +1° of the theoretical
value of 82°, while the sidelobe level is within 0.5 dB of the theoretical -28
dB. Note that the theoretical sidelobe level is -28 dB and not -30 dB; the
effect of the third order harmonic of the pattern was included in the
theoretical calculation using equation (2.3.1).

The absolute gain was about 0 dB 0.5 dB, about 2.5 dB less than the
theoretical value calculated using equation (3.5.6). This was due to losses
in the network. As explained in section 4.3, each coupler introduced about
0.5 dB of loss and the connectors and cables contributed to the loss.
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Figure 5.2 Measurements of beams synthesised using a matrix.
to form the amplitude modes. The narrowband patterns

were measured at 10 GHz in an anechoic chamber.
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One of the main aims of this study was the formation of overlapping low
sidelobe beams. Measurements were made of the synthesised beams at
ports 1,2 and 4, (port 3 is shown in figure 5.2) but the results were
unsatisfactory, showing patterns with sidelobes as high as -15 dB. The
transmission parameters were measured for ports 1,2 and 4, revealing
transmission errors as large as +2 dB and +£20°, compared to the theoretical
values. By adjusting the compensation networks, the errors for beam port 1
were reduced to less than +2° and £0.2 dB. The measured beam had the
Chebyshev shape of figure 5.2, but pointing in the opposite azimuth
direction. The sidelobe level was within +0.5 dB of the theoretical -28 dB
level and the -3 dB beamwidth was within £1° of the theoretical 82°.
Unfortunately the adjustment of the compensation severely degraded the
measured pattern at beam port 3; it was only possible to obtain one beam at
a time. Further analysis of the effect of beamformer errors on the
synthesised beam will be carried out in section 5.5. Overlapping beams
were demonstrated by Davies et al. (1984) using a very similar beamformer,
but operating at UHF frequencies. Again only patterns with high sidelobes

were demonstrated.

To conclude, it was not possible to produce a fan of overlapping low sidelobe

beams, even at a single frequency, because of matrix errors.
5.2.2 Synthesis of a -20 dB sidelobe Chebyshev beam

To demonstrate the ease with which different patterns can be formed, the
taper on the modes was reduced to produce a Chebyshev beam with -20 dB
sidelobes. With this taper the theoretical beamwidth is decreased to 75°.

The calculated amplitude and phase of the compensation required to form

this beam is given in table 5.4 overleaf.
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Chapter 5 - Measurements of synthesised beams

Mode 0 : ct . ¢€2 1+ s
order ) : N
Mod \ : \
cogfgcients 0dB, 0° : 0 dB, +66° : -9.3dB,+161°: 0dB, +66°
Mode com- | 555 4p 0o | 517 dB, -66° 10 dB, 161° \ 517 dB, -66°
pensation ) ’ o ’ : J O ’
Final mode \ S N
weights 0dB,0° |, -1.59dB,0° . -5.72dB, 0° ' -1.59dB, 0°
(relative) : \ .

Table 5.4 The amplitude mode compensation used in the synthesis

of a -20 dB sidelobe Chebyshev beam.

To realise these weights additional attenuation was added to the Oth and 15t
order modes. The theoretical transmission parameters for the beamformer
were calculated using (4.2.4). The measured transmission parameters for
the complete network are compared to the theoretical values in table 5.5
below. As for the -30 dB sidelobe Chebyshev beam, fine tuning of the

compensation was necessary to eliminate the effect of matrix transmission

errors.
Element : ; :
number 1 ' 2 : 3 ' 4
Theoretical ' N :
element  [10.1dB,+139% -6.0dB,0° | -8.3dB,111°. -6.0dB,0°
excitation : : i (reference)
\ : :
Measured \ : '
element -10.5 dB, +142¢ -6.2dB, +1°: -8.2dB,-110°' -6.0dB, 0°
excitation \ ' . (reference)
\ v :
Excitation | .0.4dB, +3° ! -0.2dB, +1° 1 +0.1dB,+1°' 0dB, 0°
error : ' )
' : :

Table 5.5 A comparison between the measured and theoretical

transmission parameters for the beamformer
(Chebyshev beam with -20 dB sidelobes).
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The measured radiation pattern is shown in figure 5.2. For comparison the
theoretical radiation pattern is also plotted. The -3 dB beamwidth of the
measured pattern is within +2° of the theoretical value of 75°, while the first
sidelobe level is within 0.5 dB of the theoretical -20 dB.

The theoretical directive gain of this beam is higher than that of the -30 dB
sidelobe Chebyshev beam. The measured gain of this beam is 3.5 dB lower
than that of the -30 dB sidelobe Chebyshev beam because the Oth and 15t
order modes were attenuated to give the correct taper, as explained in
section 3.5.

Again the amplitude mode compensation was adjusted to minimise the
transmission errors for one beam port (number 3) alone. The synthesised
beams at the other three ports had sidelobe levels as high as -14 dB.

5.2.3 Synthesis of a sin(Nx)/Nsin(x) radiation pattern

To demonstrate the versatility of this technique a sin(5¢/2)/5sin(¢/2) pattern
was formed by exciting the 0th, 15t and 2d order modes with equal
amplitudes. This pattern has a theoretical -3 dB beamwidth of 65° with the
first sidelobes at a level of -12.1 dB, determined using figure 2.2. The
calculated amplitude and phase of the compensation required is given in
table 5.6 below.

Mode 0
order

Mode
coefficients

C1 C2 S1

0dB, 0° 0dB, +66° .-9.3dB,+161°* 0 dB, +66°

Mode com- -9.3dB, 0°

- - (]
pensation 9.3 dB, -66

0dB,-161° | -9.3dB, -66°

Final mode
weights 0dB, 0°
(relative)

0dB, 0° 0dB, 0° 0dB, 0°

P R A I e A A “a= e
P I I I L

lr > > > o o - e el

Table 5.6 Amplitude mode compensation used in the synthesis of
a sin(5¢/2)/5sin(¢/2) radiation pattern.
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To realise these weights more attenuation was added to the Oth and 15t order
modes. The theoretical transmission parameters for the beamformer were
calculated using (4.2.4). The measured transmission parameters for the
complete network are compared to the theoretical values in table 5.7 below.
As for the -30 dB and -20 dB sidelobe Chebyshev beams, fine tuning of the

compensation was necessary to eliminate the effect of matrix transmission

errors.

Element N ' '

number 1 ; 2 : 3 : 4
Theoretical N N \
element -8.66 dB, +1 57? -6.0dB, 0° ' -8.55dB,-139° -6.0dB, 0°
excitation \ : ! (reference)
Measured : : E
element -9.04dB, +154°! -5.9dB,0° | -8.5dB,-141° . -6.0dB,0°
excitation : : ' (reference)

! : :

Excitation | 54 4n 30} 40.1dB,+1° +0.05dB,-2°0 0dB, 0°
error ' SRR T '

Table 5.7 A comparison between the measured and theoretical
transmission parameters for the beamformer
(sin(5¢/2)/5sin(¢/2) beam).

The measured radiation pattern is shown in figure 5.2. For comparison the
theoretical radiation pattern is also plotted. The -3 dB beamwidth of the
measured pattern is within +2° of the theoretical value of 65°, while the first
sidelobe level is within #1 dB of the theoretical -12.1 dB. The measured peak
gain was -5.5 dBi, compared to a theoretical figure of -3 dB using (3.5.6)
Although the directive gain of this beam is 7 dB, higher than that of the
Chebyshev beams, the gain of this beam is lower because the Oth and 15t
order modes are attenuated down to the level of the 214 order mode.
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Chapter 5 - Measurements of synthesised beams

The Chebyshev beam of figure 5.2, with -28 dB sidelobes has the lowest
sidelobes demonstrated using the phase modes of a circular array. Beams
formed by Sheleg (1968) using a 32-element circular array demonstrated a
sidelobe level of -19 dB in a (single-frequency) beam that was scanned using
phase shifters. Results of Davies and Chow (1969) show 'ripple' at -23 dB on
an electronically scanned pattern. However, the main aim of this study
was the synthesis of instantaneously wideband patterns. Adjustment of the
compensation to correct matrix errors across a wide frequency band was
simply not feasible. A simpler corporate feed beamformer was developed to
solve this problem, as described in sections 4.3.3 and 4.4. The next two
sections present the results of measurements on instantaneously wideband

beams formed using the same monopole array.

5.3 Synthesis of a wideband low sidelobe radiation pattern

5.3.1 Introduction

In section 4.4.3 the design of a corporate feed to form a single Chebyshev
beam is described. The beamformer of figure 4.18 produces an array
excitation where the Oth, 15t and 2nd order phase modes have a taper

calculated using the equations of section 2.1.4:

Mode order -2 X 1 0 E +#1 ) +2
Amplitude \ : : :
taper (dB) -9.94 : -2.29 : 0 : -2.29 : -9.94

With this taper the mainlobe has a theoretical -3 dB beamwidth of 82°, and
equal level -30 dB sidelobes. The modes are excited with this taper
instantaneously across the frequency band 8 to 12 GHz. The modes also had
a linear phase progression applied to form the beam in the azimuth

direction ¢ = 180°, the direction of element number 3.
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Chapter 5 - Measurements of synthesised beams

5.3.2 Results of azimuth pattern measurements

Azimuth radiation pattern measurements were done using the technique
of section 5.1.2. First the source frequency was set to 10 GHz. The
measured azimuth radiation pattern is shown in figure 5.3a. For
comparison the theoretical beam shape is also plotted. The measured -3 dB
beamwidth is within +2° of the theoretical beamwidth. The sidelobe level is
considerably higher than the theoretical level, at -20.5 dB.

The radiation pattern measurements were repeated across the freduency
band 8 to 12 GHz, at 0.25 GHz intervals. Figures 5.3a and 5.3b show the
plots taken at 8, 9, 10, 11 and 12 GHz. Since the beamformer was
instantaneously wideband, only the RF source frequency was changed

between measurements.

Figure 5.4 plots the change in the -3 dB beamwidth with frequency showing
a variation of only +3° over the half octave frequency range. Figure 5.4 also
shows the change in the peak sidelobe levels with frequency. The sidelobe
level is between -20 dB and the design figure of -30 dB. At two frequencies,
8.5 and 10. 25 GHz, the sidelobe level is within £1 dB of the design sidelobe
level: -28 dB. The reason for the increase in sidelobe levels is errors in the
beamformer. As explained in section 4.4.3, the specified excitation could
only be realised to within about +0.5 dB, and £5°. Inspection of figure 4.2
shows that for errors of this magnitude, a minimum sidelobe level of -20 dB
can be expected. Further analysis of the effect of measured beamformer

errors on these measured beams is done in section 5.5.

These results show that low sidelobe wideband patterns can be formed by a
circular array. While at a single frequency it is possible to achieve sidelobe
levels close to -30 dB, for wideband patterns errors in the wideband
beamformer limit the sidelobe level to about -20 dB. Earlier studies of the
phase mode excitation of circular arrays, for example by Sheleg (1969) have
demonstrated the synthesis of directional beams at a single frequency, this
Chebyshev beam was the first demonstration of an instantaneously

wideband directional beam.
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Figure 5.3a Measurements of a wideband pattern synthesised using a

weighted corporate feed. These plots show the radiation
pattern at 8, 9 and 10 GHz, at an elevation angle of +8°.
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Figure 5.3b Measurements of a wideband pattern synthesised using a
weighted corporate feed. These plots show the radiation
pattern at 11 and 12 GHz, at an elevation angle of +8°.
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Figure 5.4 Measured changes in the -3 dB beamwidth

and sidelobe levels of the Chebyshev beam as a
function of frequency. The measurements were
made at a fixed elevation angle of +8°.
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Plots were also made of the synthesised beam outside the band 8 to 12 GHz.
Figure 5.4 plots the beamwidth from 7 to 14 GHz; an octave of bandwidth.
The beamwidth changes by +7.5° across this frequency range. The sidelobe
level increases up to about -10 dB at the ends of the frequency range. This
deterioration is to be expected, as no attempt to optimise the characteristics
of the microstrip networks outside the range 8 to 12 GHz was made, and
most of the beamformer components were only rated for operation over a
half octave band. With wider bandwidth beamformer components, a low
sidelobe pattern could have been demonstrated over an octave of bandwidth.
The gain would have been lower at the ends of the bands, due to the use of

monopole elements.
5.3.3 Changes in the azimuth pattern with elevation

Measurements of the azimuth pattern were repeated at fixed elevation
angles from 0° to +40°, using the technique of section 5.1.4. Figure 5.5a and
5.5b shows the measured change in the azimuth pattern with elevation,
with the source set to 10 GHz. There is an increase in the -3 dB beamwidth
with elevation, clearly illustrated in figure 5.6, showing the change in -3 dB
beamwidth with elevation at 8, 9,10, 11 and 12 GHz. At 0° of elevation the
beamwidth is 82+3° (across the band), increasing to 92+2° at an elevation
angle of +40°. This is a percentage change of 12%.

Inspection of figure 5.5, showing the change of the pattern with elevation at
10 GHz shows that the sidelobe level remains fairly constant up to about
+16° of elevation, and then the peak sidelobe level drops to -25 dB at 32° of
elevation. At 40° of elevation the peak sidelobe level has increased to -20 dB
again. Inspection of figure 5.7 shows that this effect is repeated across the
band, with an initial drop in sidelobe level, followed by an increase at
higher elevations. The only exception is at 8 GHz, where the sidelobe level

remains fairly constant, before increasing to -15 dB at +40° of elevation.

These results are in good agreement with the theoretical analysis of section
2.4. As the elevation angle increases, an increased taper is applied to the
higher order modes, relative to the zero order mode. This taper increases
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Figure 5.5a Measurements of a wideband Chebyshev beam synthesised
using a weighted corporate feed. These plots show the
radiation pattern at elevation angles of 0°, 8° and 16°, at a

fixed frequency of 10 GHz.
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Figure 5.5b Measurements of a wideband Chebyshev beam synthesised
using a weighted corporate feed. These plots show the
radiation pattern at elevation angles of 24°, 32° and 40°, at
a fixed frequency of 10 GHz.
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Figure 5.6 Measured changes in the azimuth -3 dB beamwidth of
the synthesised Chebyshev beam as a function of elevation.
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the -3 dB beamwidth and reduces the average sidelobe level. However, as
the elevation angle increases to 40° the average sidelobe level increases, and
the set of four nulls disappears. This can be explained if we consider the
relative phase of the phase modes on the position of the nulls, using the
Schelkunoff unit circle analysis of section 2.1.3. As the elevation angle
increases, the phases of the phase mode coefficients change so the modes
move out of alignment. The zeros in the pattern move away from the unit
circle and the nulls become shallower. The nulls also change their
azimuth angle. For the -30 dB sidelobe Chebyshev beam the nulls either
side of the backlobe move away from each other, so the backlobe becomes
larger, at the expense of the two sidelobes. This effect was predicted in
section 2.4, which considered the change with elevation for a -20 dB sidelobe
Chebyshev beam.

None of the azimuth plots showed a significant squint in the direction of the

beam with elevation.
5.3.4 The elevation pattern of the synthesised beam

Next the array was mounted on the turntable with the ground plane
vertical, as described in section 5.1.6. By rotating the turntable a
measurement of the elevation pattern for the beam was made. Figure 5.8
shows the measured elevation pattern of the Chebyshev beam at 10 GHz.
The elevation pattern of the monopole element is also plotted, showing that
the elevation beamwidth of the synthesised beam is the same as that of the
monopole element. The pattern has the same amount of ripple, the result
of using a finite ground plane, as discussed in section 3.5. The main
difference between the two plots is in the backlobe - the taper applied to the
phase modes produces a low backlobe in the 6 = 180° direction. For
monopole array elements, the pattern has the same intensity at

0 = 0° and 6 = 180°, on the azimuth horizon.
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Figure 5.8 A comparison between the radiation pattern of the
monopole element and that of the synthesised
beam in the elevation plane. Both measurements
were made in an anechoic chamber at 10 GHz.
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5.3.5 The gain of the synthesised beam

Figure 5.9 shows the measured peak gain across the frequency range

8 to 12 GHz. This was done using the technique of section 5.1.7, with the
ground plane returned to the horizontal plane. For comparison the
theoretical gain, calculated in section 3.5 is also plotted in figure 5.9. The
gain is close to 0 dBi at the centre of the band, dropping off at the ends
because of the drop in the monopole gain. The gain is about 2 dB less than
the theoretical gain. This can be attributed to losses in the beamforming
network: ideally the peak transmission amplitude should have been -6 dB.
In fact the measured amplitude was closer to -8.5 dB. The peak gain is
about the same as that of a typical cavity-backed spiral antenna, as shown
in figure 3.2.

5.3.6 Cross-polar response of the synthesised beam

The cross-polar response was plotted using the technique of section 5.1.5,
with the illuminating horn rotated through 90° to produce horizontally
polarised radiation, perpendicular to the vertical monopoles. Figure 5.10
plots the cross-polar response at 10 GHz, with the co-polar mainlobe also
plotted to provide an amplitude reference. The cross-polar gain is very low,
about -30 dB down on the co-polar response, with a weak mainlobe in the
same azimuth direction as the co-polar mainlobe. Because the monopoles
are thick (\/30) a small horizontal component is picked up directly. In
addition, reflections from the walls of the chamber can have a horizontal

component.
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Figure 5.10 The sensitivity of the synthesised beams to horizontally
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5.4 Synthesis of a wideband sin(5¢/2)/5sin(¢/2) radiation pattern

5.4.1 Introduction

Figure 4.22 shows a beamformer designed to form a single wideband
sin(5¢/2)/5sin(¢/2) beam. This beamformer produces an array excitation
where the 0th 15t and 2Md order phase modes are excited with equal
amplitude, instantaneously across the frequency band 8 to 12 GHz. The
mainlobe has a theoretical -3 dB beamwidth of 65°, and first sidelobes at
-12.1 dB. There is also a single backlobe at -14 dB. The modes had a linear

phase progression applied to form the beam in the azimuth direction ¢ =
180°, the direction of element number 3.

5.4.2 Results of azimuth pattern measurements

Azimuth radiation pattern measurements were made using the technique
described in section 5.1.2. First the source frequency was set to 10 GHz.
The measured azimuth radiation pattern is shown in figure 5.11a. For
comparison the theoretical beam shape is also plotted. The measured -3 dB
beamwidth is within +1° of the theoretical value, while the first sidelobes
are within 1.5 dB of the theoretical -12.1 dB level. The synthesised pattern
is almost identical to that produced at 10 GHz using a matrix type feed.
Although the beamformers are completely different, the excitation of the

circular array is the same.

The radiation pattern measurements were repeated across the frequency
band 8 to 12 GHz, at 0.25 GHz intervals. Figures 5.11a and 5.11b show the
plots taken at 8,9, 10, 11 and 12 GHz. Since the beamformer was
instantaneously wideband, only the source frequency was changed between

measurements.
Figure 5.12 plots the change in the -3 dB beamwidth with frequency; it is
constant to within +2° over the half octave frequency range. Figure 5.12 also

shows the change in the first sidelobe levels with frequency. They are
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Figure 5.11a Measurements of a wideband sin(5¢/2)/5sin(¢/2)
pattern synthesised using a weighted corporate feed
These plots show the radiation pattern at 8, 9 and

10 GHz, at an elevation angle of +8°.
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Figure 5.11b Measurements of a wideband sin(5¢/2)/5sin(¢/2)

pattern synthesised using a weighted corporate feed.
These plots show the radiation pattern at 11 and 12

GHz, at an elevation angle of +8°.
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within 2 dB of the theoretical -12.1 dB level across the band. As for the
Chebyshev beam, the changes in the -3 dB beamwidth and sidelobe levels

are due to errors in the array excitation, considered further in section 5.5.
5.4.3 Changes in the azimuth pattern with elevation

Measurements of the azimuth pattern were repeated at fixed elevation
angles from 0° to +40°, using the technique of section 5.1.4. Figure 5.13a
and 5.13b show the changes in the measured azimuth pattern with
elevation, with the source set to 10 GHz. There is an increase in the -3 dB
beamwidth with elevation, clearly illustrated in figure 5.14, showing the
change in -3 dB beamwidth with elevation at 8,9, 10,11 and 12 GHz. At0°
of elevation the beamwidth is 65+2° (across the band), increasing to 72+2° at
an elevation angle of 40°. This is a percentage change of 11%.

Inspection of figure 5.13 shows that there is a gradual drop in the level of
the first sidelobes with elevation, from a peak level of -10.5 dB at +8° of
elevation to -14 dB at +40°. This is more clearly illustrated in figure 5.15,
where the drop in the first sidelobes is apparent across the band. For the
single backlobe, pointing at 180° to the mainlobe there is a gradual increase
in the level with elevation, from about -15 dB at 0° to -12 dB at 40°, although

there are considerable variations across the frequency band.

As for the Chebyshev beam, these results are in good agreement with the
theoretical analysis of section 2.4. As the elevation angle increases, an
increased taper is applied to the higher order modes, relative to the zero
order mode. This taper increases the -3 dB beamwidth and reduces the
average sidelobe level. Because the modes move out of alignment in phase
some lobes increase in height, as is the case for the single backlobe of this
pattern. None of the azimuth plots showed a significant squint in the

azimuth direction of the beam with elevation.
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Figure 5.13a Measurements of a wideband sin(5¢/2)/5sin(¢/2) beam
synthesised using a weighted corporate feed. These
plots show the radiation pattern at elevation angles of

0°, 8° and 16°, at a fixed frequency of 10 GHz.
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Figure 5.13b Measurements of a wideband sin(5¢/2)/5sin(¢/2) beam

synthesised using a weighted corporate feed. These
plots show the radiation pattern at elevation angles of
24°, 32° and 40° at a fixed frequency of 10 GHz.
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the sin(5¢/2)/5sin(¢/2) beam as a function of elevation.
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Figure 5.15 Measured changes in the first sidelobe levels of the
sin(5¢/2)/5sin(¢/2) beam as a function of elevation.
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5.4.4 The gain of the synthesised beam

The peak gain of the beam was measured across the frequency range using
the technique of section 5.1.7. The gain was -4 dBi at the centre of the band,
compared to a theoretical figure of -3 dBi. As for the Chebyshev beam, the
difference is attributable to losses in the beamformer. The theoretical gain
of this beam is lower than that of the Chebyshev beam because the
excitation attenuates the Oth and 15t order modes. The measured changé in
gain across the band was similar to that of the Chebyshev beam (figure 5.9).
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5.5 Analysis and discussion of measured results

5.5.1 The effect of beamformer errors

The changes in the synthesised pattern caused by beamformer errors can
be predicted using equation (4.2.6) from chapter 4:

N .
A’m(f)= 2 s,np(f)eﬂrc(n— 1)m/N
n=1 (56.5.1)

As an example, consider the measured characteristics of the Chebyshev
beam at 10 GHz. The specified excitation of the elements is given in table
5.8 below. For comparison the measured excitation (with losses taken out)
is also tabulated.

Element '
number 1 \ 2

|
w

Theoretical '
element -10.9dB, +121° -6.0dB, 0°
excitation ’.

-7.76 dB,-89° : -6.0dB, 0°

Measured

element -10.5dB, +117¢ -6.6dB,0° : -7.3 dB,-88° -6.6 dB, 0°

excitation

Excitation

-0.5dB, 0°
error

+0.4 dB, -4° +0.46 dB, +1°: -0.5dB, 0°

T T T S

Table 5.8 A comparison between the measured and theoretical

transmission parameters for the corporate feed
(Chebyshev beam).

Using (4.2.6) the actual element excitation can be expressed as a mode
excitation, as shown in table 5.9 overleaf. For clarity the linear phase
progression used has been removed, and the taper is referred to the zero

order mode.
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Mode
order

C1 Cc2

2

Ideal mode
excitation 0dB, 0°
(A K )

-2.29dB, 0° , -9.94 dB, 0° - dB

Actual .
excitation 0dB, 0
A _K_)

-1.09dB, 0° ,-10.05dB, +2°1 <-40dB

P 0 I P R e Y e B

Excitation

error 0dB, 0° +1.2 dB, 0°

P I NP - A Y
I T I e e e A

-0.11 dB, +2°, Negligible

Table 5.9 A comparison between the measured and theoretical
mode amplitudes for the Chebyshev beam at 10 GHz.

The theoretical excitation produces a Chebyshev beam with -30 dB
sidelobes. Since this pattern is oriented in the direction ¢ = 180°, it does not
contain a component of the S1 mode. If a significant S1 component was
present, it would make this beam asymmetrical. The pattern excited by
A’ K, the actual mode excitation, is calculated using (4.2.3):

M .
F(o)= Y A_(OK_e!™
m=-M (6.5.2)

and plotted in figure 5.16. For comparison the measured pattern at 10 GHz
is also plotted, showing good agreement. The main error is the amplitude
of the 15t order mode. This is 1.2 dB higher, so the taper is reduced, This
increases the sidelobe level to -20 dB and widens the -3 dB beamwidth. This
is shown in both the calculated and measured plots of figure 5.16.

The theoretical plot predicts that two deep nulls should remain, while only
one is lower than -30 dB on the measured plot. This particular error
cannot be attributed to the beamformer, and may be due to element position

errors or anechoic chamber reflections.
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Let us consider another example, where the error in the mode excitation is
in phase, rather than amplitude. The sin(5¢/2)/5sin(¢/2) pattern at 11 GHz
had three nulls as high as -20 dB. Using the same calculations as for the
Chebyshev beam, the error in the modal amplitudes and phase was
calculated - see table 5.10 below.

Mode 0

order C2

C1

} - - - -

Ideal mode
excitation 0dB, 0°
A Kp,)

0dB, 0° 0dB, 0° - dB

P I N e

Actual '
excitation 0dB, 0° 0.88dB,-11.5%-1.13dB, -15°
AL, K.) '

<-40dB

]
]
]
]

- > -

Excitation 0 dB, 0°

error -0.88 dB, -11.5°E -1.13dB, -15°

Negligible

EIE I AP A R i N Y-y PO

Table 5.10 A comparison between the measured and theoretical
mode amplitudes for the sin(5¢/2)/5sin(¢/2) beam at 11
GHz.

The theoretical radiation pattern formed by this mode excitation is plotted
in figure 5.16. For comparison the measured pattern is also plotted. There
is good agreement between the two, both in sidelobe levels and the average
level of null filling. Interestingly the -3 dB beamwidth is unchanged from
the ideal case: the increase in width of the mainlobe caused by phase errors
is cancelled by the increased amplitude taper of table 5.10. Agreement
between theoretical and measured results cannot be perfect, as there are
other sources of error present, as well as the beamformer. Nevertheless,
these results clearly show that the main source of error is the beamformer.
The patterns shown in figure 5.16 could have been improved by optimising
the beamformer response at those frequencies, but only by degrading the

pattern at other frequencies.
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To conclude, for a linear array, the main limit on the attainable sidelobe
level is mutual coupling, which modifies the excitation of the array. For
circular arrays, the main limit is the errors introduced by the complex

beamforming networks.

5.5.2 The implications of the measured results for an amplitude
comparison DF system

Here the merits of the synthesised wideband beams results are compared
with those of competing antennas, with emphasis on the amplitude
comparison DF application.

Bandwidth

Compared with cavity-backed spirals the bandwidth of the beams formed
with a circular array is lower. As discussed in section 3.2, cavity-backed
spirals operate over a bandwidth close to a decade. The results here have a
bandwidth of half an octave. The main limit on bandwidth is the
components of the beamforming network. Even if these limits were relaxed
by adopting wider bandwidth components, the bandwidth is limited to about
an octave, as explained in section 3.5. Below 8 GHz, the amplitude of the
second order mode is too low to form the Chebyshev beam with reasonable
gain. Above about 15 GHz, the harmonic phase modes will increase the

sidelobe level, however good the feed network is.

The mainlobe beamwidth

The -3 dB beamwidth of the synthesised Chebyshev beam is constant to
within +3° over the half octave bandwidth. This is better than most
wideband elements, for example a cavity-backed spiral, with a change of
+11° (figure 3.2) over the frequency range 8 to 12 GHz or the 'Vivaldi Aerial’
of Gibson (1979), with a change of +4°. The DF error caused by a +3° change
in beamwidth is 4° maximum (see figure 3.4). The small change in the
beamwidth of the Chebyshev beam with frequency is matched by very few
antennas, although the Vivaldi Aerial comes close.
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Squint
Within the limits of the measurement system (+1°) no squint was observed

in the synthesised beam, either as a function of frequency, or with
elevation.

Sidelobe level

At a single frequency (10 GHz) sidelobe levels of -28 dB were obtained (figure
5.2). This is the theoretical level for the given taper. While a steeper taper
can theoretically give sidelobes below -30 dB, the practical difficulties
involved in setting the phase and amplitude of the excitation are severe -
even at a single frequency. Figure 4.2 shows that an accuracy of 0.2 dB and
1.5° is required for -30 dB sidelobes. Realising the (changing) element
excitation over a half octave is more difficult. With the beamformers of
figures 4.18 and 4.22 the excitation could only be realised to within £0.5 dB
and £5°across the band 8 to 12 GHz. Inspection of figure 4.2 shows that
this will limit the sidelobe level to -20 dB minimum. This was indeed the
case, as illustrated in figure 5.4, showing the measured sidelobe level of a
Chebyshev beam over the frequency range 8 to 12 GHz. This is confirmed by
figure 5.16, where theoretical predictions of the increase in sidelobe level is
compared to the measured results. By comparison other wideband
antennas, for example cavity-backed spirals (figure 3.2) or the Vivaldi
Aerial also have sidelobe levels close to -20 dB.

Gain

The absolute gain of the -30 dB sidelobe pattern is very similar to that of a
cavity-backed spiral with the same beamwidth. The gain of the wideband
Chebyshev beam was similar to that of cavity-backed spirals; 0 dBi. For the
sin(5¢/2)/5sin(¢/2) beam the gain was 4 dB lower, a reversal of the situation
found with linear arrays. The circular array radius was chosen to give a
steep taper on the higher modes give low sidelobes and reduce ripple. If the
main aim of this study had been to produce a -13 dB sidelobe beam by
exciting the modes with equal amplitudes, an array radius close to A/2
would have been chosen.
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Multiple beams

In amplitude comparison DF systems a set of cavity-backed spirals are used
to produce overlapping beams. Using a single circular array multiple
overlapping beams can be formed using a pair of matrices, as
demonstrated by Davies et al. (1984). However multiple low sidelobe beams
could not be demonstrated in this study, even at a single frequency. Despite
considerable effort applied to reducing the complexity of the matrices (see
chapter 4) the cumulative effect of component errors degraded the
synthesised patterns unacceptably. Possible solutions to this problem are

discussed in section 6.3.

Cross-polar response

Cavity-backed spirals are circular polarised, while the monopole elements
were sensitive to vertically polarised signals, as illustrated in figure 2.20.
Rejection of the horizontal component reduces the system sensitivity, but
can improve the DF accuracy, as the problems associated with a changing

'axial ratio' are eliminated.

Changes in the pattern with elevation

The measured wideband beams did not squint i.e. change their azimuth
boresight direction as the elevation angle is increased from 0° to +40° of
elevation. The sidelobe level of the wideband beams dropped as the elevation
angle increased up to about 30°. As explained in section 2.4, at elevation
angles above 0° an increased taper is applied to the modes. The gain of the
measured beam drops as the elevation angle increases. Figure 5.8 shows
that this reflects the shape of the monopole elevation pattern. This only
affects DF sensitivity but not DF accuracy, as all four beams roll off in gain
by the same amount for a signal incident at a given elevation angle.
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Summary and conclusions

6.1 Summary

6.1.1 Introduction

During the course of this study the synthesis of wideband radiation patterns
using circular arrays has been investigated. The theoretical concept has
been applied to the design, development and evaluation of a pattern
synthesis system using a four-element circular array. The results obtained
from this prototype have been used to determine the limits on the operating
bandwidth, and also to compare the merits of this approach with those of

existing wideband antennas.
6.1.2 Linear array equivalence

The radiation patterns formed by the phase modes of a circular array are
similar to those formed by the elements of a half-wavelength spaced linear
array. The radiation patterns of linear arrays are formed in sine(¢) half
space, while phase mode radiation patterns are formed directly in ¢ space -
around 360° of azimuth. Each phase mode can be thought of as an
(omnidirectional) element of a linear array that radiates directly into ¢
space, with the 0th order mode being the centre element. A discrete
circular array of N elements can excite all the modes up to the order £IN/2,
and so is equivalent to a linear array with N + 1 elements. For the highest
order mode the +N/2 and -N/2 modes are excited simultaneously, forming
an amplitude mode with a cosinusoidal variation in amplitude with
azimuth. The corresponding N/2 order sine amplitude mode cannot be
excited by an N element circular array. While phase modes can be used in

steered beams, amplitude modes can only be used in fixed beams.
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For a linear array, a -13 dB sidelobe radiation pattern is formed by exciting
all the elements with equal amplitude and phase. To radiate the phase
modes of a circular array with equal amplitude the excitation must be
compensated to correct for the phase mode coefficient - a complex term that
determines the relative amplitudes of the modes. For a given mode order,
the phase mode coefficient is determined by the array radius, mutual
coupling and the radiation pattern of the circular array elements. Since
the phase mode coefficient is complex, the relative phases of the modes
must also be compensated. If the modes are visualised as the elements of a
linear array (as shown in figure 2.12) the mtP phase mode coefficient
corresponds to a passive two-port network with a complex transfer function
located in each element feed. The input impedance of this network is the
phase mode impedance (that is, the impedance of a circular array element

when the array is excited by a phase mode).

One of the aims of this study was to produce low sidelobe beams for an
amplitude comparison DF system. Cavity-backed spiral antennas
commonly used in existing amplitude comparison DF systems have -20 dB
sidelobe levels. Applying a taper to the phase modes reduces the sidelobe
level of the synthesised beam. A Chebyshev taper (derived from linear
array theory) was selected to form low sidelobe radiation patterns. A target
sidelobe level of -30 dB was chosen; 10 dB better than that of cavity-backed
spirals. As explained further on, both 'spatial harmonics' and errors in
the array excitation (caused by the beamformer) set this limit on the

sidelobe level.

A fan of overlapping beams is required for amplitude comparison DF.
These are formed using a second Butler matrix connected to the
(compensated) phase mode outputs of the first matrix. This was
demonstrated over a narrow bandwidth by Davies et al. (1984). The
orthogonal spacings (in ¢ space) for beams are the same as those for beams
of the same shape formed by a linear array. With an N-element array, N
overlapping beams can theoretically be formed. If the highest order
amplitude mode is used, the fixed beams must be oriented in the azimuth

directions of the N elements.
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6.1.3 Wideband pattern synthesis

As stated in 6.1.2, the phase mode coefficient is determined by mutual
coupling, the effective array radius (r/A) and the radiation pattern of the
circular array elements. These are all parameters that change with
frequency. Patterns synthesised using phase modes will be narrowband
unless changes in the phase modes with frequency are compensated. This
can be done .using RF networks with a reciprocal frequency response
connected to the phase mode ports. Radiation patterns synthesised from
compensated modes are instantaneously wideband, with a constant
beamwidth and fixed sidelobe levels. The relative phases of the modes must
also be held constant across the band, so the phase response of the RF

compensation networks is also specified.

Accurate compensation requires precise information about how the phase
modes change with frequency. This led to the development of a technique to
determine the phase mode coefficient from measurements of the radiation
pattern of a single element (located in the circular array). By repeating
these measurements across the band, changes in the coefficients with
frequency could be determined. This technique is discussed in greater

detail in section 6.2.

During the course of this study the theoretical limits on the frequency band
for pattern synthesis were investigated. The lower limit on the operating
bandwidth is determined by the impedance of the array elements. When an
array is excited by a mode of order m all the array elements have the same
impedance, termed the mth phase mode impedance. Due to mutual
coupling the element impedance changes greatly as a function of the mode
order. For an array of closely spaced elements the radiation resistance of
the higher order modes is much lower than that of the 0th order mode. The
phase mode impedance also changes as a function of frequency. As the
frequency falls, the real part of the radiation resistance drops towards zero,

for the higher order modes. This |is a classic example of a superdirective

excitation.
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The lowest operating frequency can be estimated from theoretical figures
for the self and mutual impedances of the elements. In this study the
phase mode impedances of a four-element monopole array were
determined by two experimental methods, first from measurements of the
self and mutual impedances of the array elements, and secondly by
measuring the reflected signals from an array excited by a single phase

mode. There was good agreement between the two sets of results.

For the four-element monopole array used in this study, the measured
radiation resistance of the 2"d order mode was about 2 Q, so the efficiency
with which this mode is radiated was an order of magnitude lower,
compared with the Oth order mode. This proved to be useful, since this mode
required a taper of -10 dB to produce the Chebyshev radiation pattern.

Below 8 GHz the 20d order mode could not be excited with the amplitude
required for the Chebyshev beam, so 8 GHz was the lowest frequency at
which the beam could be formed with reasonable gain, i.e close to 0 dBi.

In principle, impedance matching can improve the radiation efficiency by
eliminating the mismatch between the element impedance and that of the
feed network. Since all the elements have the same modal impedance, they
can be matched by an impedance-matching network at the phase mode port
of the matrix. This was demonstrated at a single frequency using a stub
tuner. Because of the long electrical length between the phase mode port
and the element feed point, this matching techniqué is fundamentally

narrowband.

The upper frequency limit for beam synthesis is determined by spatial
harmonics; when a mode is excited on a discrete array, harmonic modes
are also excited. If the modes are visualised as the elements of a linear
array, the harmonics correspond to additional elements connected to the
same feed port as the fundamental mode - they cannot be excited
independently. While additional elements with a 'built in taper' (provided
by the phase mode coefficient) might appear desirable for low sidelobe
patterns, these harmonics severely degrade both the sidelobe level and the
mainlobe shape. The phase shift introduced by the phase mode coefficient
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is generally in antiphase with that of the fundamental mode, a shift that
cannot be corrected. In addition, the relative amplitudes of the two modes

also change with frequency, resulting in a narrowband pattern.

The solution chosen in this study was to keep the inter-element spacing
small, so the circular array was unable to excitelf’ or support the higher order
harmonic modes. An inter-element spacing belc;w A/4 at the upper
operating frequency was chosen in order to reach the target -30 dB sidelobe
level. The inter-element spacing chosen was 5 mm, giving a theoretical
upper frequency of 15 GHz, so the theoretical bandwidth is just under an
octave. In this study the upper frequency limit was 12 GHz, determined not
by ripple, but by the operating bandwidth of the beamformer components.

At 12 GHz the 5 mm inter-element spacing was 20% below the A/4 limit.

The operating bandwidth of circular arrays is discussed further in

section 6.2
6.1.4 Array design

At least five phase modes are required to synthesise a Chebyshev -30 dB
sidelobe radiation pattern with a -3 dB beamwidth less than 90°, as required
by amplitude comparison DF. Since a four-element circular array can
excite five modes, and can form four overlapping beams, a circular array
with four elements was adopted. Circular arrays with eight elements were
also considered, because a fan of eight -30 dB sidelobe beams, each with a
narrower -3 dB beamwidth, gives better DF accuracy. The sheer
complexity of the 8 x 8 Butler matrices required'fuled out this option. Even
building 4 x 4 microwave Butler matrices with the required performance

was difficult.

The next stage was to choose the type of array element. The bandwidth
limits discussed above determined the 5 mm inter-element spacing. This
corresponds to an array radius of 3.53 mm. Few antenna types can be fitted
onto such a small array radius. The use of elements with a unidirectional
(1 + cos(y)) radiation pattern was desirable, as the phase mode amplitude
changes less with frequency for directional elements, compared with
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omnidirectional elements. The physical aperture of the directional
elements considered was simply too large, so monopoles mounted on a
large ground plane were adopted. Isolated monopoles have an
omnidirectional radiation pattern in the azimuth plane. For the small
array radius used, the changes in the relative amplitudes of the modes over
the frequency band 8 to 12 GHz was tolerable. To maximise the gain,
monopoles resonant at the centre of the band were used, with a length of 7.5
mm. To reduce the change in the reactance with frequency, thick
monopoles were used. The elevation pattern of the A/4 monopole in the
elevation plane was suitable for the DF role. Beams synthesised with this

array were sensitive to vertically polarised signals only.
6.1.5 Butler matrix beamformer design

Radiation patterns synthesised from compensated phase modes do not
change shape as a function of frequency, but errors in practical
beamformers will degrade their shape. Changes in the peak gain of
adjacent beams and changes in the -3 dB beamwidth reduce the DF
accuracy, while increases in the sidelobe levels and the filling in of nulls

reduce the immunity to interfering sources, like jammers.

The main sources of error in the beamformers were:

. Errors in the transmission amplitude and phase of beamformer
components.

. Imperfect isolation between coupler input ports.

. Reflections from imperfectly matched ports.

The theoretical effect of these errors on the shape of the -30 dB sidelobe
beam was evaluated. The initial beamformer design, depicted in figure 4.1,
used two Butler matrices in tandem with compensation networks in

between.
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A computer program was developed to predict the performance of the
beamformer, specified in terms of the scattering parameters for the eight
ports of the network. At that time, the compensation networks were not
ready. In order to evaluate the matrix performance, the two matrices were
connected together, thus forming a Fourier transform/inverse transform.
The network analyser measurements were compared to ideal predictions
for the transmission parameters. The results were disappointing,
predicting that the measured transmission errors would limit the sidelobe

levels to -14 dB - which was unacceptable.

Between the element port and the output beam port, a signal passes
through four couplers. The computer model showed that for some paths
the transmission errors add cumulativély, giving peak transmission errors
of up to +2 dB and £20°. This was broadly in agreement with the measured
results. A literature search showed that similar problems had been
documented by Mosko (1984) in beamformers used to provide monopulse
patterns simultaneously in the horizontal and vertical planes. The solution
was to develop a 'symmetrical' beamformer, where the systematic
transmission errors introduced by the first mode-forming network were
cancelled by the systematic errors in the second beam-forming matrix.
Since amplitude comparison DF does not use scanned beams, they can be
formed from amplitude modes, rather than phase modes. A new matrix,
termed an 'amplitude mode matrix', was developed to form a set of
orthogonal amplitude modes. In addition to error cancellation, this matrix
has three other advantages over the Butler matrix:

. The amplitude mode matrix uses only one type of component - the
180° coupler.

. It requires fewer couplers - three for a 4 x 4 matrix, as depicted in
figure 4.8.

o If a single amplitude mode is excited, reflections from the mismatch

of the elements is reflected back to the same amplitude mode port, so
amplitude modes of the same order are isolated, unlike phase modes.
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The theoretical analysis developed for phase modes is perfectly valid for
amplitude modes: the phase mode coefficients, the phase modes impedance

and the orthogonal relations of phase modes all apply to amplitude modes.

A pair of amplitude mode matrices were built, operating over the frequency
range 8 to 12.4 GHz. Again the two matrices were connected together,
forming an Fourier transform/inverse transform. The results predicted
that beams sidelobes formed with this matrix would be limited to -20 dB.
While this is a 6 dB improvement compared with the Butler matrix design,
it is not good enough for our application. The theoretical analysis did not
take into account the cumulative effect of random errors, for example the
phase and amplitude errors introduced by the eight SMA connectors in
each path between the element port and the beam ports. The cumulative
effect of component mismatches was also severe, even though isolators
were used at the element ports to eliminate the element mismatch. Even
this improved matrix system was not satisfactory for low sidelobe pattern

synthesis over a wide bandwidth.
6.1.6 Measured narrowband radiation patterns

Narrowband beams were formed using the pair of amplitude mode
matrices, located underneath the ground plane of the four-element
monopole array. Amplitude compensation was done using attenuators and
phase compensation was done using delay lines. The beamformer was
optimised to form a beam at the centre operating frequency for the matrix
system, 10 GHz. Measurements were made of the synthesised radiation
pattern using an anechoic chamber at UCL. Making use of the amplitude
taper of the phase mode coefficients, a Chebyshev beam was formed with
equal -28 dB sidelobes and a beamwidth of 82°. By reducing the taper a
Chebyshev pattern with -20 dB sidelobes and a -3 dB beamwidth of 75° was
formed. By radiating the five modes with equal amplitudes, a
sin(5¢/2)/5sin(¢/2) pattern was formed, with a -3 dB beamwidth of 65° and
-12.1 dB sidelobes.
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These radiation patterns demonstrated that linear array theory can be
applied to the phase modes of circular arrays - at least at a single
frequency. The ease with which the amplitude taper was changed
demonstrates the versatility of pattern synthesis using orthogonal modes.
No calculation of the effect of mutual impedances was necessary. Once the
phase mode coefficients have been determined, mutual coupling plays no

role in modifying radiation patterns synthesised using modes.

To optimise the performance of the matrix beamformer, the compensation
was adjusted until the transmission parameters, between the beam port
and the element ports, were close to the ideal values. These were calculated
using a computer model of the complete beamformer, including the
compensation networks. First, the network was corrected for the beam at
port 3, but this severely degraded the pattern at ports 1, 2 and 4. Secondly,
the network was corrected for the beam at port 1, but this degraded the
pattern at ports 2, 3 and 4. Despite considerable efforts at improving matrix
performance it was not possible to produce multiple low sidelobe beams
with this beamformer - one of the main aims of this study. This is
discussed further in section 6.2.

6.1.7 The design of a corporate feed for wideband pattern synthesis

As explained above, provided the specified transmission parameters
between the beam port and the four element ports are accurately realised,
the desired beam will be formed. This is irrespective of the type of
beamformer used. A corporate feed is one of the simplest beamformers.
For a four-element circular array it can be constructed from three
Wilkinson couplers. The element excitation is equal in amplitude and
phase. By inserting RF compensation networks into the corporate feed,
however, the array excitation specified using phase mode theory can be
realised. The excitation was calculated using a computer model of the
Butler matrix beamformer. As the theoretical phase mode compensation
in the ideal beamformer changes with frequency, so does the array

excitation required to form an instantaneously wideband pattern.
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A corporate feed cannot produce the fan of overlapping beams required for
an amplitude comparison DF system. However, an experimental
demonstration was carried out to demonstrate that wideband beams can be
formed with a circular array. The array excitations required to form a
wideband Chebyshev -30 dB sidelobe pattern and a sin(5¢/2)/5sin(¢/2)
radiation pattern were calculated. To realise the specified excitation, the
design of microstrip compensation networks was investigated. Work on
this area had already begun, as the weighting networks required for a
corporate feed were similar in most respects to those required for phase

mode compensation.

The transmission amplitude and phase of the compensation networks are
both rigidly specified and both change with frequency. The networks
should also be matched to reduce reflections within the feed. A microwave
computer-aided design package (called PUFF) was used to model the

microstrip components and optimise the design.

Coarse adjustment of the transmission amplitude was done using
wideband attenuators. Simple low pass and band pass microstrip filters
were used to realise the change in the transmission amplitude with
frequency. The specified changes were only 2 to 4 dB across the frequency
band. For frequencies where the filter mismatch was high, the VSWR was
bad, so isolators were necessary to reduce the effect of the mismatch.

The wideband transmission phase of the compensation networks was also
rigidly specified. Microstrip phase shifters designed to provide fixed phase
shifts between 30° and 150° were constructed. If the required phase shift
was outside this range, a 90° coupler was substituted for one of the cophasal
Wilkinson splitters of the corporate feed, providing an additional phase
shift. Linear changes in the transmission phase with frequency were
realised using a simple delay line. Using these techniques, the specified
transmission amplitudeé and phases were realised to within

10.5 dB and £5°.
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6.1.8 Measured wideband beams

The corporate feed was configured to excite the phase modes with an
Chebyshev amplitude taper to give -30 dB sidelobes. Anechoic chamber
measurements of the wideband radiation pattern across the frequency band
8 to 12 GHz showed that the -3 dB beamwidth of the synthesised pattern was
constant to within +3° of the theoretical -3 dB beamwidth of 82°. The beam
did not squint in azimuth. The measured sidelobe level was below -20 dB
across the whole frequency band, so the peak sidelobe level was 10 dB
higher than the target figure of -30 dB. Computer modelling showed that
the increase in the sidelobe levels was due to beamformer excitation errors,
of the order of £5° and 0.5 dB. This error also produced the +3° change in
the -3 dB beamwidth.

Measurements of the azimuth beam were made at fixed elevation angles up
to +40°. The -3 dB beamwidth increased by about 10% between 0° and 40° of
elevation. The sidelobe levels initially dropped, but increased again as the
elevation angle approached 40°. The beam did not squint in azimuth with
elevation. These results are in good agreement with a theoretical analysis
of the changes in the synthesised beam with elevation (section 2.4). Since
the monopole elements were vertical, the array was only sensitive to
vertically polarised signals, with a -28 dB rejection of horizontally polarised
signals. The radiation pattern in the elevation plane was also measured.
As expected, the radiation pattern of the synthesised main beam in the

elevation plane was very similar to that of the monopole element.

The absolute gain of the synthesised Chebyshev radiation pattern was about
0 dBi, comparable to that of cavity-backed spirals with similar directive
gain, and in good agreement with theory. The variation in the gain was
about +2 dB across the band. While this gain variation could have been
reduced by altering the compensation of the modes, the prime aim was to
keep the relative amplitudes of the modes constant, so the beam did not

change in shape with frequency.
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The corporate feed was next configured to excite the phase modes with
equal amplitudes to give a sin(5¢/2)/5sin(¢/2) pattern. This pattern is
unsuitable for amplitude comparison DF, as it has -12.1 dB sidelobes; the
aim was to demonstrate the versatility of the wideband synthesis technique.
Anechoic chamber measurements of the wideband radiation pattern across
the frequency band 8 to 12 GHz showed that the -3 dB beamwidth of the
synthesised pattern was constant to within £2° of the theoretical -3 dB
beamwidth of 65°. The first sidelobes were within £2 dB of the design level
of -12.1 dB. The elevation pattern and cross-polar characteristics of the
beam were very similar to those of the Chebyshev beam, with the azimuth
beamwidth increased by 11% at 40° of elevation. The first sidelobes dropped
with increasing elevation, while the single backlobe increased to about

-12 dB. The gain of the sin(5¢/2)/5sin(¢/2) radiation pattern was lower than
the Chebyshev beam, about -4 dBi. This was because the amplitude of the
0th and 15t order modes was attenuated to match that of the 274 order mode.

These results shows that instantaneously wideband patterns can be formed
using a circular array, and excitations derived from linear array theory

can be used to shape the wideband patterns.

6.2 Discussion of results

6.2.1 Characterising the phase modes of circular arrays

Davies and Chow (1969) plot the amplitude modes formed with a 16-element
circular array at 427 MHz. .For the array radius chosen the 274 order mode
was not properly excited, and this led to difficulties in exciting efficient
directional beams. This problem was only identified after the
16 x 16 matrix had been constructed and the mode amplitudes measured
directly. The technique of Jones and Griffiths (1988) developed during this
study accurately predicts the mode characteristics without using a matrix.
Since most of the circular arrays developed at UCL have used 'off the shelf
array elements such as dipoles or monopoles, the performance of the
system can be predicted at a much earlier time. This technique can also be

‘used with directional elements such as loops.

250



Chapter 6 - Summary and conclusions

The design of the signal processing networks, whether adaptive or fixed,
can begin at an earlier date once the mode coefficients are known. The
mode coefficients can vary quite widely from the theoretical values. For
example, for the monopole array of this study, the 27d order mode is at an
amplitude of -10 dB relative to the 0th order mode at 10 GHz. The theoretical
figure for omnidirectional elements is -20 dB (figure 2.9a). This
discrepancy is explained by the measured element pattern in the array,

which is more like a (1 + cos(y)} pattern than an omnidirectional pattern.

An additional bonus is that this technique predicts the mode coefficients for
the harmonics, as well as the fundamentals. Previously only theoretical

figures were available. This technique accurately predicted the increase in
sidelobe level from -30 dB to -28 dB in the Chebyshev beam of figure 5.2.

In section 3.4 the impedance of the modes was predicted from
measurements of the self and mutual impedances of the elements. From
this the feed mismatch and hence the efficiency can be accurately
predicted. Theoretical figures for the self and mutual impedance of
elements provide only an approximate prediction of changes in the mode
impedance with frequency.

6.2.2 Limits on the frequency bandwidth for pattern synthesis

The aim of this study was to form beams over a bandwidth exceeding a
decade, corresponding to the bandwidth of antennas such as cavity-backed
spirals. The phase comparison DF system of Cvetkovic et al. (1988) formed
nulls over a 1.2 decade bandwidth using phase modes, so a similar
bandwidth could be expected for beams formed with phase modes. His
circular array operated at a maximum element spacing of 0.5A at 30 MHz.
A radius of 0.5\ could not be used in this study because a harmonic mode
that applies a mild ripple to an omnidirectional pattern can produce a +15
dB increase in -30 dB sidelobes (see figure 2.17). The ripple on
omnidirectional patterns can be adaptively corrected for the phase
comparison DF role, but the sidelobe level of beams cannot be adjusted in

this way.
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The harmonic problem is not alleviated by increasing the number of
elements, unless the inter-element spacing is reduced as well. Figure 2.17
shows the effect of the 3™ order harmonic on a Chebyshev beam for a four
element array. The sidelobes are increased by 15 dB. The effect of the 5th
order spatial harmonic on a Chebyshev beam formed from the modes of an
eight-element array is very similar. For both four- and eight-element
arrays, reducing the inter-element spacing reduces the ripple, but raises
the lower operating frequency, as discussed next.

Cvetkovic's circular array operated at a minimum effective element
spacing of 0.02), using the 0th and 15t order modes and terminating the 20d
order mode unused. The lower operating frequency of the array in this
study was 8 GHz, at an inter-element spacing of 0.13A. This was the
minimum inter-element spacing, since below this the 27d order mode could
not be supported with an adequate amplitude. For low sidelobe beams, the
2nd grder mode is vital as it supplies two of the pattern nulls. For an eight-
element array, similar problems would be encountered in exciting the 4th

order mode with an inter-element spacing below 0.13A.

Cavity-backed spirals and the Vivaldi Aerial of Gibson (1979) are wideband
because the impedance and pattern properties of an antenna can be
determined by its shape and dimension, expressed in wavelengths. If
scaling the antenna (say, doubling its size) makes no difference to the shape
of the radiating portion at a given frequency, then the antenna is wideband.
The Vivaldi Aerial and the cavity-backed spiral meet this condition because
their form can be specified by an angle variable alone. A circular array
does not meet this condition. The effective array radius is a direct function

of frequency. One solution to this problem is discussed in section 6.3.
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6.2.3 The difficulties encountered with Butler matrix feeds.

The work described in section 6.2.1 solved the problem of ripple, but matrix
errors played just as great a role in increasing sidelobe levels and
deforming the main beam. Indeed, separating the two problems involved
considerable work. This is not the first study in which the transmission
amplitude and phase of the matrix severely affected the mode
characteristics. Davies and Chow (1969) plot the amplitude modes of a 16-
element circular array at 427 MHz. The peaks of the sinusoidal azimuth
waveform should be at the same amplitude if the excitation is correct. In
fact the level varies by +1 dB for the 374 order amplitude mode, +4 dB for the
5th order mode and +6 dB for the 7th order mode.

Why was so much difficulty encountered in forming beams with a Butler
matrix when they have been successfully used in many applications,
particularly phase comparison DF at HF frequencies ? Four main reasons
can be identified:

(i) Microwave couplers are not as good as lower frequency couplers. The
typical isolation between coupler ports is 17 dB for microwave couplers,
compared with 35 dB for the Anzac HH-106 180° coupler over the
frequency band 2 to 30 MHz. The return loss at a coupler port is 17 dB,
compared with 23 dB for the Anzac coupler, so the reflections in the
beamformer are 6 dB larger.

(ii) To synthesise a beam two matrices are used in tandem, while only
one is used in a phase comparison system. The cumulative
transmission amplitude and phase errors are doubled. By simplifying
the matrix, a technique for cancelling systematic errors in the coupled

sections was developed, but other transmission errors prevented this

| having a great effect. These errors are due to imperfect connectors and

' microstrip-to-coaxial transitions. Reflections from mismatches also

" introduce transmission errors, as described in section 4.2.
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(iii) Phase comparison systems eliminate jammers by placing a single null
in the azimuth direction of the jammer. The pattern is
omnidirectional, except for a single null. In the Schelkunoff unit
circle representation of the excitation, one null is located on the unit
circle in the direction of the jammer, while the other independent
nulls can be placed anywhere in imaginary space, provided they are
not too close to the unit circle. To form the Chebyshev beam of figure
5.2, four nulls were placed on the unit circle at specified angular
locations. Accurately placing four nulls (even though two are not
independent) is more difficult than placing one.

(iv) To overcome ripple phase comparison DF systems form nulls
adaptively at the frequency of the incoming jammer. This can also
help to overcome matrix transmission phase errors at the frequency in
question. The null formed is not instantaneously wideband, but this
does not matter, as UHF jammers are generally narrowband. In the
Schelkunoff unit circle representation, the null formed wanders with
frequency. To form the wideband Chebyshev beam of figure 5.3, four
nulls were located on the unit circle and maintained their positions
(fairly well) across the frequency band 8 to 12 GHz.

The approach used here to deal with beamformer problems was to consider
the RF network (Butler matrices and compensation) below the element
feeds as a single beamformer. Using computer modelling, the
characteristics of an 'ideal' beamformer could be compared with the
measured characteristics. At a single frequency (10 GHz) the
compensation was 'fine tuned' until the 'ideal' transmission amplitude
and phases were realised to within about £1° and £0.1 dB. The beam thus
formed had sidelobes of -28 dB, the limit determined by spatial harmonics,
not the beamformer. This is the lowest sidelobe level attained using the
phase mode analysis of circular arrays. The beamformer problem was now
reduced to one of meeting the transmission amplitude and phase specified
by the computer program. Working the program in reverse, by inserting

measured transmission errors into it, allowed the prediction of the increase
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in sidelobe level and the change in beamwidth.

To form the -28 dB sidelobe beam described above the compensation was
adjusted to optimise beam 3 at the output of the second Butler matrix.
Beams 1,2 and 4 had sidelobes as high as -15 dB. 'Fine tuning’' worked for
one beam port, but not for four. The formation of multiple low sidelobe
beams, one of the main aims of this study, was not achieved. This was not
done at a single frequency, let alone across the planned half octave
bandwidth. Methods of overcomihg this problem are discussed next.

6.3 Further investigations and applications
6.3.1 Reducing beamformer errors

In amplitude comparison DF systems a set of cavity-backed spirals are used
to produce overlapping beams. Using a single circular array, multiple
overlapping beams can be formed using a pair of matrices, as
demonstrated by Davies et al (1984) at UHF. As in this study, multiple low
sidelobe beams were not demonstrated, even at a single frequency. Despite
considerable effort applied to reducing the complexity of the matrices in this
study (see chapter 4, section 4.3) the cumulative effect of component errors
degraded the synthesised patterns unacceptably.

Some of the problems with microwave matrices do not arise with HF
matrices. The microwave 180° coupler is asymmetrical, with a single
Schiffmann section in one arm. At HF a symmetrical 180° coupling
structure is used, based on a transformer with a centre-tapped secondary.
The isolation of HF couplers is much better (-35 dB rather than -17 dB) and
connectors have a lower VSWR. The amplitude errors of the coupling
structure are no better for HF couplers, but these are precisely the errors
that cancel in the amplitude mode matrix pair, as described in section
4.3.2.

If it is possible to build HF amplitude mode matrices which are better than

microwave matrices, it might prove feasible to mix down in frequency and
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form beams at HF. The operating bandwidth of this technique is limited, as
the fractional bandwidth of down-converted signals is larger. For example,
to form wideband beams over the frequency range 9.75 to 10.25 GHz requires

500 MHz bandwidth directional couplers, whatever the centre frequency.

At microwave frequencies, integrating the complete beamformer and
compensation networks onto a single substrate would reduce the number of
connectors, reduce mismatches and make the structure smaller, hence
reducing phase errors. Unlike the Butler matrix, the amplitude mode
matrix beamformer does not have any cross-overs that are difficult to
implement on microstrip or stripline. Microstrip CAD packages, such as
Touchstone, can accurately model the compensation network components,
as well as the matrix couplers. The computer program used in this study
can calculate the ideal transmission parameters for each path between the
beam ports and the element ports. For a four-element array this is a total of
16 paths. The design aim must be to realise these overall transmission
parameters, rather than trying to optimise any particular component of the
beamformer. Even with computer modelling, this problem is a formidable
one, due to the complexity of the compensation networks. These networks
must compensate for the mode amplitude, the mode phase, and changes in

both with frequency.

Below microwave frequencies, signals from circular array elements could
be sampled using an A to D converter, and processed using digital
techniques to determine the frequency, amplitude and phase of the
incoming signals. Beamforming could then be performed digitally, using
phase mode theory to apply weights to the (digitised) element signals.
Poulton, Corcoran and Hornak (1987) describe a flash A to D converter with
a sampling rate of 1 gigasamples per second. This was achieved using four
250 megasamples per second A to D converters, interleaved using four
sample and hold circuits controlled by the same clock. Waveforms with
frequencies up to 500 MHz can be unambiguously resolved with six bit
accuracy. For a DF system wideband amplifiers would be required to give
the correct voltage (+0.64 V) at the input to the converter. For this A to D
converter 500 MHz is the highest frequency at which pattern synthesis can
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be done. For digitisation over the band 8 to 12 GHz, A to D converters with a
sampling rate of 24 gigasamples per second are required, along with
correspondingly fast signal processing. Even at the present rate of

development, this level of performance is many years in the future.

6.3.2 Arrays with odd numbers of elements

Linear arrays with an odd number of elements are commonly used to form
sum patterns, while arrays with an even number of elements are used to
form difference patterns. To date. the phase mode analysis of circular
arrays has concentrated on circular arrays with an even number of
elements, as a Butler matrix was used to excite the phase modes. Circular
arrays with an odd number of elements could be more useful in certain
applications. As a simple example, consider a three-element circular
array. Inserting N = 3 into equation (2.2.8) shows that this array excites the
0th, +1 and -1 phase modes, with the 2"d and higher order modes as
harmonics. All three modes formed by a three-element array are phase
modes, not amplitude modes, so all three can be used in steered beams or
for phase comparison DF. Cvetkovic et al. (1988) use the Oth, +1 and -1
phase modes for phase comparison DF, generated by a four-element
circular array (the 2nd order amplitude mode is terminated unused).
Reducing the number of elements from four to three would reduce the cost
of the array and eliminate the unused mode. This can be made into a
general rule: a circular array with N-elements (N even) can excite N - 1
phase modes and an amplitude mode of order N /2, while a circular array
with N-elements (N odd) excites N phase modes. Unfortunately the
matrices required to excite odd arrays are difficult to realise. For a three-
element array the matrix must have the transmission amplitude and

phase of table 6.1 overleaf.
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Element No. Element No.
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for a 3 x 3 Butler matrix for a 3 X 3 Butler matrix

Table 6.1 The transmission characteristics required to excite phase

modes on a three-element array.

Practical realisation of this matrix is difficult, ruling out a three-element
array for a phase comparison DF system. However, as this study has
shown, phase mode theory can be applied to circular arrays without using
a Butler matrix. The phase mode impedances for a three-element array
can be calculated from the self and mutual impedances of the array
elements, as described in section 3.4, while the phase mode coefficients can

be calculated from the element pattern, as described in section 3.5.
6.3.4 Adopting wideband array elements

This study used monopoles as elements for the circular array. It would be
preferable to use truly wide bandwidth microwave elements, such as the
Vivaldi Aerial. The phase centres for monopole elements are fixed, so as
the frequency drops, the effective spacing becomes smaller and the higher
order modes cannot be excited. For some elements, such as the Vivaldi
Aerial, the phase centre moves out along the axis as the frequency drops. If
the elements are arranged in a circle, facing outwards, then the effective
array radius r(f)/A becomes a constant. For the Chebyshev beam a constant
spacing in wavelengths (r(f)/A = 1/4) for the phase centres would hold the
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relative amplitudes and phases of the modes constant, allowing possibly a
decade operating beamwidth. Some prototype Vivaldi Aerials were
constructed for this study, but their physical size gave a minimum inter-
element spacing of about 2 cm, so r(f)/A = 2/3 at 10 GHz. For this spacing
the harmonic ripple terms degrade the pattern unacceptably.

For an antenna facing an infinite flat reflector, the phase centre of the
image lies behind the plane of the reflector. Figure 6.1 shows a circular
array of Vivaldi Aerials used to excite a central reflector. Applying
geometrical optics, this structure forms an array where the inter-element
spacing of the radiating images can meet the wideband condition

r(f)/A = 1/4. While possibly worthy of further investigation, several
fundamental problems, most relating to the position of the phase centre,
can be identified:

. For some angles of elevation and azimuth the primary feed would

radiate into free space, as well as the image.

o Even if the wideband elements themselves are well matched to free
space (despite the close reflector), the 20d order phase modes for a
four-element array will have a low radiation resistance. Increasing
the effective array radius increases the resistance, but the spatial
harmonics then degrade the pattern.

. Realising the required change in the phase centre location with
frequency for a Vivaldi Aerial may prove difficult.

. The depiction of a virtual image in figure 6.1 is a geometrical optics
representation. This only applies to large reflectors where there is a
large separation between the feed and the reflector. Alternative
analyses of the structure could reveal a completely different location
for the phase centre. Balanis (1982e) reviews the techniques used to
determine the phase centres for antennas and concludes that the
formulations are laborious. Indeed for many practical antennas a

single phase centre valid for all 8 and ¢ does not exist.
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Wideband elements such
as Vivaldi horns or
cavity-backed spirals

Overlapping images of
wideband elements
(assuming geometric

optics)

Advantages compared to
monopole array

Truly wideband elements with
up to a decade bandwidth can be
used

The inter-element spacing of the
images' can be very small, so the
spatial ripple on the modes is
small

N

Surface of
Acentral
Ireflector

Problems associated with this circular array design

At elevation angles above 0° the physical elements (as
opposed to the images) also radiate into space

The nearby metallic reflector will alter the element
impedance, affecting the wideband performance

For very close spacing of the "images" the phase mode
impedance of the higher order phase modes will be
small

Determining the phase centre of the image is difficult:
the geometrical optics depiction above only holds for
infinite metallic planes

Figure 6.1 Proposed circular array design using
wideband elements facing a central

reflector.
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6.4 Conclusions

Using the phase mode analysis of circular array excitations, a technique
has been developed for synthesising instantaneously wideband directional
radiation patterns. Linear array theory was applied to the phase modes to
form radiation patterns in ¢ space equivalent to those formed in sin(¢) half
space with a linear array. To form low sidelobe patterns, a Chebyshev taper
was applied to the modes.

Methods of characterising the phase mode excitation of circular arrays
from measurements of the element radiation pattern and mutual
impedances were developed. This information was vital to the synthesis of
low sidelobe patterns.

The beamformer design initially proposed for this study used a Butler
matrix to excite the phase modes. By utilising microstrip compensation
networks, the variation in phase and amplitude of these modes with
frequency is corrected. Multiple wideband beams are formed from the

- compensated modes by a second matrix. Both theoretical and measured
results showed that the cumulative effect of phase and amplitude errors
introduced by this complicated network were unacceptable, so multiple
beams could not be demonstrated. A simplified matrix design was
developed to synthesised a low sidelobe (-28 dB) beam at 10 GHz. The
beamformer was optimised for operation at that single frequency.
Wideband low sidelobe beams could not be formed with a matrix-type
beamformer.

A weighted corporate feed was developed to demonstrate instantaneously
wideband pattern synthesis of a single beam. The element excitation
required to form a low sidelobe pattern was calculated using phase mode
theory. The RF networks developed for compensating phase modes proved
suitable for realising the frequency-dependent element weights.

Measurements of wideband beams formed with the corporate feed had a
constant beamwidth (82+3°) with sidelobes below -20 dB over the (half-
octave) frequency band 8 to 12 GHz. Up to +32° of elevation the azimuth
beams did not squint and the changes to the sidelobe levels and beamwidth
were small. Theoretical predictions limit the bandwidth for this synthesis
technique to about one octave.

In addition to a Chebyshev beam, a sin(Nx)/Nsin(x) wideband beam was

formed with the same monopole array. This demonstrates the versatility of
this synthesis technique.
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Appendix 1

Al The excitation of a single circular array element expressed as a
phase mode excitation

Al.l Introduction

In chapter 3 section 3.5.2 the phase mode coefficients for a four-element
array of monopoles are calculated from the measured radiation pattern of a
single monopole element. This technique assumes that exciting a single
array element is equivalent to exciting all four phase modes with equal
amplitude. This appendix offers a proof that applies to four element
circular arrays, but it is believed that a general proof could be given for
arrays with 2" equispaced elements. While the practical results of chapter
3 are for omnidirectional elements, this proof also applies to arrays of

directional elements that are pointing radially outwards.

In section Al1.2 the voltages at the four element ports are calculated, for the
case where a single array element is excited by a source of voltage Vg and

impedance Z,, while the other element ports are terminated in loads Z,.

In section A1.3 the voltages at the four element ports are calculated for the
case where the array is modally excited by a Butler matrix feed. The four
mode ports are excited by cophasal sources, of equal amplitude V2 and
impedance Zgy. The characteristic impedance of the matrix feed is also Z.
The calculated voltages at the four element ports are shown to be the same

as those calculated in section Al.2.
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Al.2 The excitation of a single array element
The basis of this analysis are the z parameters defining the element self-

impedance and the mutual coupling between the array elements. The

voltages at the four element ports are given by:
Vi=z i +2z9lp + 21313 + 21414
Vo=1291 Iy + 299 Ip + 293 I3 + 294 14
Va=231 1) +2z32Ig +233 13 +234 14
Va=24 L1 + 24010 +243 I3 + 244 14 (A1.1)

I;, Io , I3 and I are the currents at the element drive points. The

symmetry of a circular array allows us simplify this:
211 =222 =233 =244
2192 =221 =223 =732 =234 =243 =241 =714

Z13 =231 =724 =242 (A1.2)
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For the case where element 1 is excited by a source of voltage Vg,
impedance Zj, while the other elements are terminated in impedances Zg

the excitation of (Al.1) becomes:

Z 2 2 3 2

V= (Ve V) SRV Y - 3,

z z A z
Vv =22y _y)y--By 12y __lly
4 Zo( S 1) Z0 2 ZO 3 Z0 4 (A1.3)

By symmetry V, =V, so the fourth row.can be eliminated. Rearranging

these equations into a form suitable for matrix solution gives us the

equation:
2,2, 2z, Z13 1 z),Vs
212 ntzi3*tZ, %12 Vol = [ %1275
%13 22) 20729 [Va]  [%13Ys (A1.4)
Using the substitutions:
A=z +2, A=z, Ag=z,
Ki=2,Vg Ky=z,Vs, Ky=z,V. (A1.5)
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we obtain the simplified form:

A 2A A

1 2 3 V1 1
A, A1+A3 AV, = K,
A 2A A ||V K
3 2 3 3 (Al.6)

(A1.7)

The adjoint matrix [AT] 1s:

- 2 2 "
A1(A1+A3) -2A2 2(A2A3'A1A2) 2A2—A3(A1+A3)
AA-AA Af-Az AA-AA
2 2
(2A,-A (A +A;)  2(AA-A M) A(A +Ag)-2A, |
(A1.8)

The determinant for the matrix of (Al1.6) is:

2
DET [A]=A1{A1( A +A3)—2A2} ~2A (A A -AA)

+A3{ 2A22_A3( A +A3)}

2 2
=(A-4y) {(A1+A3) —4A2} (A1.9)
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Solving (A1.7) for V;:

2 2
_ Kl{A1(A1+A3) -2A2}

Coa-ayn{(a +a,) -t}

\%

Ko{2(A25-48,))

' (4;743) {(A1+A3)2_4AZ}

K3{2A2—A3(A1 +A3)}

(a-apnf(a,cay -t}

Substituting for K;, K5 and Kj:

(A -2y {AI(AI * A3)2 _2A22}
i (4 _A3){(A1+A3)2_4A2}

V1=V

A2{2(A2A3—A1A2)}

+V

S(Al —4,) {(Al +‘13‘3)2_4‘5‘22}

A3{2AZ-A3(A1+A3)}

(A -an (8 +a,) -eal)
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This reduces to:
2 2
ZO{A1 +A1A3—2A 2}

(A,-4y) {(A1+A3)2_4A2}

vV, =V |1-
(A1.10)
Next solve (A1.7) for Vg:
K(AA -AA )+K2(A2-A2)+K (A A -AA)
1 3 2 1 2 1 3 3 3 2 1 2

(A-4,) {(A1 +A3)2 —4A2}

V2=

Substituting for K;, K5 and Kj:

(A -Z,)(AA,-AA )+A2(A A) +A (AA -AA)

(4, —A3){(A1+A3) —4A2}

V2=VS

Z0A2(A1"A3)

S 2 2
(A,-4)) {(A1+A3) '4Az} (A1.11)

]

\%

9 \%

By symmetry V is equal to V3. Next solve for V3:

K(2A2—AA _A )+K AA AA)+K{A +A A —2A}
1 2 31 2

V =
3

2 2
(AI_AB) {(A1+A3) _4A2}
z (A2+A A -2A'j3

o3 T3t

S 2 2
(Al—A3) {(A1+A3) —4A2} (A1.12)

V3=V
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Al.3 The excitation of an array element by phase modes
Now the element feed voltages for a modally excited array are calculated.

The voltage seen at the n'" element feed of the four-element circular array

is the linear superposition of the voltages at the phase mode ports:

. V(nO)+ (j("_l))V:l+1)+ (j— (n- 1))V$1- 1) . (j2(n -1)) V(:)
n_ 2

(A1.13)

For a single mode excited with a source Vs(m) of impedance Z; the voltage
seen at the element port is given by:

Where 2™ is the 'phase mode impedance' of a circular array element,
King, Mack and Sandler (1968) show, for a four-element array of dipoles,
that the mode impedances are related to the open circuit z parameters by

the equations:

Z(O) =211 + 2212 + Z13

20 7D g g

Z(2) = Z(z) = 211 - 2212 + 213 (A1.14)
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These equations apply to the monopole circular array elements. Equation
(A1.13) can be written in the form:

0) (0) (+1) (+1)
m) Vg Z (.(n—l))VS Z
Vo = 0 T\ + D
2 7 +2Z 2 Z +7Z
0 0
(-1) (2)
(.—(n—l))vs Z(_l) (.2(n—1))vs 2(2)
+0j . +j
2 (-1) 2 (2)
Z +Z0 Z +ZO

(A1.15)

We are interested in the case where the modes are excited by identical
cophasal sources of voltage V/2. The voltage seen at the feed port of
element 1 is then given by:

[ Z(O) Z(+ 1) Z(—1) Z(2) )

+ + +

1Z(0)+Z Z(+1)+Z Z(-1)+Z Z(2)+Z J
0 0 0 0

V1=

VS
4

SO

0),(+1) (2) ) (+1)( (0) )( 2) )
VS[Z (Z +Z0)(Z +2Z )+ 2Z Z +Z0 Z +Z01

V =
1 4 0) (+1) )( (2) ) j
1 (Z +zo)(z +Zo Z +ZO

@)(, (0) )( (+1) )
VS[ z (z +Z2 )27 T+ ]
4

1(z(°)+z0)(z(+1)+zo)(zm +zo)j AL16

+
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Using the same notation as for the single element excitation:

A=z +2,, Aj=z,, A =z,

the denominator for V; simplifies to:

(z(°)+z )(z(+1)+z )(z(2)+z )
0 0 0

=(A1 +2“5‘2*'A3)(A1—‘A‘3)(A1 "2A2+A3)

=(A;-43) {(Al * Aa)z —4AZ}

The denominator is the same as the determinant of (A1.9). Substituting for

the numerator we obtain:

v - VS (AI—Z0+2A2+A3)(A1—A3)(A1—2A2+A3)

S 4 2 2
(A -A (A +Ap -4al}
Vg 2(AmTymA) (A F2A,vA ) (A 228,44
4 2 2
(A -A)1(A,+A) -4a%}
Vs (A -Z2,-2A,-A)(A A (A -24,+4A,)
+ 4 2 2
(4, -A) {(A1+A3) -4A2}
v, 4(A A3){(A +A3) _4A } AZ (A -7 - )(A12+A1A3—2A22)

(A AS){(A +A3) -4A }

276



Appendix 1

So:
zo{ A12+A1A3—2A22}

(A {(a, ey -aa?)

V1 =VS 1

(A1.17)

This voltage at element port 1 is identical to that of (A1.10), where a single

array element is excited.

For the excitation of (A1.15), where the phase modes are excited with equal
amplitude and phase, the voltage seen at the feed port of element 2 is given
by:

0 1 -1 2
[ 70 Z(+) Z( ) (2)

_j — —
1z(°)+z AR A A N S A I
: 0 0 0 0

0 1 2 2 0 1
v [29(z" vz (2% 2 )- 22"z 2P vz )|
0, 0 0 0

v =-S5
2 4 (0) (+1) 2)
| e e 5z

Using the same substitution as for the single element excitation:

\"% (Al‘zo+2A2+A3)(A1‘A3)(A1 —2A2+A3)

s (Al—Aa){(A1+A3)2_4A22}

2

v (A1_Zo'2A2+A3)(A1 -A3) (A1 _2A2+A3)

s
T4 2 2
(AI—AS){(A1+A3) —4A2}
V =V ZoAz(Al'A3)
2 S A - { A +A 2—4A2}
(Al Aa) (1+ 3) 2 (A1.18)
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This voltage at element port 2 is identical to that of (A1.11) for port 2, where

a single array element is excited. By symmetry the voltage at element port 4
is identical to that at element port 2. Finally solve for Vj:

(+1 -1 2
Z+) Z() Z()}

1 -
(+ )+Z Z( 1)+Z Z(2)+Z J
0 0 0

s =VS[ :
3 0
) lz(>

(0)
+Z V/
0
. , |
v [Z(O)(Z(+ 1)+Z )(Z( )+Z )_ 2Z(+ 1)(Z(0)+Z )(Z(2)+Z )]
v -8 0 0 0 0
3= 4 ©) )((+1> )((m ) J
| 1 (z vz )z ez )27 vz,

2 1
v [ Z( )(Z(O)+Z )(ZH )+Z )
S 0 0

|
RN AR |

Using the same notation as for the single element excitation:

+

Vg (A T2, t28,vA ) (A A (A -2A 44 )

V =
3= 72 2 2
(A1_A3){(A1+A3) —4Az}
_VS 2(A1—Z0—A3)(A1+2A2+A3)(A1—2A2+A3)
1 2 2
(A -4 { (A4 445}
+_V_S (A1 72,728,-45) (A -4 (A, 724,14
7) 2 2
(&, -4 {(a,+8,) -4}
ziA§+A£%-2A3
V,=V

S 2 2
(Al-Ae,){(A1 +A3) _4A2} (A1.19)
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For all four elements the voltages calculated for the modal excitation are

identical to those calculated for the excitation of a single array element.

To conclude, exciting all four phase modes of a four-element circular array
with cophasal sources V¢ /2, impedance Z is identical to exciting array
element 1 with a source V,, impedance Z;, while the other elements are

terminated in loads Zy. In both cases the voltages seen at the element feed

ports are:
: 2
V.=V _|1- ZO(zll+Z) 13( +Z) 221
1 S
(211+Zo"213)1(211+zo”13) "4232} (A1.20)
V =V =V . Z()le(z11+zo"213)
2° 4 S 2
(211+Z0—Z13){(211+Z0+zm) -4sz (A1.21)
vV 2V Zo{zfs+ z13(311+zo)'2zfz}
3 S

2
(z11+Z "‘13){(2 +Z ”13) “4ij (A1.22)
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