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ABSTRACT

This thesis presents a new variational finite element formulation and its 

implementation for the analysis of microwave and optical waveguide problem with 

arbitrarily- shaped cross section, inhomogeneous, transverse-anisotropic, and lossy 

dielectrics.

In this approach, the spurious, nonphysical solutions, which ordinarily appear 

interspersed with the correct results of earlier vectorial finite element methods and 

thus have been the most serious problem in finite element analysis of waveguides, 

are totally eliminated. In this formulation either the propagation constant or the 

frequency may be treated as eigenvalues of the resulting generalized eigenvalue 

problem. This formulation also has the capability to find complex modes of 

lossless waveguides. Furthermore, the numerical efficiency of the solution is 

maximized since this formulation uses the most economical representation of a 

problem, in terms of only two vector components. This is achieved without losing 

the sparsity of the matrices of the resultant eigenvalue equation, which only 

depends on the topology of mesh used. This property is very important for 

solving large-size problems by efficient sparse matrix algorithms.

In this work, a basic vector wave equation which involves only transverse 

components of magnetic field is straightforwardly derived from Maxwell equations. 

This differential equation incorporates the divergence condition V B  = 0 and leads 

to a canonical form of the resultant eigenvalue equation. The Local Potential 

Method is used to obtain the variational formulation. When implementing the 

finite element method, the Rayleigh-Ritz procedure is used to find stationary values 

of the functional to get the resulting generalized matrix eigenvalue equation.

To show the validity and applicability of the method, a series of examples of 

microwave and optical waveguides including inhomogeneity, anisotropy and loss 

are studied. These examples show good accuracy and complete absence of spurious 

modes, demonstrating the effectiveness of the new formulation developed.
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CHAPTER 1

INTRODUCTION

Computer simulation (or computer modelling) of physical problems is 
now widely accepted as the third investigative technique in science — 
alongside theory and experiment. Increasing complexity of modem wave 
functional devices has created a critical demand for accurate and efficient 
computer simulation of waveguides which are the fundamental components of 
these devices. The finite element method (FEM) is a powerful and versatile 
tool for this purpose. It provides unsurpassed accuracy in solving 
complicated problems while its flexibility allows the treatment of 
different structures without the need for device-dependent programming.

1.1 Dielectric Waveguides

The development of new transmission methods for telecommunications 
during the last decade has been dominated by the evolution of 
optoelectronics. There is increasing interest in using optics to extend 
and replace electronics for some purposes. One major activity in research 
laboratories throughout the world is the demonstration of various optical 
integrated circuits to replace and enhance the performance of electronic 
integrated circuits, and also to perform novel functions particularly 
suited for optics. Dielectric waveguides play an essential role in the 
optoelectronics. They are widely used in optical fibre system, optical 
integrated circuits, and lasers.

Dielectric waveguides are the fundamental components of optoelectronic 
devices. As such, a full understanding of how electromagnetic waves 
propagate in dielectric waveguides is essential. On the other hand, the 
advance of material science and fabrication technology is continuously 
introducing more complicated dielectric guide structures.

A glance at the materials and fabrication technologies used to make 
integrated optical waveguides may give us a better understanding of the 
practical demands for dielectric waveguide analysis.
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(a) Diffused waveguide [1] (b) Channel waveguide [1]

.................................

(d) Metal-film loaded 
strip waveguide [ 1 ]

(0 Waisted-rib waveguide 
HI

(c) Dielectric-film loaded 
strip waveguide [1]

(e) Trapezoidal-rib 
waveguide [1]

(g) Buried waveguide 
[132]

ZW ^SBBSm
 R 5______

(i) SLB GRIN-SCH 
ridge waveguide [4]

(h) Buried strip loaded 
waveguide [132]

(j) DQW-SCH metal-clad 
ridge waveguide [5]

Fig. 1.1 Dielectric waveguides in optoelectronic technology
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A variety of materials has been used for optical waveguides [l]-[5], 
such as gallium arsenide (GaAs), indium phosphide (InP), lithium niobate 
(LiNbOp, lithium tantalate (LiTaCy, silica (SiC>2), polymers, organic 
materials, and varieties of compounds, etc.. Many of these materials are 
anisotropic materials such as LiNbC>3 , LiTaCy and most of organic 
materials. Quite often, significant losses need to be taken into account, 
for instance, optical waveguides with N+InP or P+InP layers, waveguides 
with metal claddings (as metals are highly optical absorbing), and laser 
waveguides working near their energy bands, etc. [1], [3]-[5].

Various microfabrication techniques are well-established to control 
very precisely the refractive index and geometry of dielectric waveguide
[l]-[3]. Diffusion and implantation techniques alter waveguide refractive
index by diffusion of a doping material in a substrate medium, such as 
thermal diffusion, ion implantation, ion exchange, and proton exchange. 
Deposition and growth techniques are in use to control layer thicknesses, 
such as coating, sputtering, thermal vapour deposition, chemical vapour
deposition, polymerization, and epitaxial growth (liquid phase epitaxy 
(LPE), metal-organic vapour phase epitaxy (MOVPE), molecular beam epitaxy 
(MBE)). Etching techniques cause change in the geometry of structure and 
can also be used additionally in growth and diffusion processes 
(sputter-etching, reactive ion etching, and ion beam etching).

Fig. 1.1 shows several types of optical waveguides. The permittivity
profile of optical waveguides can be arbitrarily inhomogeneous, anisotropic 
and lossy. This variety occurs either as a design preference or due to 
actual manufacturing processes. Most of such cases of waveguide 
arbitrariness do not lend themselves to analytical solutions. Besides, the 
fabrication of integrated optical waveguides requires various
sophisticated technological steps and hence the production costs are still 
high. At the same time, the measuring techniques are difficult, expensive 
and very time consuming. There is, therefore, a great demand for more
accurate and flexible computer simulation techniques which can be used for 
both the analysis and design of a wide range of waveguiding structures. 
This leads us to the study of computer simulation of inhomogeneous, 
anisotropic and lossy dielectric waveguides.

What do we need to know about the propagation characteristics of 
electromagnetic wave in optical waveguides? First of all, it is necessary
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to establish how many modes the structure will support. Most applications 
will require the propagation of one or two modes, and small changes in 
dimensions or refractive indices can frequently result in the structure 
being either cut-off or supporting more than desired.

Secondly, it is often desirable to know the precise field distribution 
of the mode. This is important when designing devices for high coupling 
efficiency between planar waveguides and optical fibres. Also, the 
performance of some practical waveguides is limited by scattering losses 
caused by roughness induced by the fabrication process, and detailed 
information about the magnitude of the field at rough edges allows these 
losses to be assessed.

Thirdly, it is usually necessary to know the propagation constant of a 
mode in a waveguide and in some cases, quite accurately. For example, for 
most optical switching functions the operating principle is interference
between two modes, and an precise knowledge of difference between 
propagation constants of two modes is necessary. This difference is 
usually a very small percentage of the value of the propagation constant, 
and so a precise calculation of the propagation constant for each guide is 
very important, and for this the most accurate techniques for calculating 
propagation constant are needed.

1.2 Computer Simulation and Finite Element Method

1.2.1 Numerical Methods and Finite Elements

There is a growing emphasis on numerical methods for engineering 
analysis because it is not possible to obtain analytical mathematical 
solutions for many engineering problems. An analytical solution is a
mathematical expression that gives the values of the desired unknown
quantity at any point in the problem domain. As a consequence, it is valid 
for an infinite number of points in that domain. However, analytical 
solutions can be obtained only for certain simple situations. For problems 
involving complex material properties and boundary conditions, engineers 
resort to numerical methods that provide approximate, but acceptable 
solutions. In most of the numerical methods, the solutions yield 
approximate values of unknown quantities only at a discrete number of 
points in the domain. The process of selecting only a certain number of
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discrete points in the domain is termed as discretization. One of the ways 
to discretize a domain is to divide it into an equivalent system of smaller 
domains or units. The assemblage of such units then represents the 
original domain. Instead of solving the problem for the entire domain in 
one operation, the solutions are formulated for each constituent unit and 
combined to obtain the solution for the original domain. This approach is 
known as going from part to the whole. Although the analysis procedure is 
thereby considerably simplified, the amount of data to be handled depends 
on the number of subdivisions, and it is a formidable task to handle the 
volume of data manually. Consequently, recourse must be made to automatic 
electronic computation.

Before the advent of electronic computers, the applicability of many 
numerical methods were somewhat limited. With increasing development and 
widespread of computers, many of the numerical methods developed before the 
era of computers are now adapted for use with these machines. Perhaps the 
best known is the finite difference method [7]. Other types of classical 
methods that have been adapted to modem computation are such weighted 
residual methods as the least square method and such variational method as 
the Rayleigh-Ritz method [8].

In contrast to the techniques mentioned above, the finite element 
method [9], [10] is essentially a product of the computer age. It has 
developed simultaneously with the increasing use of high-performance 
computers and with the growing emphasis on numerical methods for 
engineering analysis. Although the approach shares many of the features 
common to the previous numerical approximations, it possesses certain 
characteristics that take advantage of the special facilities offered by 
high-speed computers. In particular, the method can be systematically 
programmed to accommodate such complicated and difficult problems as 
inhomogeneous anisotropic materials, and complicated geometries and 
boundary conditions. It is difficult to accommodate these complexities in 
the methods mentioned above.

The finite element method was originally developed for structural 
analysis, the general nature of the theory on which it is based has also 
made possible its successful application for solutions of problems on other 
fields of engineering, such as heat flow, fluid dynamics as well as 
electromagnetics, etc. As a result of this broad applicability and the
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systematic generality of the associated computer codes, the method has 
gained wide acceptance by researchers and designers in computer simulation.

1.2.2 Perspective o f Computer Power

Traditionally, finite element solutions were thought only to be 
achievable on mainframes. However, with increasing computer power 
available in relatively small machines, reasonably-large finite element 
solutions nowadays can be easily achieved on widely used workstations and 
PCs. For example, one can solve eigenvalue problems with matrix orders 
more than ten thousand on a medium-sized workstation (see Chapter 7). In 
fact, many current workstations are much more powerful than many mainframes 
years ago. For example, the widely used SUN SPARC 2 workstation has a 
speed of 28.5 MIPS (mega instruction per second) or 4.2 MFLOPS (mega 
floating-point operation per second) and with RAM up to 96 MB (mega bytes)
[11], comparing a 16.5 MIPS, 24 MB IBM 3081-KX2 mainframe. Some top model 
workstations can reach 320 MFLOPS and with RAM up to 1.4 GB (giga bytes) 

[11].
In addition to ordinary computer power, there are and will be more and 

more supercomputer power available. The increase of supercomputer 
resources during the last a few years is surprisingly fast. For example, 
from 1985 to 1990, the academic supercomputing capacities in Japan, USA, 
and Germany had increased 3432%, 2032%, and 1182%, respectively [12]. 
There are reports of finite element solutions of very complicated 
mechanical problems with more than half million unknowns by use of 
supercomputers [13]. The fastest supercomputer can achieve 22 gigaflops 
(109 flops). And what will be more, the teraflop (1012 flops) computer is 
reported under way [12].

With the popularization of fibre-based high-speed local area networks 
(LANs) (100-megabit-per-second range LANs are now commercially available 
and 1 gigabit per second are being tested), metropolitan area networks 
(MANs), and wide area networks (WANs), access and data communication to 
supercomputer are getting more and more convenient and efficient [14].

No doubt, there will be more and more computer power available, 
therefore we should take advantage and make good use of it. Following this 
trend, if condition allows, it probably is more important and preferable to 
develop an accurate method even if it requires considerable computing
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resources rather than to develop a rough approximation method which 
requires less computing resources.

1.2.3 Difficulties in Finite Element Analysis o f Waveguides

Since the first papers on finite element solution of electrical 
engineering problems appeared in 1968 [25], the finite element method has 
grown to one that offers probably the most powerful and efficient numerical 
solution of the most general (i.e., arbitrarily-shaped, inhomogeneous, 
anisotropic, and lossy) electromagnetic waveguide problems [20]-[24]. 
However, the most serious difficulty in applying the finite element method 
to waveguide problems is the appearance of the spurious, nonphysical
solutions which ordinarily appear interspersed with real solutions. Using 
a formulation which is not immune to spurious solutions, it is difficult 
and quite cumbersome to distinguish between spurious and physical modes.

Although the occurrence of spurious modes in finite element vector
wave equation solutions has been known for some time, and the suppression 
of such undesirable erroneous solutions is still a subject of great 
interest, the development of a method to eliminate spurious solutions is a 
pressing need and research on this topic has been extensive in recent
years.. The traditional approach to suppress spurious modes has been the 
penalty method [64], [65], [67]. The penalty method only partially cures 
the problem, and the effect is not entirely satisfactory. Other approaches 
resort to using either dense matrices [80], [81], [85] or more components 
[84] than are absolutely necessary for a full description of general hybrid 
mode situations. In addition, none of the existing finite element 
formulations has satisfactorily treated lossy waveguides. The demand for 
an efficient finite element formulation for general inhomogeneous, 
anisotropic and lossy dielectric waveguides plus the general lack of 
insight studies on spurious modes of finite element solutions have
motivated us to this study.

1.3 Principal Aims of the Study

In view of the foregoing, the pull of demanding optical waveguide 
application and the push of advancing computer power stimulates this study.

The project was initially conceived to develop an efficient finite
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element formulation able to eliminate spurious solutions which had been the 
most serious problems in finite element analysis of electromagnetic 
waveguides. If possible it was also hoped to include significant loss in 
dielectric waveguides, and by doing so establish a more realistic model and 
better computer simulation.

1.4 On the Layout of the Thesis

The first chapter includes an overview to the background on currently 
used dielectric waveguides, a brief introduction of fundamental features 
the finite element method, a perspective on the advancing of modem 
high-speed computers, and the major problems in finite element analysis of 
waveguides. This leads to an understanding of the importance to develop a 
better finite element method for dielectric waveguide problems.

The second chapter reviews past finite element formulations for 
electromagnetic dielectric waveguide, particularly focusing on the recent 
development of methods to suppress or eliminate spurious solutions 
encountered in vectorial finite element analysis of waveguide problems. 
Eight criteria are proposed for judging the appropriateness of a finite 
element formulation for dielectric waveguide problems. They are also used 
as the targets of deriving the new finite element formulation.

The next four chapters are the technical core of the thesis. In 
chapter 3, the mathematical definition of the dielectric waveguide problem 
is given and the mechanism behind spurious modes is discussed. Strategies 
to eliminate spurious solutions are proposed. A basic wave equation in 
terms of only transverse magnetic field components is derived from 
Maxwell’s equations. This differential equation will be used as the 
starting point of deriving the new variational finite element formulation 
in chapter 5.

In chapter 4, the mathematical fundamentals of the finite element 
method are discussed rigorously in order to have an accurate understanding 
of the finite element method and thus to avoid any mistake in the latter 
derivation of the finite element formulation in chapter 5, and the 
following finite element implementation in chapter 6.

Having established a mathematical model of a dielectric waveguide and 
understood the fundamentals of finite elements, chapter 5 presents the 
detailed procedures for deriving the new variational finite element
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formulation.
In chapter 6 the finite element implementation to the new formulation 

is detailed. Additionally, a highly efficient solver for large, sparse, 
nonsymmetrical and complex matrix eigenequation is also briefly described 
here [136].

Chapter 7 demonstrates the validity and effectiveness of the new 
finite element formulation by illustrating the computational results of a 
variety of waveguides with the present method. The examples are classified 
into four categories: isotropic lossless, anisotropic lossless, isotropic
lossy, and anisotropic lossy dielectric waveguides. Statistics of the 
sparse matrix solver developed for the formulation are also shown.

Finally, conclusions are presented 
in chapter 8.

1.5 Notational Convention

1.5.1 Scalars, Vectors, Tensors, and Matrices

(i) The scalar, vector and tensor representation 
Vector: bold-font letters, e.g., H , A;
Tensor: plain letters with symbol *=’ on top, e.g., e, k  

Scalar: plain letters, e.g., Hx, y

(ii) The matrix representation
Rectangular matrix: square bracketed letters, e.g., [A]
Column matrix (vector): braced letters, e.g., [A]
Row matrix (vector): braced letters with transposition, e.g., {A}

For tensor and matrix, the superscript *T* indicates the transposition, 
and the superscript ‘-1 ’ indicates the inversion.

1.5.2 Mode Designations

The following commonly used mode designations are simultaneously 
adopted in the thesis for convenience of comparison.

1) For homogeneous rectangular metallic waveguides [15]



2) For Dielectric-slab-loaded rectangular metallic waveguides [15]

LSE if no electric field component normal to the interfacemn

LSMmn if no magnetic field component normal to the interface

3) For other inhomogeneous waveguides [16]-[18]

E x (or H y , or HE ) if l£*l > l£yl (or \Hy\ > \Hx\)mn mn mn

Ey (or H ' , or EH ) if l£yl > l£xl (or I/M > l//yl)mn mn mn

The indices m and n are used to designate the number of maxima of the 
dominant component in the guide region in the x  and y directions, 
respectively.

1.6 Summary of Main Achievements

In this study, the whole original objectives have been achieved. The 
origins of spurious modes have been studied in a more general way. Insight 
comments about spurious modes in approximate Maxwell solutions are made. 
Strategies of eliminating spurious solutions are proposed.

An efficient variational finite element formulation for the full wave 
analysis of dielectric waveguides has been developed. This formulation 
provides five major contributions:

1) it can treat a wide range of dielectric waveguide problems with 
arbitrarily-shaped cross section, inhomogeneity, transverse- 
anisotropy, and significant loss (or gain);

2) it totally eliminates troublesome non-physical spurious solutions 
which ordinarily appear interspersed with the correct results of many 
other vectorial finite element formulations;

3) it allows direct solutions for (complex) propagation constants;
4) the numerical efficiency of solution is maximized since this 

formulation uses only two magnetic field components; this is achieved 
without losing the matrix sparsity which only depends on the topology 
of mesh used, and this property is of decisive importance for solving 
large-size problems;

5) it provides the capability to compute complex modest in lossless 
waveguide, showing the completeness of the solutions.

t  Complex modes or complex waves are modes existing in inhomogeneous 
lossless waveguide with complex propagation constant [19]
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This formulation is believed to be the most efficient finite element
formulation now available for inhomogeneous lossy waveguides, and the 
finite element solutions of complex modes presented here are ones which 
have not been achievable elsewhere.

This study also prompted and partly contributed to the development of 
an efficient matrix solver for general, large, sparse, nonsymmetrical and
complex matrix eigenequations. This solver drastically reduces
requirements for computing time and memory. No other comparable solver is 
available in standard computer libraries or even has been reported. 
Together with this highly efficient sparse matrix solver, the new finite 
element formulation has been coded in FORTRAN language. The whole FORTRAN 
program have been thoroughly tested with all categories of dielectric
waveguides, and numerical results are satisfactory showing the
effectiveness and robustness of the method presented in this thesis.

The computer software implementing all the algorithm allows us to make 
more realistic and accurate full wave analysis of complicated dielectric 
waveguide problems.

Six papers originating from this study have been published 
[133H138].
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CHAPTER 2

REVIEW OF FINITE ELEMENT FORMULATIONS

2.1 Introduction

This chapter reviews the finite element formulations for the analysis
of microwave and optical waveguides, particularly focusing on the recent 
development of methods to suppress or eliminate spurious solutions 
encountered in the vectorial finite element analysis of waveguide problems. 
Here, the dielectric waveguide, widely used from microwave to optical 
wavelength regions, is considered. No magnetic material is considered 

unless it is particularly mentioned.
The electromagnetic waveguide can be classified into two categories 

from its cross-section shape. One is the layered waveguide such as a
layered film waveguide (planar waveguide, illustrated in Fig. 2.1a) or a 
layered circular waveguide (axially symmetric waveguide, illustrated in 
Fig. 2.1b), which can be treated as an equivalent one-dimensional problem;
the other is the more general arbitrarily shaped waveguide (illustrated in 
Fig. 2.1c) that should be treated as a two-dimensional problem. We will
only discuss the truly two-dimensional case and finite element techniques 

of general interest.

" C

(n2 j In? \ ]
ns

J r

(a) (b) (c)
Fig. 2.1 Classification of waveguides

(a) Planar waveguide

(b) Axially symmetric waveguide
(c) Waveguide with arbitrarily shaped cross-section
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Finite element formulations may be achieved by direct methods, 
variational methods or weighted residual methods [8]. It is advantageous 
to take a variational approach whenever it is possible, especially when one 
global parameter (like propagation constant) is needed. The weighted 
residual methods are useful for problems in which a variational functional 
may not be available, although they may be applied to any boundary value 
problem with established differential equations.

For a two dimensional problem, the waveguide is assumed to be uniform 
along its longitudinal z axis and the electric and magnetic fields can then 
be expressed as:

H{x,y,z,t) = ( H (x,y) + H (x,y) ) expQwt -  yz)
t  Z

(2.1)
&(x,y,z,t) = ( E (x,y) + E (x,y) ) expQodt -  yz)

where y = a  + jp  is the propagation constant in the positive z-direction, a
being the attenuation constant, p being the phase constant, and co being the 
angular frequency, with the subscript t denoting "transverse to z".

When applying the standard finite element method to waveguide problems 
for propagation characteristics analysis, it is usually expected to arrive 
at a matrix eigenvalue equation of the canonical form:

[A] {x} = X [B] {x} (2.2)

where {x} is the discretized nodal field vector, [A] and [B] are in general 
sparse matrices. The eigenvalue X may correspond, for example, to co or 

Y2-
According to the type of eigenvalue, finite element formulations may

be classified into two types. One is frequency formulation (or simply 
noted as co-type formulation), where the eigenvalue is an explicit known 
function of co; the other is propagation constant formulation (simply noted
as y-type formulation), where the eigenvalue is an explicit known function 
of y.

One important deficiency of an co-type formulation is that for a given 
waveguide, it searches for the frequency of each mode corresponding to a 
selected value of the propagation constant while in practice the problem is 
usually the inverse, that is: one is interested in finding the propagation 
constant (possibly complex) at a given frequency. Consequently, iterations
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are usually needed to solve a practical problem when using an co-type 
formulation.

A y-type formulation solves directly for the propagation constant at a 
given frequency. Unnecessary iterations can be avoided. In addition, only 
a y-type formulation is applicable for lossy problems. Therefore, a y-type 
formulation is in general preferable.

2.2 Scalar Finite Element Formulations

Finite element analysis for electromagnetic waveguides started with 
scalar formulations in the late 1960*s [25], [26]. Since then, various 
scalar formulations have been developed. The scalar finite element 
analysis has been used for solving homogeneous waveguide problems 
[25]-[28], for approximate analysis of lossy guides [29], for open-boundary 
problems [30], [31], and for analysis of anisotropic waveguides [32], [33].

Spurious solutions are usually not involved in scalar finite element 
analysis, this is one special and redeeming feature of a scalar approach.

Although a single scalar formulation is inadequate for the inherently
hybrid mode situation of anisotropic or genuinely two dimensional,
inhomogeneous waveguide problems, depending on waveguiding structures or 
propagating modes, the quasi-TEM, quasi-TE, or quasi-TM mode approximations 
are practically available. Besides, scalar formulations take significantly 
lower computational cost, and hence they may be suitable for design 
procedures in CAD systems.

2.3 Vector Finite Element Formulations

To evaluate rigorously the propagation characteristics of an 
inhomogeneous anisotropic waveguide, vectorial wave analysis is necessary, 
with at least two field components. The vectorial formulation are 
fundamentally more accurate than scalar forms since -tke^can represent true 
hybrid modes in dielectric waveguides.

Before reviewing the vectorial finite element formulation^ it is worth 
mentioning a few articles [34]-[38] of purely theoretical study of general 
variational formulations for self-adjoint and non-self-adjoint operators.
Berk [34], Morishita and Kumagai [35], [36], Jeng and Wexler [37], Chen and
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Lien [38] proposed a number of variational co-type and y-type formulations 
for lossless anisotropic waveguide problems in terms of the magnetic field 
H, or the electric field E, or a combination of both. However, none of 
them have been found satisfactory success by direct finite element 
implementation, since they suffer either spurious solutions, or 
unacceptable complexity.

Finite element methods in terms of the longitudinal electric and 
magnetic field components (Ezjiz) have been used for analyzing various 
microwave [39]-[46] and optical waveguides [47]-[54]. They have also been 
applied to anisotropic waveguides with diagonal permittivity tensor [55], 
and to lossy waveguides [56]. The (£z,//z) formulation cannot treat general 
anisotropic problems without destroying the canonical form of (2.2). Also, 
for a waveguide with arbitrary dielectric distribution, enforcing boundary 
conditions in this method can be quite difficult [52]. Another fundamental 
disadvantage for optical waveguide problems is that it is based on 
longitudinal components which are usually the least important of the six 
components of the vector fields. Additionally, this type of formulation is 
also affected by spurious solutions, and the techniques to reduce them [52] 
greatly increase the complexity of the program and the computing cost.

In early 1970s, English and Young [57], [58] applied a six component 
E-field and H-field formulation and a three component E-field formulation 
to cylindrical waveguides. However, spurious solutions were encountered. 
Besides, the boundary conditions on trial functions are restrictive, 
waveguides of shapes other than circular or rectangular can not be treated.

The full field H or E finite element analysis virtually started from 
the late 1970s [59], [60], but spurious solutions were encountered. From 
the early 1980’s, more (Hx,Hy,Hz) or (Ex,Ey,Ez) formulations were applied to 
analyze various problems [61]-[63]. However, all of them were found to have 
spurious solutions and no remedies were used then. It was observed by 
Davies, Fernandez and Philippou [62] that for the H formulation [62], [63]:

the spurious solutions do not satisfy the divergence-free condition

(2.3)
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V-H = 0. In fact, for the formulation (2.3), the condition V H = 0 is 
neither implied nor forced. This causes the system to be ‘under-
determined’ or excessively flexible, which in turn is believed [62], [63] 
to be one of the causes of spurious solutions.

Following this idea, the penalty method was applied to enforce the 
divergence-free condition to the E-field [64], [68] and to the H-field 
[65], [67] formulations.

The H-field formulation is more suitable to dielectric waveguide 
problems where the magnetic field is continuous everywhere. The H-field 
penalty formulation

has been extensively studied [65], [67] and applied to various types of 
waveguiding problems [69]-[76] in which the divergence-free condition is
satisfied in the least square sense and the spurious solutions may be
suppressed from the guided- or slow-wave region [23], [67].

In the penalty method, an arbitrary positive constant p, called the 
penalty coefficient is included, this penalty coefficient itself introduces 
a error. The accuracy of solution by the penalty method depends on the 
magnitude of the penalty coefficient. The penalty method only partially
cures the spurious problem, and the effect is not entirely satisfactory. 
It requires the careful choice of the penalty coefficient in order to
achieve adequate balance between the appearance of spurious modes and the 
amount of error introduced, rendering the programs less robust and
friendly.

Hano [66] developed an co-type vectorial finite element formulation 
in terms of all three components of either electric or magnetic fields. 
Special triangular elements ensure the continuity of the tangential 
components of field vectors only with no constraints on the normal
components. No spurious modes appear but there are many needless zero
non-physical solutions. The implementation of the special triangular
elements in a finite element code is rather complicated.
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Kobelansky and Webb [80] suggested a two stage procedure, solving 
first using the functional

G(H ) = f [(V-H)*(V-H) dQ -  X H* H] dQ
J a

(2.5)

The solutions obtained will be divergence-free, and are the only allowed
trial functions for the second stage in which the functional (2.3) is 
minimized. This approach has drawbacks for very large problems, especially 
as the advantage of matrix sparsity is lost.

Su [82] studied the origin of spurious modes and proposed a combined 
method using a finite element technique and a surface integral equation 
method for lossless isotropic dielectric waveguides [83]. Although the
spurious solutions are eliminated, this method can only treat problems with
isotropic and smoothly changing inhomogeneous materials.

Angkaew et al. [84] developed a y-type formulation for lossless 
waveguides in terms of the transverse components of both electric and
magnetic fields. With this approach, real eigenvalues are the distinctive
physical solutions of a complex eigenvalue problem. In other words,
spurious eigenvalues move off the real axis in the complex plane so that
the real eigenvalues are genuine. One might expect difficulty in choosing
the threshold figure to distinguish ‘real’ and ‘complex’ eigenvalues. This
approach suffers considerable expense of increasing computing effort, as 
four complex unknowns per node are needed for lossless problems.

Using the Galerkin method, Hayata et al. [81] suggested an approach 
which can eliminate spurious solutions in terms of only the transverse
magnetic field components for anisotropic lossless waveguide problems. By
first applying standard finite element techniques to the H-field Helmholtz
equation and the divergence equation, they arrive respectively at

and
where

[S] {//} -  k\ [T] {//} = {0} 

[Dz] {Hz} = [D,] {/A}

(2.6)

(2.7)

{//} = [D] {//.} (2.8)
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[D] = [U]
:]•

([U] is a unit matrix) (2.9)[Dz] [Dt]

In (2.7), the phase constant p is implicitly included in both [Dz] and 
[Dt]. Using (2.6) to (2.9) one straightforwardly arrives at

>2[St] {//.} -  k\ [Taj {//,} = (0}
where

[Stt]

[Ttt]

[D] [S] [D]

(2 .10)

(2.11)

(2.12)[D] [T] [D]

Due to the introduction of matrix inversion and multiplication, the 
sparsity of the resultant matrices [Stt] and [Tu] have been sacrificed.

It is worth mentioning that in [81] the final formulation is expressed
as

[S«] (//.} -  ( y P ) 2 [Tn] {//t} = (0) (2.13)

This is a somewhat misleading. Although the eigenvalue is expressed as 
{ k jp)2, one is not at liberty to choose the frequency and calculate p 
since the matrices are also functions of p. The real eigenvalue of this 
problem is k2.

Later, Hayata et al. extended their method to diagonal anisotropic and 
lossy waveguide problems [85]. Following the same procedure (2.6) to 
(2.10) at first, they next expressed (2.10) to be a complex quadratic 
eigenequation with eigenvalue X = -  y2 as:

X2 [A] {//t} + X [B] {//t} + [C] {Ht} = {0} (2.14)

where matrices [B] and [C] are obtained by a series of matrix operations 
(including inversion, transposition, and addition). Finally, (2.14) is 
transformed into an eigenequation with double order

(2.15)

The formulation (2.15) which they claimed to be an ‘efficient’ 
standard formulation has two disadvantages: (i) it doubled the unknowns to 
4Ap, where NP the number of nodal points; and more importantly, (ii) the 
complicated matrix operation will considerably increase the computing 
effort and lose sparsity which is fatal for large problems even with 
recourse to supercomputers. As shown in their examples, a simple mesh of

' [0] [U] • ’  {//•} ' ■ {M} '

-[A] '[C] -[A] ’ *[B]
= X
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153 nodes requires 27 MB memory and about 40 seconds to obtain one point in 
the dispersion curve by using a Hitachi S-810/10 supercomputer (with peak 
speed about 800 MFLOPS) [97].

Following Chen and Lien’s principles for non-self-adjoint problems 
[38], Chew and Nasir [86] proposed a four component variational 
formulation, which incorporates the divergence-free condition to eliminate 
spurious solutions, in terms of the transverse components of both electric 
and magnetic fields for anisotropic dielectric waveguides with permittivity 
tensor as

[e]

e e 0  *
XX xy

= e e 0yx yy e

0 0 Czz
(2.16)

This formulation looks very attractive because (i) it can be reduced to be
in terms of only (Hx,Hy), (ii) it is a y-type formulation. However, the
reduced formulation is derived by disregarding electric field 
discontinuities across dielectric interfaces. Furthermore, their special
treatment of the wave equation results in the two components of the
transverse field being inherently weakly coupled. The resultant matrix 
equation of their reduced (Hx,Hy) formulation has the form

r [R] [S] i r  [H x ]  1 _  2 
L-tS] [R] J [  (H y )  J - r

[0 ]  [T] 1 r {Hx} 1 
-[T] [0 ]  J [  {Hy} J (2.17)

And [P] and [S] are found to be highly sensitive to the choice of type of 
finite element used. For instance, for square elements [R] = [0] so that 
[Hx] and [Hy] are totally decoupled, in other words, (2.17) is degraded 
into two independent scalar equations of Hx and Hy respectively, which can 
not represent a general hybrid problem. Because of their use of the same 
vector trial function for both E and H  in their derivation, boundary
conditions on electric and magnetic walls can not be properly forced; 
neither are they implied. Using special type of element and without taking
any plane of symmetry, they only give examples of open waveguides with
electric or magnetic wall far from the region of strong fields. Because
Chew and Nasir’s formulation is not robust and is not able to analyze 
waveguides with conductors (including symmetry planes), this method is not 
suitable to general waveguide problems.
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Svedin [87] proposed a formulation in terms of all six components of 
the electric and magnetic fields. The divergence of electric and magnetic
field vectors is fixed implicitly to zero, and all tangential and normal 
interface and boundary conditions are enforced, so no spurious modes 
appear. This method gives direct solution for propagation constant. And 
it can treat the most general anisotropic materials with full permittivity 
and permeability tensors. Using six variables is the main disadvantage of
this method. It can be reduced to four, but then the sparsity is lost. 
Both cases affect the computational efficiency with considerable increase 
of computing time and storage requirement for large problems. In addition, 
to enforce normal component of electric field at the dielectric interfaces 
introduces complexity. Besides, Svedin’s corresponding [B] matrix in the 
canonical form (2.2) is singular, introducing some zero non-physical 
solutions.

Bardi and Biro [89] proposed a finite element formulation for lossless
anisotropic waveguides. This formulation is a four-component, co-type 
formulation of the form

r  [Maa] [0] 1 r  [A] 1 _ » 2 r  [N aa] [N av] 1 r  [A] 1 (218.
[ 0 ]  [0] J [ [V] J -  *o [  [ N v a ]  [Nw] J L {V} J

where [A] represents the three components of a magnetic (or electric) 
vector potential and [V] the electric (or magnetic) scalar potential. The
matrix on the left side of (2.18) is singular. Therefore, there are 
degenerate eigenvectors that correspond to k2 = 0, these eigenvectors are 
non-physical spurious solutions though they may be easily distinguished.
Besides, additional computing effort is needed to get electric or magnetic 
field distribution. This method is not efficient because it uses four
variables.

A recent scheme for avoiding spurious solutions is the application of 
edge elements [90] and their generalization, tangential elements [91]. In
this approach, the tangential field components between elements are forced 
to be continuous. The advantages of this approach are that (i) it imposes
only the continuity of the tangential components of the electric and
magnetic fields, as required physically; (ii) the interface boundary
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conditions are automatically obtained through the natural boundary 
conditions built into the variational principle [92]. Most recently, Lee 
and Cendes presented a first order tangential elements method [92] for 
lossless dielectric waveguide problems. Their resultant matrix eigenvalue 
equation has the form:

Similar to (2.18), the matrix on the left side of (2.19) is singular.
There are degenerate zero non-physical solutions.

Another defect of this method is that it cannot treat lossy waveguides 
neither can it find complex modes in lossless waveguides. Because the 
matrices on both sides of (2.19) are real and symmetric, no complex
eigenvalues can appear. Therefore, this formulation is not complete.

2.4 Open-Boundary Problems

Open dielectric waveguide structures are becoming increasingly
important for integrated optical devices and optical communication systems. 
In optical waveguides, the region of interest extends to infinity outside 
some guide ‘core’, where the field decay is roughly exponential.

The crudest approach is the simple truncation at a certain distance
[47], [52], which sets artificial electric or magnetic walls enclosing the 
waveguide. But this approach either introduces a significant error when 
the boundary is too close, or needs to consider an excessively large
domain. One adaptive technique involves shifting the virtual boundary wall
recursively to satisfy a criterion for maximum field strength at that wall

Open-boundary problems may be solved more accurately by several
techniques, all having in common the idea that the open 
infinitely-extending region is divided into interior and exterior regions
[93]-[96]. It is possible to find the internal and external solutions and
to match them on an imaginary boundary, some choice of integral solution 
being possible for the outside region [83]. But it is quite complicated to 
consider an integral equation method for this unbounded region without
losing the canonical form of the matrix problem. Another approach is to 
use a recursion technique [30], [93] to represent the region outside the

r [A]
L [0]

(2.19)

[51].
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main domain. Wu and Chen [31] used conformal mapping to condense the 
exterior region, but this technique can only be applied to open guides 
having a plane of symmetry.

Yeh et al. [50] used sectorial infinite elements, with radial
exponential decay outside the guide core, but because of nonconformity 
between the two coordinate systems, inter-element conditions cannot be 
satisfied exactly along the interface between the standard elements and
sectorial infinite elements.

Infinite elements have also been used with a Cartesian coordinate
system using suitable exponentially decaying functions [51], [63], [69],
[95]. Iterative procedures are proposed in [51] that allow a 
self-consistent determination of the optimum decay length by using the 
previous eigenvalue or eigenvector.

A different approach is proposed in [95], one that removes the need to 
iterate for an optimum decay parameter. Instead, a set of decay lengths
has to be chosen by the user. These infinite elements extend the domain of 
explicit field representation to infinity without increasing the matrix
order, so that computational time is virtually unchanged. The shape 
functions for such an element should be realistic to represent the fields
and should be square integrable over the infinite area to satisfy the 
radiation condition. Adding these infinite elements along the outer
boundary of orthodox finite elements, any open-type optical waveguide
cross-sectional domain can be represented very conveniently.

2.5 Remarks

2.5.1 Lossy Waveguides

To date most of the applications of the finite element method have
been restricted to lossless dielectric waveguide problems. For waveguide 
with significant loss, the full wave vectorial analysis is necessary.

In an co-type formulation, a complex eigenvalue problem is solved 
iteratively until a real eigenvalue (frequency) is obtained [56]. However, 
in a lossy case, complex propagation constants have to be guessed, while 
the guess of a complex number is difficult. Using this approach, 
considerable computing time is needed in iteration. In addition, 
eigenvalues may be very slow or may even not be able to converge.
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Obviously, a direct formulation for y is the only efficient and 
reliable way to obtain solutions for the propagation constants in the cases 
of lossy waveguides.

Summarizing all the recent y-type formulations which can eliminate 
spurious solutions, there are only three possible formulations [85], [86], 
[87] for lossy waveguide problems. Among them, only Hayata et al. [85] 
have shown application to lossy waveguide problems. However Hayata uses a 
four-component, dense-matrix equation, which is not efficient and cannot be
applied to large problems. Chew and Nasir’s formulation [86] is
ill-conditioned and cannot be used as a general method. Svedin’s
six-component formulation [87] is not efficient and suffers considerable 
cost of computing resource.

2.5.4 Criteria o f Judgments

In judging the appropriateness of a finite element formulation for 
dielectric waveguide, the following 8 criteria may be adopted.
1) The formulation should be robust and capable of including as many

waveguide features, such as arbitrarily shaped cross-section,
inhomogeneity, anisotropy, and significant loss (or gain), as 
possible.

2) The formulation should be immune from spurious solutions which often 
plague the finite element solution of vector variational formulations.

3) The resultant matrix equation of the formulation should also be 
well-conditioned.

4) The electromagnetic field should be represented in terms of only
vector magnetic field H, which is more suitable to dielectric
waveguide problems, because the magnetic field is continuous
everywhere, and no special treatment is needed to enforce normal 
component of electric field at dielectric interfaces.

5) The solution should be direct for complex propagation constant in 
terms of real frequency, so as to be more efficient and reliable.

6) If possible, the formulation variables should be represented by only 
two field components, the least number necessary, thus minimizing the 
unknowns.

7) The formulation should lead to a canonical eigenvalue equation which 
can be solved efficiently.
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8) The resultant matrices of the formulation should be highly sparse and
able to utilize a fast and efficient matrix equation solver. This is
of decisive importance for large problems, even on a supercomputer.

to
Criterion 1 refers to the problem coverage; criteria 2 and 3 refer , the

applicability; criteria 4 and 5 refer to simplicity and user friendliness; 
criteria 5 to 8 refer to ability to treat large problems.

We will show in the following chapters that the formulation presented
in this thesis satisfies all the above criteria except it is for
transverse-anisotropic rather than for the most general anisotropic cases. 
Nevertheless, this is enough for most of applications.
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CHAPTER 3

PROBLEM DEFINITION

3.1 Introduction

Computer simulation of the electromagnetic fields within a dielectric 
waveguide begins with a mathematical description of the problem. In this 
chapter the primary concern is the interpretation of the physical problem 

in mathematical terms. We will describe in section 3.2 the mathematical 
model of dielectric waveguide problems. In section 3.3, we will discuss in 
general the origin of spurious modes in approximate solutions of vector 
Maxwell boundary-value problems; based on this discussion we will propose 
the strategies to eliminate spurious modes in vector finite element 
solutions of Maxwell boundary-value problems. Then in section 3.4 we will 
derive an appropriate expression in terms of transverse magnetic field 
components only, which is immune from spurious solutions, and also is 
suitable and economic to represent dielectric waveguide problems. From 
this boundary-value problem definition, we will derive a new variational 
finite element formulation in Chapter 5.

Z

Fig. 3.1 The arbitrary dielectric waveguide structure
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3.2 Boundary-value Problem

3.2.1 Description o f the Dielectric Waveguide Problem

In this thesis we consider a dielectric waveguide as depicted in Fig. 
3.1, with arbitrary cross section in the x-y plane and uniformity in the 
z-direction. The structure region Cl, which may include guide, substrate 
and cladding, etc., consists of linear dielectric material(s) and electric 
conductors. The dielectric material in Cl may be arbitrarily inhomogeneous, 
anisotropic, and dissipative. The structure of the waveguide may be open 
or closed. We assume that T, the boundary of Cl, is divided into three 
parts: the perfect electric conductor (PEC), the perfect magnetic conductor 
(PMC), and infinity (INF).

The assumption that the permeability of all dielectric materials is 
the constant scalar |iQ everywhere is also made. The relative permittivity 
profile is assumed by the complex tensor

- 0  0  ^zz •

The assumption of (3.1) implies that the geometry in Fig. 3.1 has 
reflection symmetry about z axis; i.e., a mode propagating in the +z 
direction is degenerate with a mode propagating in the -z direction [15].

3.2.2 General Boundary-Value Problem Definition

In order to discuss the origin and elimination of spurious modes in 
general, let us describe the general boundary-value problem first. 
Assuming a harmonic time dependence of the form exp(joat), where CD is the 
real angular frequency, the governing source-free Maxwell’s equations for a 
general boundary-value problem are

r e e 0

e(x,y,co) = ( e ' -  je" ) = e e 0xy yy (3.1)

V x E  = - j c o B  = - j c o  [yx-H

V x H = j c o D = j c o  e I E  j  o

V • D = V • ( e I E  ) = 0v o '

(3.2a)

(3.2b)

(3.2c)
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V • B = V • ( lyr-H  ) = 0 (3.2d)

where E the electric field intensity vector

H the magnetic field intensity vector

D the electric displacement intensity vector

B the magnetic induction intensity vector

I  the relative permittivity tensor

jl the relative permeability tensor

£q the vacuum permittivity scalar

|iQ the vacuum permeability scalar

The field E, D, H, B should satisfy the associated boundary 
conditions. At a discontinuous interface of two contiguous media a and b, 
the boundary conditions are

where n is a normal unit vector at the interface between two media a and b, 
the direction of n is from medium a towards medium b.

On PEC, the boundary conditions are

n x (E -  E J  = 0
a b

(3.3a)

(3.3b)

(3.3c)

(3.3d)

n x E = 0 (3.3e)

n B = 0 (or n • p. H = 0) (3.3f)

On PMC, the boundary conditions are

n x H = 0 (3.3g)

n • D = 0 (or n • e-E = 0) (3.3h)

And at INF, all the fields vanish:
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E = D = H = B = 0 (3.3i)

For simplicity, we will ignore (3.3i) in the following discussion.
Classically, the boundary-value problem is unambiguously defined by 

the two curl equations ((3.2a), (3.2b)), and either the tangential boundary 
conditions ((3.3a), (3.3b), (3.3e), (3.3g)) or the normal boundary
conditions ((3.3c), (3.3d), (3.3f), (3.3h)). Solutions to these implicitly 
satisfy the two divergence equations ((3.2c) and (3.2d)) and their 
corresponding complementary boundary conditions.

Alternatively, the boundary-value problem can be defined by only one
field (i.e., the electric field or the magnetic field) and the associated 
boundary conditions. This may simplify the problem and increase the 
efficiency of solutions. The other field can be obtained later by one of 
the two curl relations if necessary. In this way, the two curl equations
(3.2a) and (3.2b) can be transformed into a double-curl equation in terms
of the magnetic field or electric field only. For example, the double-curl
magnetic field equation:

V X ( e '• V X H ) -  <B2e0n0p  H = 0 (3.4)

and its tangential boundary conditions:

n x (H -  H ) = 0 (3.5a)
a b

n x ( f  V x H -  I  V x H ) = 0 (3.5b)
a a b b

n x H = 0 (o n  PMC ) (3.5c)

n x (e '*• V x H) = 0 (o n  PEC ) (3.5d)

or its normal boundary conditions:

n • (fT H -  ff-H  ) = 0 (3.6a)
a a b b

n • (V x H -  V x H ) = 0 (3.6b)
a b

n • jl-H = 0 (o n  PEC ) (3.6c)

n • V x H = 0 (o n  PMC ) (3.6d)
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Similarly one can have the double-curl electric field equation:

V x ( p ' - V x E ) - o )  e ^ l E  = 0 (3.7)

and its tangential boundary conditions:

n x (E -  E ) = 0 (3.8a)
a b

n x (ff V x E -  p  V  x E )  = 0 (3.8b)
a a b b

n x E = 0 (o n  PEC ) (3.8c)

n x (JT V x E) = 0 (o n  PMC ) (3.8d)

or its normal boundary conditions:

n • (e E -  e -E ) = 0 (3.9a)
a a b b

n • (V x E -  V x E ) = 0 (3.9b)
a b

n • e-E = 0 (o n  PMC ) (3.9c)

n • V x  E = 0 ( o n  PEC ) (3.9d)

3.3 Origin and Elimination of Spurious Modes

Non-physical spurious solutions have been observed in finite element
[62], [63], [65] and finite difference [100] formulations based on the
above mentioned two-curl equation or double-curl equation definitions. 
Spurious solutions have been found mainly in modal analysis (see Chapter 2) 
and finite element formulations for driven problems have largely been 
perceived to be free of these computational difficulties. In fact, this
presumed immunity of driven problems has been suggested as a possible
remedy to the eigenvalue dilemma [102], [103]. Recent studies, however,
show that some selections of the forcing term can lead to completely
erroneous finite element solutions of some simple double-curl boundary
value problems [104]-[107]. Above findings imply that for some double-curl 
finite element formulations, even if spurious solutions are not normally 
observed, the formulations themselves are not inherently immune from 
spurious modes, they just incidentally avoid the appearance of spurious
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solutions.
As reviewed in Chapter 2, spurious modes are observed in formulations 

where the divergence condition V B = 0 is not imposed [62], [63], [67]. 
Consequently, the introduction of the divergence condition is suggested and 
applied [65], [67], [81], [84], [86]. However, the questions of ‘Why 
should we have to introduce the divergence condition’ and ‘Is it sufficient
to eliminate all spurious modes’ have never been explained convincingly.

Based on the general lack of insight studies of spurious modes in 
finite element solutions, it is worth trying to explain the inherent origin 
of spurious modes. To begin with, let us investigate the analytical and 
approximate solutions of Maxwell boundary-value problems.

33.1 Analytical Solutions to Maxwell’s Equations

In analytical approaches, the two-curl or the double-curl definition
mentioned in section 3.2 has widely been adopted. For most analytical 
methods, the curliness of the field solution can be guaranteed at almost
every point in the problem domain. Because of the curliness of the field 
solution, the tangential and normal boundary conditions are derivable from 
each other. This also implies that the field solutions satisfy the
divergence equations V B = 0 and V D = 0, which are the remaining equations 
governing the electromagnetic field and should be, but are not included in 
the problem definition. When the complete solutions can be fulfilled by 
the two-curl or the double-curl definitions, it is, of course, unnecessary
to include the divergence conditions. Therefore, using the two-curl or the 
double-curl definition is usually sufficient to achieve true analytical
solutions of the fields.

3.3.2 Approximate Solutions to Maxwell’s Equations

In numerical methods, however, the story is different. For such weak
approximation as the finite element solution, the curlinesses of field 
solutions can not be guaranteed. For the double-curl equation definition,
derivative boundary-conditions such as (3.5b), (3.5d), (3.6b), (3.6d)
cannot be strictly imposed. Hence, the tangential and normal boundary 
conditions are no longer automatically derivable from each other and the 
divergence conditions cannot be implied in the two curl equations or the
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double-curl equation definition. As a consequence, the problem is 
underdetermined and non-physical, spurious solutions may appear with the 
two-curl or these problem definitions. Therefore the two-curl equation or 
the double-curl equation definitions of boundary-value problems are no 
longer sufficient to determine completely a boundary-value problem.

3.3.3 Elimination o f Spurious Solutions

Based on the discussion in section 3.3.2, three Maxwell source-free 
boundary-value problem definitions are proposed in order to eliminate
spurious solutions.

Strategy 1
For fu ll field  (E,H) approximation, all four equations f(3.2a-d)j, and both
tangential and normal boundary conditions f(3.3a-h)j should be used in the 
problem definition in order to eliminate the spurious modes.

Strategy 2
For magnetic field  H approximation, magnetic double-curl equation (3.4), 
magnetic field divergence equation (3.2d), and both associated magnetic
field tangential and normal boundary conditions ((3.5a-d) and (3.6a-d)j 
should be used in the problem definition in order to eliminate the spurious 
modes.

Strategy 3
For electric field  E approximation, electric double-curl equation (3.7), 
electric field divergence equation (3.2c), and both associated electric
field tangential and normal boundary conditions f(3.8a-d) and (3.9a-d)) 
should be used in problem definition in order to eliminate the spurious 
modes.

Note that from (3.2a-d) and vector identity V (VxA) = 0, the following 
is always true:

V D = V-(e-E) = ■ * V(VxH) = 0 (3.10)
0

V B = V (jlH ) = -T l - fe-  V (VxE) = 0 (3.11)
J 0
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(3.10) and (3.11) show that the only remaining condition for problem 
definition in Strategy 2 and Strategy 3 is always automatically satisfied.

Remark 3.1
Any one o f the definitions described in Strategies 1, 2, and 3 is a 
complete and sufficient definition for a Maxwell source-free boundary-value 
problem. It is also sufficient to eliminate the spurious modes.

For the E or H approximation, the derivatives of the fields are used 
in the boundary conditions. It is in general difficult to impose them 
strictly. However, for such weak approximation as the finite element 
method, they may be fulfilled in a wide mean-value sense, or they may not 
have all to be imposed for the mostly desired one field first-order 
approximation where we only have to impose the essential tangential and 
normal boundary conditions of the field itself. This is reasonable and 
acceptable, and should not deteriorate the original definition in the weak 
approximation sense and therefore should not introduce spurious modes in 
the weak solutions.

3.4 Basic Differential Equation

For the dielectric waveguide problem described in section 3.2.1, the 
permeability is the constant scalar p.Q. As ft in this case is an unit 
tensor, from the interface conditions (3.3a)-(3.3d), we can see that at the 
interface of two contiguous media both tangential and normal components of 
the magnetic field are continuous while the normal component of electric 
field is not. This means that in the whole region Q all components of the 
magnetic field vector H are continuous everywhere while all components of 
the electric field vector are not. Obviously, in this case it is much more 
convenient to define the dielectric waveguide problem in terms of the 
magnetic field only. Hence, the definition described in Strategy 2 will be 
adopted.

However, as the permittivity tensor is of the special form (3.1), we 
may simplify the boundary-value problem definition (3.4)-(3.6) further to 
include only two transverse components of the magnetic field, which are the 
minimum number of components required to represent a general problem.

Denoting e as the 2x2 tensor
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tensor e can be represented as:

e = e + e zz (3.13)
tt zz

The magnetic field double-curl equation (3.4) has all three components 
of the magnetic field which are more than the minimum of two desired. 
Incorporating the divergence-free condition (3.2d) into (3.4), we can 
reduce the number of components in the field equation to the two transverse 
components Hx and Hy only. To achieve this purpose, we next proceed to 
separate the transverse and longitudinal components of equation (3.6a). 
Because the waveguide is assumed uniform in the z-direction, we may assume 
that the field has a exp(-yz) dependence so that the operator

We define

where the subscript t denotes a vector transverse to z.
Introducing (3.14) and (3.15) into equation (3.4), the wave equation

(3.4) can be separated into two equations. One is the transverse component 
of (3.4), the other is the longitudinal component of (3.4). The transverse 
component of equation (3.4) becomes:

V x ( k V x H ) - y z x [ k - V x H  ) -  co2u e Ht v zz t r 1 L tt t z ' M) o t

H(x,y,z) = [ H (x,y) + H?(x,y) ] e '^ (3.15)

and (3.16)

+ y2z x [ k - ( z x H ) ] = 0  (3.17)
• tt t

where we have defined

k = e -l (3.18a)

and consequently



(3.18b)

(3.18c)
zz zz

We can remove Hz in (3.17) by incorporating the divergence-free condition 
(3.2d), from which we have 

V H

Substituting (3.19) into (3.17), we reduce (3.17) to an equation involving 
only transverse magnetic field components H , viz.,

possible without assuming the form of e in (3.1)
Introducing (3.15), (3.16) and (3.19) into the complete boundary

conditions (3.5) and (3.6) of H-definition, after performing separation, we 
can get the complete boundary conditions for wave equation (3.20) in terms 
of the transverse magnetic field component only as follows:

(3.19)

(3.20)

The above is an eigenvalue problem with eigenvalue y2. The dependence 
on y2 implies that exp(iryz) modes are degenerate. This would not have been

n (H -  H ) = 0
ta lb

(3.21)

n x (H -  H ) = 0
V ta tb7

(3.22a)

tb
(3.22b)

ta

n • J [V x(zV H ) -  y'zxH ]
t t ta ' ta

-  [Vx(zV H ) -  •/zxH ] i  = 0
t t tb * tb J

n X i f 1 [V x(zV H ) -  fz x H  ]
j tta  t t ta * ta

(3.23)

-  r '  [Vx(zV H ) -  fz x H  ] l  = 0
ttb  t t tb7 1 tb J

n x ( e 1 V x H - e 1 V x  H ) = 0
zza t ta zzb t tb'

(3.24a)

(3.24b)
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©II

s
f

s

(on PEC) (3.25)

n x H = 0
t (on PMC) (3.26a)

V • H = 0
t (on PMC) (3.26b)

n • jtVx(zV H ) -  /z x H  ] (on PMC) (3.27)

n x ej- [Vx(zV H) - f z x H l = 0 (on PEC) (3.28a)

n x Vx  H = 0
t t (on PEC) (3.28b)

Eqs. (3.21) and (3.25) £ire the normal magnetic induction boundary 
conditions. Eq. (3.21) is equivalent to eq. (3.3d) or eq. (3.6a). And eq. 
(3.25) is equivalent to eq. (3.3f) or eq. (3.6c).

Eqs. (3.22) and (3.26) reflect the tangential magnetic field boundary
conditions. Eq. (3.22a) plus eq. (3.22b) are equivalent to eq. (3.3b) or
eq. (3.5a). And eq. (3.26a) plus eq. (3.26b) are equivalent to eq. (3.3g)
or eq. (3.5c).

Eqs. (3.23) and (3.27) are the normal electric displacement 
boundary conditions. Eq. (3.23) is equivalent to eq. (3.3c) or eq. (3.6b). 
And eq. (3.27) is equivalent to eq. (3.3h) or eq. (3.6d).

Eqs. (3.24) and (3.28) are the tangential electric field boundary
conditions. Eq. (3.24a) plus eq. (3.24b) are equivalent to eq. (3.3a) or
eq. (3.5b). And eq. (3.28a) plus eq. (3.28b) are equivalent to eq. (3.3e)
or eq. (3.5d).

The differential equation (3.20) is the basic wave equation in 
terms of only two transverse magnetic field components for the problem 
defined in section 3.2. We will use eq. (3.20) and its associated boundary
conditions to derive a new variational finite element formulation in
chapter 5.
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CHAPTER 4

MATHEMATICAL FUNDAMENTALS OF THE FINITE ELEMENT METHOD

4.1 Introduction

The purpose of this chapter is to help us to establish an accurate 
understanding of the finite element method by summarizing its mathematical 
fundamentals before applying finite element method to our waveguide problem 
described in the previous chapter. The emphasis of this chapter is on the 
philosophy of finite element formulation, the relationship of finite 
element method to a variety of classic approximation methods, and the 
techniques for formulating various types of finite element models of 
boundary-value problems.

In order to establish the generality and flexibility of the finite 
element method, we begin with a typical example whose notation will used 
in the entire chapter. Considering an open bounded domain Q in ^-dimension 
Euclidean space x = (x . x .  ..., x ) being a point in Q. Let (^(Q )1 2  n
denote the space of functions u(x) with continuous derivatives of order k < 
m on Q . If L is a linear partial differential operator, we consider the 
problem of finding those functions u(x) for which

L(u) = s (4.1)

at every x e Q, where s is a fixed function. To make possible the 
existence of unique solutions to (4.1), we may also impose conditions on 
u(x) and various of its derivatives at points on the boundary dQ. = T of the 
form

B(u) = t (4.2)

where IB is also a linear operator and r is a fixed function on T. The 
problem of finding functions u which simultaneously satisfy (4.1) and (4.2) 
is a linear boundary-value problem.

- 43 -



4.2 Strong and Weak Solutions of Boundary-Value Problems

The finite element method is one of a large class of approximate 
methods designed to give approximations to weak solutions of boundary and 
initial value problems of mathematical physics. It is necessary to make 
clear the distinction between strong and weak solutions at first.

4.2.1 Strong Form o f Problem ([108], [115])

The strong form of the boundary-value problem, (S), is stated as 
follows:

Given s and f, find u e  C^Cl), V x g Cl such that

j|e

The functions u (x) which satisfy (4.1) and (4.2) at every x in Cl and T  are 
called strong solutions of the boundary-value problem.

Some methods of approximation begin directly with the strong statement 
of the problem. The most notable example is the finite difference method
[7]. The finite element method usually starts from a weak form of the 
problem.

4.2.2 Weak Form o f Problem ([108], [115], [116])

In general, we can expand the class of functions in which we seek 
solutions to boundary-value problems by regarding u(x) as an element of 
Hilbert space H. In other words, we can define for any pair of functions 
w, v g  a real number, denoted <u,v>, that satisfies all of the rules 
required for inner products. For example

wherein Lebesgue integration is implied. The associated norm of a function

the resulting space (generally denoted L2(C1)) is complete in the norm.
Let H(Q) ( H(Q) a  H ) denote the support space of Cl, i.e, for any 

h(x) g  H(Q), the closure of the set of points on which h(x) * 0 is 
contained in Cl. Then the weak form of the boundary-value problem, (HO, can 
be stated as:

(S) < L(u) = s on Cl
B(u) = t on T

(4.3)

Cl
(4.4)

u g  H is then \\u\\2 = <u,u> < <*> (often mentioned as square integrable), and

_ 4 4  _



( G ivens, find  u e H(Q), V h e  H(Q) such that 
(WO \ (4.5)

[ <h,L(u)> = <h,s>

The solutions u of weak form of problem are called weak (or generalized) 
solutions of the boundary-value problem (4.1). The class of all weak
solutions of the boundary-value problem is often much larger than that of 
the strong solutions, since (4.5) requires only that the integral of h lXu) 
be the same as that of h-s. The definition given to a weak formulation is 
not unique.

In (4.5) it is implicitly assumed that the integrals are capable of 
being evaluated. This places certain restrictions on the possible families 
to which the functions h and u must belong. In general we shall seek to 
avoid functions which result in any term in the integrals becoming 
infinite. Thus, in (4.5) we limit the choice of h to single, finite value 
functions without restricting the validity of previous statements. The 
restriction placed on the functions depends obviously on the order of 
differentiation implied in the equation !_ (m). If m/i-order derivatives
occur in any terms of L then the function has to be such that its n -  1

_ 1
derivatives are of Cr continuity.

On many occasions it is possible to perform an integration by parts on
(4.5) and replace it by an alternative statement of the form

(WO
f Given s, find u e H(Q), V h e  K(O) such that

(4.6)
«D(/j),D(w)> + b . t .  = <h,s>

In the above, ‘b.t.’ stands for boundary terms which we disregard at 
moment, the operators € and D contain lower order derivatives than those
occurring in operators L. Now a lower order of continuity is required in
the choice of the u function at a price of higher continuity for h. The 
statement (4.6) is now more ‘permissive’ than the original problem posed by 
(4.3), or (4.5), and can also be called the weak form of (4.1).

It is a somewhat surprising fact that often the weak forms are more 
realistic physically than the original differential differential equation
which implied an excessive ‘smoothness’ of the true solution.

There are two distinct procedures available for obtaining the
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approximation in weak forms. The first is the method o f weighted residuals
[8], the second the determination of variational functional for which 
stationary is sought [8], [109], [110].

4.3 The Weighted Residual -  Galerkin Method

4.3.1 Dual and Conjugate Space ([108], [111])

The notion of weak solutions of boundary-value problems can be put in 
a different setting by introducing the notion of dual spaces. Let U denote 
a linear vector space, the elements of which may be regarded as functions 
m ( x )  of a certain type (say, square integrable), defined on the region
Q c  En. Let V denote another linear vector space defined over the same
field, and suppose that there exists a mapping S: U <S> V —> E (i.e., a
mapping of ordered pairs [u,v] of vectors into the real numbers) such that

(a) (w,otv^+ pv2) = a ( « , v i ) + P(m,v2),

(b) (au Y + pm2 , v )  = a ( « i ,v) + p(«2,v),
j|( ^  ^

(c) (w,v )=0, for f ixed  v and all u => v =0 (almost everywhere),

(d) (u* ,v)=0 , for f ixed u and all v => u=0  (almost everywhere),!

(4.7)

where a  and P are scalars and (w,v) is the real number associated with the 
pair of vectors u and v. Then V is called the dual space of U, and the
mapping s[w,v] = (w,v) is called the scalar inner product of u and v.

A linear mapping i  of U into E is called a linear functional, and the
set U of all linear functional on U is itself a linear vector space called
the conjugate space of U. For every continuous linear functional £ on a
real space U there exists an element v e V such that £(u) = <u,v> and the 
vector v is uniquely determined by £. As a consequence, we can generally 
treat the dual space V as algebraically the same (isomorphic to) the 
conjugate space U*.

Let <Ul denote a subspace of U. The set of elements in V which have 
the property that

(w,v) = 0 ,  V u g Ui (4.8)

is called the orthogonal complement of and is denoted 'U-j-. In (4.8), v
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is said to be orthogonal to u. Generally, if U is the direct sum of two
subspaces U = U2, V is the direct sum li-j-® u p  where Uj- and U-L are the
orthogonal complements of It and U respectively. Then it can be shown to
follow that U , U-j- and U , U-J- are dual pairs.

1 2  2 1 r
We can interpret the idea of weak solutions in the concept of dual 

spaces, and let IL: K —> U denote a linear mapping of a functional space U 
into U. Let L(u) denote the image of u under the mapping and let s denote 
a fixed element in U. The function

r -  L(u) -  s (4.9)

is called the residual o f L(u) with respect to s. Clearly, the residual r 
= r(x) belongs to U since U is, by hypothesis, a linear space.

An element u e H is a weak solution o f (4.1) if the residual o f L(u)
with respect to s is orthogonal to the entire dual space V; i.e., u is a
weak solution if and only if

(r,h) = 0 (4.10)

for all h g V. According to the condition (c) of (4.7), this means r = 0 
(weakly).

4.3.2 Methods o f Weighted Residuals ([8], [10], [108])

In weighted residual methods, we seek approximations to solutions of
(4.5) in a finite dimensional subspace of U spanned by a linearly
independent set of basis functions T(x) , T(x)2, ..., T ( x ) q . Every element
g(x) in y is, therefore, of form

G
G

u(x) = Z  flT.(x) (4.11)
l 1 1

where a ,, a .  ..., a are scalars. Setting a dual or conjugate space y*
1 2 G G

in which an element v(x) is assumed to be of the form
G

v(x) = X bW.pt) (4.12)
i 1 1

where W(x) , W(x) , ..., W(x) are G linearly independent functions which
1 2 G

provide a basis for and which may be unrelated to the functions T.(x).
Weighted residual methods consist of selecting the coefficients a. so
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that u(x) approximates a weak solution of (4.1); i.e., u(x) of (4.11) is a 
weighed residual approximation of the solution u(x) of (4.5) if

<v,L(u) -  s> = 0 (4.13)

for all v € if*. If L is linear, (4.13) leads to a system of linear 
equations for the coefficients a., that is

G G G G
< 1  bW .(x)X(L a.T.(x)) -  s> = £  b. <W.(x),l (L  a.T.(x)) -  s> = 0 (4.14)

i J J . 1 1  j  J i * 1

for each j, so that (4.14) implies
G

<W.(x),L (I a.T.(x)) -  s> = 0 (4.15)
i

Consequently, the coefficient a. of weighted residual approximation w(x) of 
u(x) must satisfy

G
Z L  a . - i  = 0  (4.16)

ij i ji
where

L = <W„L(T)> and 5 = <W ,s> (4.17)
ij 3 i  3 3

In weighted residuals methods, the basis functions 7.(x) of y  are
usually called trial functions, and the basis functions of are usually 
called weighting functions. Clearly, the weighting functions can be chosen
in many ways and each choice corresponds to a different criterion of method
of weighted residuals.

4.3.3 The Galerkin (Bubnov-Galerkin) Method ([108], [116])

Among the most important methods for obtaining approximate solutions 
to (4.5) is Galerkin method which is a special case of methods of
weighted residuals. In Galerkin method, the dual space of is itself,
i.e., = y*, in another words, the weighting functions are chosen to be
the trial functions

W = T  (4.18)
j 3

For ^-approximations, it is easy to show that the Galerkin
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approximation u(\) is the best ^-approximation of the solution u(x)  of
(4.5); i.e.

| u — u 1 = i n f  | u -  u || (4.19)

Moreover, it is clear that Galerkin method chooses the coefficients a soX
that the residual (error), r(x) = L(u) -  s, is orthogonal to (lies in the 
orthogonal complement of) the linear mainfold

4.3.4. Subdomain Method ([116])

We could divide the domain Q. into G smaller subdomains, Q , and choosej
/ I  in Q

W, = \ J (4.20)
J v 0 elsewhere.

As G increase, the differential equation is satisfied on the average in 
smaller and smaller subdomains, and the integral of error presumably 
approaches zero everywhere.

4.3.5 Least Square Method ([8], [116])

In the least square method, the weighting functions are chosen as

W. = L(T) (4.21)

The weighting functions so defined are the derivatives of the error r(x) = 
fl-(w) -  s with respect to the parameters a., i.e., dr I da., so that the 
functional (which represents the square of the error norm)

/(a.) = <r,r> = ||r||2 (4.22)

is minimized with respect to the parameters a.. This method often leads to 
cumbersome equations, but it has been applied to complicated problems. The 
mean square residual (4.22) has theoretical significance since error bounds 
can be derived in terms of it. Thus, minimization of (4.22) gives the best 
possible bounds for the error.
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4.3.6 General Galerkin (Petrov-Galerkin) Method ([116])

If the weighting functions are not chosen as the trial functions, such
that

W. * T, (4.24)
j j

Then the method is often called General Galerkin Method or Petrov-Galerkin 
Method.

4.3.7 Generalized Finite Element Method ([116])

The name of ‘weighted residuals’ is much older than that of the
‘finite element method’. The latter uses mainly locally based (element)
functions in expansion (4.11), but the general procedures are identical.
As the process leads always to equations which, being of integral form, can 
be obtained by summation of contributions from various subdomains, all
weighted residual approximations are usually called generalized finite 
element method. Frequently, simultaneous use of both local and global
trial functions will be useful.

4.4 Variational Principles

4.4.1 Variational Method ([8], [10], [108], [110])

An alternative and rewarding way to view the idea of weak solutions of 
boundary-value problems is from the variational principles. To review 
quickly some of the important features of variational methods, let P denote
an operator mapping a Hilbert space U into U , p being not necessarily
linear. If a  is a scalar and h is an arbitrary element of U, the Gateaux
differential of P at u is the function Dp(u,h) such that

1 im | - i  M u  + ah) -  P(«)] -  D f(u jx)  I = 0 (4.24)
a-»0 a

It is meaningful to refer to Dp(u,h) as the Gateaux derivative of P in the
"direction" h, or to the operator Dp(u) on h as the Gateaux derivative of P

£
at u. If U = U = E, the real numbers, Dp(u) is the ordinary derivative of 
a real-valued function P(u) = p(x) (i.e., Dp(u,h) = (dp/dx)h). If P: £ n
—> E and h = (1, 0, 0, ..., 0), then DP(u,h) = dP/dx , etc. However, in
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more general settings the Gateaux differential of a continuous operator
need not be continuous and it need not be linear in h. If, on the other
hand, Dp(u,h) exists in some neighbourhood \\u -  mq|| < r of uq, is
continuous in u in this neighbourhood, and if it is continuous in h at zero 
element h = 0, then Dp(u,h) is linear in h. We shall henceforth assume 
that Dp(u,h) exists and is continuous in u and h, and is linear in h.

A functional DC: U —> E takes elements of the space U into real 
numbers. If a given functional is Gateaux differentiable at «, we can 
compute

DK(u,h) = 1 im - i  [K(« + ah) -  k (m)] (4.25)
a->0 a

Now DK(u,h) is, for each u, a linear functional on U which can be written 
in the form <P(u),h> , P(u) being a possibly nonlinear mapping from U into 

which is equivalent to the Gateaux derivative of K(u). Consequently,
the operator P(w) given by

<h,P(u)> = k(u + ah) a  „  0 (4 2 6 )

is called the gradient of the functional K(m), and we write P(u) =

grad K(w). If at a particular point u , gradK(w*) = 0, then u is called a 
stationary point or critical po in t of k(m) and it is said that K(w) assumes 
a stationary value at u . If, for a given P(u), there exists a functional
DC(m) such that P(w) = grad 0c(«), then P(u) is referred as a potential 

operator.

Let us now appreciate the concept of variational formulations of 
boundary-value problems. Take, for example, the case of boundary-value 
problem P(u) = L(u) - 5  = 0, where s is fixed and P(u) is a potential 
operator. By definition, there exists a functional K(u) for which P(u) = 
grad DC(m). Indeed, DK(u,h) = <h,P(u)> =  <h,L(u) -  s>. If u is a
stationary point of the functional K(w), then <hx(u)  -  s> = <h,P(u)>  =
0; that is, stationary points o f  the functional 0C(a) which has the property 

grad DC(u) = P(u) are weak solutions o f  the problem  P(u) = 0. This, in
fact, is the essence of the variational method; to obtain weak solutions o f

boundary value problems by determining stationary points o f  an associated  

functional.

It is clear that the inverse problem  of the calculus of variations
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(i.e., given a potential operator P(u), find a functional K(m) such that 

grad K(u) = p (m)) is o f  crucial importance in applying the variational 

formulation.

In the next a few subsections, we will briefly refer, in a more 
engineering language, to the techniques of applying variational method.

4.4.2 Rayleigh-Ritz Procedure ([10], [116])

If a variational formulation can be found, then a standard procedure, 
which is known as Rayleigh-Ritz procedure, can be used immediately for 
obtaining approximate solutions in weak form suitable for finite element 
analysis. Assume a variational formulation is specified as

The solution to the problem is a function u which makes F  stationary with 
respect to small changes 6u. Thus, for a solution to the problem, the 
variation is

from which parameters a  are found. The equations are of a form involving
integration necessary for the finite element approximation as the original
specification of F  was given in terms of domain and boundary integrals.

The process of finding stationarity with respect to trial function 
parameters a. is an old one and is associated with the names of Rayleigh
and Ritz [8], [10]. It has become extremely important in finite element

F  = <W, B_(«) -  S >  -  <M, P(m)> (4.27)

8F = 0 (4.28)

Assuming a trial function expansion in the usual form
G

u(x) = X  <2 . T . ( x )  g

we can insert this into (4.27) and write

S F [ k ( x ) ]  =  I  8 a .  =  0aa i
i = 1 i

(4.29)

This being true for any variation 8a yields a set of equations

(4.30)
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analysis which is typified as a ‘variational process’.

4.4.3 Euler Equations ([116])

If we consider the definitions of (4.27) and (4.28) we observe that
for stationarity we can write, after performing some differentiations,

8F = <8m, p (m)> = 0 (4.31)

As the above has to be true for any variations 8m, we must have

P(m) = 0 (4.32)

If P corresponds precisely to the differential equations governing the 
problem, then the variational principle is a natural variational principle.
Equations (4.31) and (4.32) are known as the Euler Equations corresponding 
to the variational principle requiring the stationarity of F. For any 
variational principle a corresponding set of Euler equations can be
established. The reverse is unfortunately not true, i.e., only certain
forms of differential equations are Euler equations of a variational 
functional.

4.4.4 Relation o f the Galerkin Method to Variational Principles ([108])

We can observe that the approximation obtained by the use of a natural 
variational principle and by the use of the Galerkin weighting process is 
identical. That this is the case follows directly from equation (4.27), in 
which the variation was derived in terms of the original differential
equations and the associated boundary conditions.

If we consider the usual trial function expansion (4.11)
G

u(x) ~ ii(x) = £  aT(x)
i 1 1

we can write the variation of this approximation as
G

8ii = I  8mT.(x) (4.33)

and inserting the above into (4.31) yields
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G G

8F = 1 5 a. < r ,  P ( I  a.T)> = 0 
j  j  . 1 1

(4.34)

The above form, being true of all ba., requires that the expression
under the integrals should be zero. We will immediately recognize this as 
simply the Galerkin form of the weighted residual statement discussed in 
section 4.3.2 and 4.3.3, and the identity is hereby proved.

We need to underline, however, that this is only true if the Euler 
equations of the variational principle coincide with the governing 
equations of the original problems. The Galerkin process thus retains its
greater range of applicability.

4.4.5 Variational Formulation for Self-Adjoint Problems ([109])

General rules for deriving natural variational principles from 
non-linear differential equations are complicated. For linear differential 
equations the situation is much simpler and a thorough study is available 
in [109], and this section we summarize such rules.

We shall consider here only the establishment of variational 
principles for a linear equation with forced boundary conditions, implying
only variation of functions which yield 5m = 0 on the boundaries The 
extension to include the natural boundary conditions is simple and will be
omitted.

Consider a boundary-value problem of form (4.1)

in which L is a linear differential operator; it can be shown that natural 
variational principles require that the operator L be such that

for any two function sets u and v. The property required in the above 
operator is called one of self-adjointness or symmetry.

If the operator L is self-adjoint, the variational principle can be 
expressed immediately as

L(u) = s

<v, l(m)> = <Q_(v), u> + b.t. (4.35)

F  = <m, il(m)> -  2 <u, s> + b.t. (4.36)
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In fact, a variation of (4.36) can be written as

8F = <8m, il(m)> + <m, 8l(m )> -  2 <8m, s> + b.t. (4.37)

Because of the linearity of the operator o_, there always is

b il(m) s  l  (8m) (4.38)

and because u and 8m can be treated as any two independent functions, by 
identity (4.35) we can write (4.37) as

We observe immediately that the term in the square brackets, i.e., the
Euler equation of the functional, is identical with the original equation
postulated, and therefore the variational principle is verified.

4.4.6 Variational Formulation for Non-Self-Adjoint Problems ([38])

In the previous section, we discussed how to establish a variational
formulation of a self-adjoint problem. In this section we shall discuss
how to obtain the variational formulation of a non-self-adjoint problem

where L is a non-self-adjoint linear operator, u is the unknown vector 
field function to be determined, and 5 is a known vector source function.

A method of solving the original non-self-adjoint problem (4.40) is to 
introduce an auxiliary problem, the adjoint problem as follows:

where ILa is the adjoint operator o f  L, u is another unknown vector 

function to be determined, and sa is another known vector function.

It can be proved that the problem of solving u and Ma simultaneously 
from (4.40) and (4.41) is completely equivalent to that of determining the 
stationary functions (both u and u )  from the following variational 
equation:

8F  = 2 < 8m , [ l(m) -  s ] > + b.t. (4.39)

o_(m) = s (4.40)

n ax a L (M ) = S (4.41)

8F(m, u ) = 0
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F(m, Ma) = <Ma, IL(m)> -  <s\ U >  -  <Ma, 5> (4.42)

In fact, taking a variation of (4.42) it arrives at

8F(m, u) -  <8wa, l(m )> +  <wa, 8 l(m )>  -  < / ,  8w> -  <8ua, s>
=  <8wa, d_(m)>  +  <La(Ma), 8 m>  -  < sa, 8 m>  -  < 8«a, 5>

= <8wa, [l(u)~ s ] >  + <[La(Ma) -  /], 8m>

= 0 (4.43)

As the above has to be true for any variations 8u and 8wa, we must have the 
two terms in the two pairs of brackets equal to zero, they are the Euler
equations

L(u) - 5  = 0 

La(Ma) -  /  = 0

which are identical with the original problem and its adjoint problem shown 
in (4.40) and (4.41) respectively, and therefore the variational principle
(4.42) has been proved.

Note that for the problems defined by differential operators L and (La
with their boundary conditions B(u) = 0 and Ba(wa) = 0 regarded as
essential ones, the stationary functions u and u of (4.42) should also be 
subject to the constraints B(m) = 0 and Ba(Ma) = 0, respectively. However,
if these boundary conditions should be made on (4.42) with the stationary 
functions u and u subject to no constraints on the boundary. The
expression (4.42), of course, includes that discussed in (4.36) of the
self-adjoint problem.

It looks as though both u (the desired function) and u (the adjoint 
function or auxiliary function) have to be solved simultaneously in the
variational problem (4.42). However, the process of determining both u and 
Ma can be decoupled when Rayleigh-Ritz procedure is employed in the
solution.

Let us express the solution in the form
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N

u = £  c.§, (4.44a)

where <J>. and <J>* are known functions, and c. and c* are parameters to be 
determined. Both <j). and (j)“ may or may not form the bases of the domains of 
L and La, respectively, however they should be linearly independent and 
should form the complete sets as N approaches infinity. By inserting
(4.44) into (4.42) and applying Rayleigh-Ritz procedure, one obtains two 
decoupled systems as follows

H
£  «|>a, L(<J>.)>c. = «|>a, s> (j = 1 to N ) (4.45a)

i = 1  ̂ 1 1  ^

N
£  «(>., lLa(<j)a)>ca = «!>., s*> (j = 1 to N) (4.45b)

. j i i  ji= i
The positive integer N in (4.44) and (4.45) may be finite or infinite 

if an approximate or exact solution is to be determined. The fact that c. 
and ca are decoupled in (4.45) can greatly simplify the process of 
determining the stationary functions u and u from (4.42).

The discrete systems (4.45a) and (4.45b) from the Rayleigh-Ritz 
procedure are identical in form to those from of weighted
residuals (or Petrov-Galerkin) method of solving simultaneously the 
original and adjoint problems (4.40) and (4.41). If u in (4.44b) is 
expanded into a series of <|). instead of <|>a, then the resultant systems 
obtained will be identical to those from the Galerkin (or 
Bubnov-Galerkin ) method.

The introduction of the auxiliary problem (4.41) for supplementing the 
original problem (4.40) has an interesting physical interpretation as 
follows

<wa, s> = < u, Lu> = <Q_awa, u> = <sa, u> (4.46)

This is the generalized reciprocity theorem which states that the 
generalized reaction of the adjoint fields u on the source s of the 
original problem is identical to that of the original field u on the source 
s* of the adjoint problem. The term < «\ s>, for example, may be
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interpreted as a generalized reaction if the real-type inner product is 
employed.

The general reciprocity theorem (4.46), in the case of a self-adjoint 
problem using the real-type inner product, has an important result as 
follows. By setting u = u , s  = s , u 2 = u , s *  = s ,  one then has theJ O  1 1  2 2
conventional reciprocity theorem of relating the reactions between two 
different problem:

<u? si> = <Mi’ V  4̂‘47^

One has to note that for many non-self-adjoint practical 
boundary-value problems, their adjoint problems may not correspond to 
physical problems, it may also be extremely difficult to decide the 
corresponding adjoint boundary conditions. Therefore there may be two 
problems to apply (4.42) in practice. One is that it may be impossible to 
decouple the original and the adjoint equation, and one has to solve them 
simultaneously; the more serious problem is that it may simply make the 
formulation (4.42) impractical.

The local potential method to be discussed below may be used to extend 
the variational principles to some non-self-adjoint problems which are
impossible to accomplish by (4.42)

4.4.7 Local Potential Method ([113])

Let us consider a non-self-adjoint problem

L(u) = s

L(u) = L^u) + L 2(u) = s (4.48)

where the non-self-adjoint operator L is the sum of two parts of operators, 
the first part, D_, corresponds to a sum of self-adjoint operators, the
second parts, L , corresponds to a sum of non-self-adjoint ones, we may 
still be able to get a variational expression by using the idea of the
local potential method [112], [113].

For the problem (4.48), the utilization of the local potential method 
can be interpreted below.

Consider the non-self-adjoint part of the problem, let us assume that

- 58 -



I1_2(h) is displaced but infinitesimally from the stationary state and define 
uQ as the function at the stationary state. We now suppose that for such 
small displacement from the stationary state

so that

L2(k) = L2(mq) (4.49)

&-,(“) = s -  L2(«0) (4.50)

The (4.50) is disguised as a self-adjoint problem if we take s -  H-2(mq) as 
the known function, then (4.36) can be applied to (4.50) obtaining the 
variational expression

F(u) = <u, L}(m)> - 2  <u, s -  Q-2(mo)> + b.t. (4.51)

The quantity of F(u) at the displacement infinitesimally off the stationary 
state is called local potential. During the next process, one must 
remember that we have two classes of unknown functions in the variational 
formulation. One of these is u, and we are at liberty to manipulate as in 
our previous discussion. The second class of unknown function is 
disguised, in the sense that this particular quantity plays the same role 
as a stationary solution. In other words, we must assume that uq is a 
known function of position; this dual personality must be maintained until 
the function is identified as that occurring at the stationary state. 
Thus, the necessary conditions which must be satisfied if F is to be a 
minimum or maximum are found by determining

dF(u)
dU

with the subsidiary condition that

22 = 0  (452) 
0

u = u0 (4.53)

The constraints (4.53) is to be released after minimization, making

uQ = u (4.54)

In fact, the variation of (4.51) can be written as
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8F(m) = <8w, L (k)> + <u, 8l(m)> -  2 <8w, 5 -  D-2(w0)>

= <8m, l  (k)> + <m, L (8k)> -  2 <8m, 5 -  H-2(w0)>  

= <8w, l  (k)> + <b_i(m), 8m> -  2 <8w, s -  0-2(wo)>

=  0= 2 <8w, [il̂ m) + l2(mo) -  s]> 

-> 2 <8m, [L^m) + L2(m) -  s]> = 0

u =  uo
(4.55)

The terms in the pair of bracket in (4.55) is the Euler equation of 
original problem (4.48).

It is essential to distinguish between the stationary function uq and 
the local function u until the process of variation is complete. Otherwise 
incorrect results will arise.

4.5 The Finite Eiement Method ([9], [10], [108], [115], [116])

4.5.1 Introductory Remarks

Before the mid-1950’s approximate methods of Rayleigh-Ritz and 
Galerkin types found limited applications in more difficult problem areas 
of mathematical physics because of the difficulty in generating appropriate 
trial functions T.(x) in (4.11). This was particularly true in problems 
involving irregular domains and mixed boundary conditions. Moreover, the 
conditioning of Rayleigh-Ritz and Galerkin equations

G
<T.(x), L(X a T (x)) -  s> = 0j . i iX

is highly sensitive to the choice of the functions T.(x) and the 
considerable effort required to generate such equations for significant 
problems was, in the past, a serious disadvantage.

The finite element method is a systematic technique for constructing 
the basis functions T.(x) for Rayleigh-Ritz and Galerkin methods for 
irregular domains. In addition to a number of other advantages, the finite 
element method overcomes all of the traditional disadvantages of 
Rayleigh-Ritz and Galerkin methods mentioned above. The basis functions 
T.(x) are generated in a straightforward and systematic manner, irregular
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domains and mixed boundary conditions are easily accommodated, the 
resulting equations describing the discrete model are generally 
well-conditioned, and the finite element method is exceptionally well 
suited for implementation via electronic computers.

In order to represent finite element method concisely and compactly,
we first introduce the standard multi-integer notation [108]: Let Zn denote

+

the set of all ^-tuples of nonnegative integers (i.e., if a e Zn, then a = 
( a . a ...., a ), a. being integers > 0); then the multi-integer

1 2  n i

conventions are defined as follows:

| a |  =  a +  a2 + ... +  an ;

n

(4.56a)

a! =  n  a.! ;
i = 1 1

a a a a. n a.
xa = Jt X  *  n x 1 =  n  x 1 ;

l
i = l

1 a | a a a
=  a  / a x  d x 2 . . .  a x  n .

(4.56b)

(4.56c)

(4.56d)

Recall the problem defined in section 4.1., the Taylor-type expansions of 
u(x) g C ^^Q ) about x € f l  can be written concisely as

m(x + y) = X 2-j-D u(\) + R (u) (4.57a)a: a p+i
ia i p

where R (u) is the remainder
p + p

, -  *  h<y  .
X2 1p+l X1 12 V l  1 1 P+1 ^

0 < 0 < 1 (4.57b)

4.5.2 Finite Element Method

We consider a finite-element model H of region O  (XI = + T) which is
the union of E closed and bounded subregions He of En. The subregions lie , 

where He is the closure of an open region Qe (lie  = £Ie + Te), are called 
finite elements, and the region fie are disjoint:

E
H = u  He (4.58a)e = 1
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Qe n  Qf = 0 ,  e  ^ f (4.58b)

Conceptually, the finite elements are considered to be connected together 
at a number G of nodal points labeled x8, g = 7, 2, G. Locally, it is 
meaningful to label the nodal points belonging to element lie by x1̂, N = 1, 
2, ..., iVe, Ne being the number of nodal points belonging to element lie. 
For simplicity, we shall henceforth assume that the global and local
coordinate systems coincide, thereby avoiding the necessity of introducing
a coordinate transformation for each element. Then, assuming the nodal
compatibility conditions are satisfied (i.e., there exists a one-to-one 
correspondence between all nodal points x^ in He and all points x8 in the
connected model H), the connectivity and decomposition of the model are 
established by the respective incidence mappings:

Ne  ( e ) G ( e )
x8 = I  A 8 xN (e fixed), xN = I  E N x8 (4.59)

n = i N e '  ,  = i 8
where

( -  1 if node g of the connected model D is(e)

V coincident with node N  of element He (4.60a)
= 0 otherwise

( 6 ]N  ( C }Nand H simply the transpose of A 8 8

= 1 if node N  of the element He is coincident
(C) N~ with node g of the connected model D (4.60b)

0 otherwise

We can use the mappings (4.60) to form identity mappings through the 
compositions:

G ( 6 ( 6 > M
X S A 8 = 8 (e fixed) (4.61a)

g M M
g = 1

N e  ( e ) ( e ) '  i r  ” h
£  A 8 EhN

N = 1 N h

r 8 8 i f  X8, X G He
■ . „ (4.61b)

0  i f  X , X «  U e

where 8^, 88 are Kronecker deltas. The incidence mapping A of (4.59) is 
said to establish the connectivity of the discrete model H, while E of
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(4.59) establishes a decomposition of f t into finite elements, (see Fig.4.1).
A function U(x) with domain f t is called a finite element 

representation of order q if and only if

0 i f x g  n
(4.62)U(x) = u  U  (x), U (x) =

e = 1 e e

where y ^ (e)(x) are local interpolation functions corresponding to element 
Q. which are defined so as to have the properties

N e

I  I
N  = 1 la I <*j-l

N( e )  a ( e) /  \c y  K \x )
a N

D \|/a (e)(x) = 0, x <£. n , b g Zn
b N e +

D w a(e>(xM) = 8m 8*' s"2. 8a"
b N N b  b b

1 2 n

(4.63a)

(4.63b)

where 5^, 6 n are Kronecker deltas, xM e H  , and a, b e  Z nM

Fig. 4.1 Connection and decomposition of a finite element model
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Globally, we write

G
i B  A * /U(x) = I  X A* <j> (x) (4.64)

la I ^q-1 g = 1 **

where

XIV \ G ( e )M
c N(e) =  £  s  N  ( 4  6 5 a )

*=1 8 *

♦;oo = . J ,  i  (s 1* v ; (e)w  (4.65b)

If U(x) is a first-order representation, we need only

t/(x) = I  /I8 <t> (X) = 5, I  cN v‘e) (x) (4.66)
g = i  8 e = 1 n = i e N

where
E Ne (e )

<l> (x) = u  I  E N y ‘e>(x) (4.67a)
g e = l  N = ]  g N

G ( e )
cN = I  E N A8 (4.67b)

e , 8g =  I

V  (x) = I  cN V|/e)(x) (4.67c)
N = 1 ‘ N

Remark 4.1. Finite element representations (4.64) and (4.66) are linear
combinations of functions which have compact and almost disjoint support.
Recall that the support of a function fix )  is the closure of the set of
points x in the domain of /  such that fix )  *  0. If fix )  = 0 for |x | > a ,
the support of fix )  is compact and if the support (written supp.) of
function <|>i(x) and ((^(x) is such that supp (J>1 n  supp <J>2 = 0 ,  except
possibly at a finite number of points, lines, or surfaces, then <j>i and <J>2
have "almost" disjoint support.

Remark 4.2. The properties (4.63) of the local interpolation functions 
\|/“(e)(X) are preserved under the incidence mappings S; i.e., the global 
functions <|)*(x) have the properties
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a a_ a
D <()a(xh) = 8h 8 ' 8 * 8 "  (4.68)

b g g b b b1 2 n

(or, for first order representations, D<j> (xh) = 8h) for all g, h = 1, 2,
g g

..., G.

Remark 4.3. As a result of (4.63), (4.65), and (4.68), the coefficients Ag
N(  ̂ *and Ca have a special interpretation:

D (7(xh) = £  I  A* D f  (xh) = 4 h (4.69)
i« . ^q-i g = i * v 8

D U (xM) = £  £ > e) D w‘(e>(xM) = cM(e> (4.70)
v e  ^  a v TN v

la I <sq-l N = 1

That is, if (4.63) and (4.68) hold, the coefficients Ah are the values of
V

the derivatives D of U(x) at node xh and cM(e) are the values of the
V V

derivatives D of U (x) at node xM of element e. For first-orderv e
representations, U(xg) = Ag and f/(xN) = cN.

e e

4.5.3 Finite Element Approximation

Let us now combine the concepts of Galerkin and Rayleigh-Ritz methods 
discussed in sections 4.3 and 4.4 and the notion of finite element 
representations of functions to obtain approximations of weak solutions of 
a general boundary-value problem. Considering (4.64) as a Galerkin 
approximation of the solution of the boundary-value problem (4.5), (i.e., 
associating (4.64) with (4.11)), we seek coefficients Ag which satisfy
(4.15), i.e.

< L( I  I  A8 4>a ) -  5 , £  > = 0 (4.71)
a g h

| a | g

where a, b e Z^; g, h = 1, 2, ..., G. Because L is assumed linear, we have

£  £  L 'l  Ae -  ?  = 0 (4.72)
gh a h

I a I g

where
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L 'l  = <  L(<J>a ) , ^  > , Sb =  <  J , <»b >
g n  g n n n

(4.73)

Remark 4.4. The Fundamental Property o f Finite Element Approximations. 
The success and utility of finite element concept as a method of 
approximations primarily is due to the following fundamental property: the 
finite element approximation can be completely formulated locally, one 
element at a time and each element independent o f the others, and global 
approximation can then be obtained by simple transformations o f local 
equations.

Conditions (4.63) and (4.65b) are responsible for this property of 
finite element approximations. As a result of this local character of
approximation, it is possible to design large-scale computer programs in 
which local approximations of a given class of boundary-value problems are 
automatically generated for a typical element of a certain type; then, by
appropriately connecting elements together, global models are easily 
generated for whatever domain and boundary conditions required.

In fact, by introducing (4.65b) into (4.71) we have

,  E N e  ( e ) x E N f  ( e  )
<L £  £  A* u  [ £  2  N v ’(c)(x)] -  5, u  [ £  2  M y b,f)(x)l> = 0 (4.74)

N = 1 8 N  I M = 1 h M

Introducing (4.63), noting that <w,(e>(x), wbm(x)> =  0 if e * f, as <t>a(X)
N  M g

have almost disjoint support, we have

E N e  /  N e  G ( e )  ( e )  ( e )  x

£  £  £  £  £  2  NH M <L(V; (eW (e>> 4 s - 2  M <x, y ' w> = 0 (4.75)
1 g h  TN TM a h TM I

e = l M v N = l g | a |  '

In this way, the local finite element model of weak form of the problem
(4.5) corresponding to element Qe can written in the form

£ C £  (2sb(e) cN(e) -  R bic) = 0 (4.76)
„  , ' NM a M
N = 1 , a i

where

Q‘nT  = r T ] = <*• ^ <e>> (4-77)

The global equation (4.72) can be obtained by computing
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E N e  N e  ( e ) ( e )

L . = £  £  £  2  n 2 m 2 * b<e) (4.78a)
8 h  e = l  N  = 1 m=i 8 " ^

E

= I
N e  ( e )

I  S m RM D b( e)

e = 1 M = 1 g M
(4.78b)

4.6 Concluding Remarks

The main constituents of the finite element method for the solution of 
a boundary-value problem are

(i) The finite element formulation of the problem; and
(ii) The approximate solution of the formulation through the use of 

"finite element functions."
The finite element formulations may be achieved by variational methods 

or weighted residual methods.
Many problems in engineering can be characterized by variational 

principles. The variational principles may succinctly summarize the 
equations, and allow insight into the effect of parameters. A variational 
integral is made stationary, and possibly minimized or maximized with 
respect to the undetermined constants. The results are identical to those 
obtained by the Galerkin method.

In addition to the variational approaches, finite element equations 
can be formulated by employing the weighted residual methods. The weighted 
residual methods are particularly useful for problems in which a 
variational formulation may not be available, although they may be applied 
to any boundary-value problem with established differential equations.
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CHAPTER 5

A NEW VARIATIONAL FORMULATION

5.1 Introduction

Based on the preliminary theoretical discussion in the previous 
chapter 3, this chapter details the procedure of deriving a new 
variational finite element formulation, which complies with the criteria 
given in chapter 2, for inhomogeneous, anisotropic and lossy dielectric 
waveguides.

5.2 Derivation of the Variational Formulation

5.2.1 Prototype o f the Variational Formulation

Starting with the differential equotien (3.20), we may write it in the 
following three equivalent operator forms:

L H = 0 (5.1a)t

A H + / b H = 0
t ' t

A H + A H + A  H + YZ B H  = 0
I t  2 t 3 t ' t

(5.1b)

(5.1c)

with the operator relations:

l _ = a _ + y2 b (5.2a)

A _  = A + A + A1 _  2 -  3 -

The individual operators are expressed as:

(5.2b)

(5.3a)

A = -  z X [ K . V X ( z V • _ ) ]
L tt t

A _ — — co2l i  e
3 r 0 0 -

(5.3b)

(5.3c)
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z x [ k  • ( z x _ ) ] (5.3d)tt

It can be proved, according to the definition presented in the 
previous chapter, that the operator L is not self-adjoint (see Appendix A).

A variational expression may be derived for this problem using a 
general method discussed in section 4.4.5, chapter 4, but it requires 
consideration of the adjoint field Ha which does not correspond to a 
physical field here. Therefore, the method discussed in section 4.4.5 is 
not applicable for eq. (5.1)

However, we can observe that in expression (5.1c), A3, and IB

correspond to individual self-adjoint operators, only A2 is not 
self-adjoint (see Appendix A). Based on this fact, we can apply the local 
potential method, discussed in section 4.4.6 in chapter 4 to eq. (5.1c) to 
get a variational formulation involving only H , the transverse components 
of magnetic field.

Using the local potential method, we now consider the magnetic field 
H( in this non-self-adjoint term as a given suffix-zero function

H = H° (5.4)
t t

assuming the value corresponding to the stationary state, i.e., to the 
solution of eq. (5.1c). With this assumption, eq. (5.1c) becomes

l , H  = -  A H° (5.5)
self t  2 t  v

where the right hand side is an assumed known function and the left hand 
side corresponds to a self-adjoint operator

-  = «, -  + »3 -  + f e  _ (5.6)

Formulating the problem in this way, we can now apply a standard 
method, which is discussed in section 4.4.4, chapter 4., to eq. (5.5) in 
such a way as to obtain a variational expression from (5.1).

In brief, for a self-adjoint problem

L f  = s (5.7)

where f is the field (unknown) vector function, and s is the given (known)
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source vector function, the variational formulation is

n = < f , i _ f > - 2 < f , s >  (5.8)

where < • , • > is the real-type inner product defined by

< u , v > = f u v ds (5.9)
J5

where S  is the cross-section of waveguide SI defined in chapter 3.
Applying (5.8) to (5.5) it leads to the following functional:

n  = <H,  L H>  + 2<H, (»H°]> = 0 (5.10a)
t self t  t 1 2 t J

introducing (5.6) into (5.10a) we have a more explicit expression of II

n  = + 2<H ,{« H°)> + <H ,* H > + yl<H,B H > = 0 (5.10b)
t i t  t 1 2 t J t 3 t * t t

The term {A2H°} is considered as a known function and consequently will not
be subjected to variations when extremizing the functional. This
constraint is to be released after extremization, making H° = H .

t t

Although (5.10b) is the weak form of the boundary-value problem, which
is defined in chapter 3, ready for finite element implementation, it is not
suitable for the most popular first-order finite elements which are only of
C° continuity while the operators A and contain second order
derivatives which require finite elements of C1 continuity. However, we
can remove the second order derivatives by integration by parts, discussed
in the previous chapter, with the help of vector identities [98].

5.2.2 Reduction o f Continuity Requirement

Recall the fundamental property of finite element approximations
discussed in section 4.5.3, the finite element approximation can be
completely formulated locally, one element at a time and each element
independent of the others, and global approximation can then be obtained by 
simple transformations of local equations.

In this way, we only need to pay attention on a typical element Se,

which is the closure of open region Se (Se = Se + Ce). We also assume that 
the permittivity tensor inside Se is constant. The surface integral over 
region S  in (5.10) is simply the of the surface integral over each
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element Se:

f ( • ) *  = £  f (•) ds (5.11)
J S  e  =  1 J £ e

where we have assumed a finite element model with E elements.
We now perform integration by part to the first and second term in

(5.10b) to reduce the continuity requirement for finite element shape
function.

The first term can be transformed as:

< H i H >  = f [H -Vx(k V x H )] ds
t  1 t  t  t  '  ZZ t

= f k  (V xH )-(V xH ) ds + I  [ ( k  V x H )xH ] n dl
I n  ZZ t t  t t J  /-? zz  t  t  t

u e  L e

= f k  (V xH )-(V xH ) ds + |  ( k  V x H )-(H xn) dl (5.12)
J  c  ZZ t  t  t t  \ / ^  ZZ t t t

o e  C e

In a similar way, for the second term we have 

2 <H ,(*  H ) > = -2  f H ( z x [ k  Vx(zV H°)])&
t  2  l  0  J y  t  1 L tt  t  V t  t / J i

= 2 f (zxH )• (k [V x(zV • H°) | } ds
J tt t tt t  t t

S e

= 2 J [Ktt(zxH)] [Vx(zV H“)] ds
S e

= 2 f {Vx[k (zxH)]) z V H° ds 
J C t tt t t  t

S e

+ 2 <£ V H° { z x [ k  (zxH )]) n dl (5.13)
C e

Because there are no singularities in the integrands of the third and
the fourth terms in (5.10b) over the whole closed region S e, they simply
yield

<H ,» H  > = -  f H o )2u e H ds
t  3 t  t  M )  0  t

= -  f kl H H ds (5.14)
J c  0  t  t
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and

<H,b H >  = f H {zx[k (zxH)]} ds1 1 Jye t tt

= -  f [k • (zxH )]• (zxH ) ds (5.15)
Se 1

Summarizing (5.12) to (5.15) and extending the integrals from one 
element to the whole waveguide region of E elements, we have the 
variational formulation of form:

where

n  =  a + Y2 B = 0

E

A = X
e= 1

k  (V xH )-(V x H ) ds
J c ZZ t t t tO e

E **
+ X 4> ( k  V xH )-(H xn) dl

e = 1 J Ce a  t t t

E

+ X
e = 1

2 V H z-V x [ k  ( z x H  )] ds
J c t t t tt t 

j e

E

+ X <£ 2 V H° {zx[k  • (zxH ) ] }  • n dl
e = 1 J /-i t t tt t C e

E f* o
-  X

e = 1
r  H  H  ds 

J 5 c  0 1 1

E

B = -  I
e = 1

f ( z x H )  [ k  ( z x H  )] ds
Se

(5.16a)

(5.16b)

(5.16c)

The closed element boundaries Ce consist of a number of line sections 
which may be classified as following two types:

(i) exterior waveguide wall sections Lw : Lw c  Ce and Lw n  C = Lw;e . e . e . e
(ii) interior element interface sections L 1 : V  c  Ce and V  n  C = 0 ;e e e

where C is the cross-section of waveguide boundary T.

As a result, the overall contributions of contour integral on Ce in
(5.16) can be rearranged as
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i f  {  (k V xH )-(H xn) + 2 V-H° {zx[ic .(zxH)]) n I  dl
e = lJ C<A “  ‘ I . 1 ‘ tt t  J

= X Ap + I  Aq (5.17a)
p = 1 q = 1

where

A ?  =  f  „  j ( K (VxHMHxn) + 2 V H ° ( z x [ k  (zxH)]} n ) dl (5.17b)
J  jJ N  ^ ZZ t t t  t t  tt t  J

Aq = f . /  k( ,) (V x H(t)MH(+)x n (+))
•*Lq I 21 * ' 1

+ k( )(V x h ' ^CH'^x n <0)
ZZ t t t

+ 2 V-H0<+){zx[K<+)-(zxH<+))])-n<+)
t t tt

+ 2 V•H0('>{zx[k<' }-(zxH(">)]) n<">
t t t t

dl (5.17c)

In (5.17), P is the total number of element boundary sections on the 
waveguide wall, Q is the total number of inter-element sections, Ap is the 
line integral contribution on the pth wall section, Aq is the line integral 
contribution on the <?th inter-element section, the symbol (+) denotes the 
values on Lq from the element on one side of the inter-element interface 
section Z ,̂ (-) denotes the values on L<J from element on the other side of
Lj.

Fig. 5.1 Inter-element interface
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5.2.3 Investigation o f the Line Integrals

The line integral on exterior walls
For the first term k  (V xH )-(H xn) in (5.17b), we note from the 

boundary condition (see Appendix A) that k V x H vanishes on PEC (perfect 
electric conductor), and H xn vanishes on PMC (perfect magnetic conductor), 
therefore, the contribution of (k V xH )-(H xn) is null on PEC, PMC, and

ZZ t  t  t

obviously at INF (infinity) as well.
For the second term 2 V -̂H  ̂ {zx[k -(zxH^JJ-n in (5.17b), V -̂H^

vanishes on PMC, and {zx[K^(zxHt)]}-n vanishes on PEC if the dielectric 
in the element has

(i) isotropy (e = 0, e = e = e ) or
xy xx yy zz

special diagonal anisotropy (e = 0, e = e f  e ); (5.18)
xy xx y> Z/i

or (ii) arbitrary diagonal anisotropy (only e = 0)
*y

with the element edge in x  or y  direction. (5.19)

In fact, for isotropy or special diagonal anisotropy case (5.18) in
which e = e = e , (k = e’1!, ! is the unit tensor), we have

xx yy t u  t

{zx[Ktt-(zxH)])-n = e ‘[zx(zxH)]-n = e 'H -n  (5.20)

where H n vanishes on PEC.
t

For arbitrary diagonal anisotropy case in which k^ = K^xx + K^yy,
we have

{zx[Ktt(zxHt)]} n = {zx[k̂ xx + K ^ y y -^ y  - Hyx)]} n 

= {zx[ k H y -  k H x)]} n = -  k H x n - K  H y  n (5.21)
yy x xx y yy x xx y

If the PEC is in the y-direction, i.e., n = ± x, then {zx[Ktt (zxHt)]} n =
+ k H = 0 ,  since H vanishes; if the PEC is in the x-direction, n = ± y,

yy x x
in this case {zx[k (zxH)]} n = + k H = 0 , where H is zero.

tt t xx y y
Summarizing above investigation, it arrives at

Ap = f / ( k  (VxH)-(Hxn) + 2 V H° {z x [ k  (zxH)]) n I
J L w (  ZZ t t t  t t  tt I J

0 (if on PMC, PEC*, INF)
(5.22)

J  w 2 V H° {zx[Ktt-(zxH)]}-n dl (if otherwise)
L p
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where * means in the cases (5.18) and (5.19).
Because the line integrals Ap may only have contributions on PEC, the 

line integrals Ap are naturally reduced only on PEC and we can write Ap = 
APC , Lp = L f \  and reduce P to P* (P* < P).

The line integral on element interfaces
Note that in (5.17c) the inter-element interface unit normal vectors 

n(+) and n() from both sides of the interface L\ are just opposite in
direction for any point on Lq, namely

n(0 = -  nw  (5.23)

From the field interface conditions (see Appendix A), we have

H<+> = H(' ) = H (5.24)
t  t t

k(+)V x  H<+> = k(">V x h ' 0  (5.25)
zz  t t  z z  t  t

V -H°w = V ■H°c') = V H° (5.26)
t  t t t t  t

Eqs. (5.23) to (5.25) show that the first two terms in (5.17c) cancel each 
other, that is

f ,[k(+)(V x  H(+>MH(+)x n (+>)
J r l  ZZ t t t

+ k (V x H )-(H x n )] dl = 0 (5.27)
ZZ t t t

Introducing (5.23), (5.24), (5.26), and (5.27) into (5.17c), Aq can be
expressed as

Aq = f . 2 V H° ( z x [ ( k ^ + ) — Kt' ))-(»<H)])-n(+) dl (5.28)
J ^ l  t t tt  t t  I *

The above line integral will not vanish only if For Aq, we
therefore only need to take into account the line integral on interfaces 
between different dielectrics.

5.2.4 Final Expression o f the Variational Expression
Summarizing the eqs. (5.16), (5.17), (5.22), (5.28), and the

investigations in subsections 5.2.2 to 5.2.3, we finally obtain the finite 
element variational formulation
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n = i4 + 7 Z B = 0  (5.29a)

where

E rA = X  K (V xH )-(V xH ) ds
.  Jo ^  t t t t 

e = 1 * ' o e

E

+ I  [ 2 V H z-Vx[K (zxH )] ds
J r .  t  t t  tt t

E

e = 1 Se 

E

I? H H ds
c  0 t t O e

p ♦ _
+ Z  8p J 2 V-H° {zx[Ktt(zxH)]) n dl

P=i

Q*
+ S  J  2 V-H° {zx[fl^>- k ^ M z x H )] ) - ! ^  dl (5.29b)

q = 1 » int
L q

E r
B = -  X (zxH )[k  (zxH)] ds (5.29c)

e = 1 S e  1 “ ‘

In order to distinguish the three types of elements, Se, Ljfc, , 

we may call Se the eth area element, Zj60 the pth PEC line element, Lqnt 
the <?th interface line element. In (5.29b), E, P* and Q* are the total 
numbers of area elements, PEC line elements, dielectric interface line 
elements, respectively. The 8p is defined as

/ 0 (if in the cases (5.18) or (5.19))
8p = \ (5.29d)

v 1 (if otherwise)

One should keep in mind that in the formulation (5.29) H° is 
considered as a known function and consequently will not be subject to 
variations when extremizing the functional. This constraint is to be 
released after extremization, making H° = H .

5.3. Comments on the New Formulation

Equation (5.29) is the new variational finite element formulation which 
is a weak form of the boundary-value problem. The second order derivatives
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have been removed, allowing the use of C° continuous first order or higher 
order finite elements. Otherwise, one may have to use the C1 continuous 
Hermitian interpolating finite elements to solve the formulation (5.10). 
The use of Hermite elements would greatly increase the number of unknowns 
and result in increased complexity for numerical computation. The removal 
of the second order derivatives is at the expense of including the line 
integrals. Fortunately, we only need to take into account the line 
integrals on the dielectric interfaces between different media in most 
cases of interest. Rarely we also need to add the line integrals on PEC.

This formulation satisfies all the two equations, and the essential 
interface and boundary conditions for H approximation discussed in chapter 
3, It also satisfied implicitly the longitudinal tangential
conditions of Hz and Ez components. This ensures the elimination of 
spurious solutions.

We have obtained a formulation in terms of only two components rather 
than three [63]-[67], four [84]-[86], or even six component [88] 
formulations. Unlike the two component formulation of Hayata et al. [81] 
which resort to dense matrices, our formulation is achieved without losing 
the sparsity of matrices of the resultant eigenvalue equation. This will 
substantially reduce the amount of computing storage and time. This is of 
decisive importance for large problems, even on a supercomputer. 
Therefore, the gain is worth the penalty of including the line integral.
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CHAPTER 6

FINITE ELEMENT IMPLEMENTATION

6.1 Introduction

In this chapter, we will implement the variational formulation derived
in Chapter 5 with the use of finite elements. The basic procedure follows 
the theory discussed in Chapter 4. _ The representations of field
component, minimization, local and global matrix elements be expressed in 
spirit and form of practical computation procedures. We will also describe 
briefly the quadrilateral and infinite elements adopted in the computer
program. Finally we will give an account of the principles of a unique 
efficient eigenvalue solver for large, sparse, non-symmetric complex 
general eigenvalue equations.

6.2 Finite Element Representation

Dividing the cross-section S (S = S + C) of Fig. 3.1 into a mesh of G
area elements, we here denote S, S, and C as the cross-section of H, Q, and
T, respectively. We assume that there are P* PEC line sections (elements), 

*

and Q dielectric interface line sections (elements) in the mesh. The 
finite element model is established by the respective mappings

1 i f  node g of global model S is coincident with
node N  o f element Se, (6.1a)

0 o th e rw ise ,

( e )
A "

, % , 1 i f  node N  o f the element Se is coincident with( e ) I
An8 = <{ node g o f  the connected model S , (6.1b)

0 o th e rw ise ,
( e )

when concerning line sections on PEC and dielectric interface, mapping A 8
( P )  ( q  )

can be reduced to S 8, 0  8 respectively
N  N
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( p )

N

(q )
© 8

N

( 1 i f  node N o f  line element L?ec c  Ce c  Je is
c o in c id en t with node g of the co n n ec ted  model S, (6.1c) 

0 o th e rw ise ,

f 1 i f  node N  o f  line element Lqnt c  Ce c  Je is
coincident with node g of the co n n ec ted  model S, (6.Id) 

0 i f  o therw ise ,

Referring to section 4.5, the finite element representation of H can
be expressed as

G

H (x,y) = I  hg <j)g(x,y)
g = i

= u  Hje)(x,y) = u  I  h£'V^'>(x,y)
e = 1 e = 1 N  = 1

where
E N e  ( e )

(j) (x,y) = u  E  A N y* (x,y)
8 1 XT . 8e = 1 N  = 1

.( = > 
N

G (C)NI  A N h
,  = i 8 8

H;e)(x,y)= I  h;cV'.e'(x,y)
N e ( e U c ) (

N  = 1

in which V^e)(x>y) arc the trial functions of local element Se,

h = x hx + y hy
g g g

(6.2a)

(6.2b)

(6.2c)

(6.2d)

(6.2e)

are unknown vector coefficients to be determined. Introducing (6.2c) into 
(6.2d) we have

N e  G ( e )

H(e)= 1  I  A N h W
1 N = 1 g = l  8 E ]

( e )  

g ’ "g T N
(6.3)

6.3 Extremizing the Functionai

There are four steps in applying the Rayleigh-Ritz procedure discussed 
in chapter 4 to formulation (5.29) to extremize the functional II:

Step 1: introducing the finite representation (6.3) into the finite
formulation (5.29);
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Step 2: taking derivatives with respect to hx and hy respectively;
h  m

Step 3: releasing the local potential constraints after step 2;
( e ) ( p ) ( q )

Step 4: simplifying mapping An8 to SN8, 0 N8 respectively on PEC
and dielectric interfaces.

Following the above 4 steps, we can obtain the following systems of 
equations:

E N e  N e  G ( e )  ( e )  ,

£  £  I  £  A M A N r 2 {
e = 1 M =  1 N =  1 g = 1 8 S e  v

k V x(x \ | / ( 6))-Vx(h \ | / e ) )
zz t M t g N

+ V - ( h w (e)) z-Vx[k -(zxxw(e ) )]
t '  g N '  t L tt t M

-  *0 ( < e)>Chg¥i°)

-  f  (zxx\|/^c , )-[Ktt(zxhgV^c))] l  ds

P *  N p  N p  G ( p )  ( p )  ,
£  £  £  £  = s  y  f 2 \

p = 1 M =  1 N =  1 g = 1 8 J l P®0 I

V .(hX P)) (zx|Kn (zxx\|/^p))l) n|  dl

Q *  N q  K q  G ( q ) ( q ) ,
+ £  £  £  £  © .M 0  N f . 2 |

q = 1 M = 1 N =  1 g = 1 "  8 J L q

V-(hgV|/'p>) {z x [ ( k ^ -  k*‘ , )'(zxxy^p))J) n,+)l  dl = 0

(h = 1 , g) (6.4a)

E N e  N e  G ( e ) ( e )
£  £  £  £  A M A

e = 1 M =  1 N =  1 g = 1 8 J S”I,2(
K̂ x ( y < ‘ >)-Vx(hg< > )

+ Vt-(hX e>) z-VtX[Ku-(zxyv^e
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-  *0 (j O - o v C )

-  y2 ( z x y y ^ ' )H ^ - ( z x h \ | ^ e ) ) ] j  ds

P*  N p  N p  G ( p )  ( p )  z

+ I  I  I  I  ShM S N 8P f 2 I
p = 1 M =  1 N =  1 g = 1 8 * ' 1$*°  V

V-(hgV <p)) {zx[Ktt-(zxyy^p))]}-n j dl

Q *  N q  N q  G ( q )  ( q )  ,

+ i  i  i  i  0 0 r . 2 |
q = 1 M = 1 N =  1 g = 1 8 J Z 4 nt ^

V - ( h y (p)) {zx[(k(+)-  k*'^-(zxyvj^ p))]}-n(+)l  dl -  0
t g T N  tt t t  ^ T M J

(h = l, ..., g )  (6.4b)

6.4 The Matrix Eigenvalue Equation

The system of equations (6.4a) and (6.4b) can be expressed more 
succinctly as (6.5a) and (6.5b) respectively:

G E N e  N e  ( e  ) ( e  )

I  £  £  £  A A
g = l e = 1 M = 1 N  = 1 8

[ Sxf* ( M , N) -  y2 B ^ (M ,N )]h x

[ ( M , N) -  y 2 B ^ M .N ^ h y
g }

G P *  N p  N p  ( p )  ( p )  ,  x

£  £  £  £  S hM S N J W ^ ( M , N )  hx + W $ ( M , N ) h y I
= . p = 1 M = 1 N = 1  h 8 I 8 8 J

G Q *  N q  N q  ( q  ) ( q  ) ,

£  £  £  £  0 ,  0  I T x3 (M , N)  hx + Tx? (M,N) hy 1 = 0
= 1 q = 1 M = 1 N = 1  8 x 8 8 J

+
g = 1 q =

(h =  i , . . . ,  g )  (6.5a)

G E N e  N e  ( e ) w  ( e ) u ^  e  e y e )  ( e  j  f

£  £  £  £  A A -j [Syx (M,N) -  y2 B^?)(M,N)]hx
S = 1  e =  1 M = 1 N =  1 8 V 8

[S$(M ,N ) -  y2 B^(M ,N)]hyg I
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(e
N

G P *  Np  N p  ( p )  ( p )  r
+ I  £  £  £  S hM S  N I  WyE (M ,N) hx + Wy? (M ,N) hy

g = l p = l  M = I N = 1  8 x 8 8 -

G Q*  Nq  N q  ( q )  < q )  r
+ 1 1  S  I  0 , M 0  N \  T  y3 (M ,N) hx + T y? (M ,N) hy

g = l q = l M = 1 N = 1  H 8 I  8 g -

(h  =  i, ..., g)

in (6.5)

S -V m ,N ) = f  {  -  k 20 (xV <c ) ).(xV ' '
Se V-

+ V -(* v ^ e ) ) z V x [K u (z x x v ^ e ) )] |  d s

Sxy>(M,N) - J  {  -  k ]  ( x v ^ ’X y v ,

+ {z V x[K n (zxx\|/^e ) )]) V - ( y \ | / c ) ) j. d s

s ^ ( m ,n )  = J  {  -  k l  ( y v C 'M x v ,

+ { z V x fK ^ z x y Y ^ 0 )]) V -(x \|^ e>) \  ds

Syy\M ,N) = f |  K j 7 x ( y \ |^ e )> V x (y y < e )) -  k \  ( y y ^ M y V ,! ,  
S e  '

+ ( z - V x t f ^ z x y y ^ 0 )]) V (jT)/^e>) |  d s

B i?(M ,N ) = J  |  -  (zxx\(/^e ) )-[K^(zxx\j/^e ' ) ] |  d s

Bxy^M.N) = J  |  -  (zxxVMe>) [KB (zxyV 15,', ) ] |  d s

By?(M ,N) = J  /  _  (z x y y ^ e ) ) [Stt ( z x x ^ e ) ) ] |  d s

Byy)(M,N) = J  |  -  (zxyY^e)HKn (zxy \|/e))]) ds
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= 0 

(6.5b)

(6.6a)

(6.6b)

(6.6c)

(6.6d)

(6.7a)

(6.7b)

(6.7c)

(6.7d)



W&)(M,N) = J ^ - f z x t K ^ z x x v ^ ) ] )  Vi (xv<p)) dl (6.8a)

W $(M ,N) = [ ^ n  (zx[Ku(z x x ^ p))]} V.(y¥ <',) ) dl (6.8b)

Wy?)(M,N) = JL r n (zx [V zxyVMP))]| v t (x< p)) d l (6.8c)

W ^(M ,N) = [ ^ n  {zx[Ktt(zxyv^p))]} V-(jrv‘p)) dl (6.8d)

Tx2) (M ,N)

Ty3}(M,N) 

Tyj)* (M,N)

f . n<+)-{zx[(K<+)-  K<‘ ))-(zxxw<q))]}V-(x\i/K(q))d/
L q m tt t t  t r N

f . n(+)-{zx [ (^ + k < " })• (zxxw(q})]} V • (y\|r(q})dl
J^j i nt  tt  t t  t M t t N

|  )).(7.xyV^  >)])V -(xV<'’ })dl

f  i n n<+>-{z x | ( lc^ 1 -  
L q

(6.9a)

(6.9b)

(6.9c)

(6.9d)

The systems of equations (6.5a) and (6.5b) can be combined to be 
expressed in matrix form as :

[A] [h ] = i  [B] (h)

or more explicitly as

(6.10a)

■ [Axx] [Axy]‘ {hx}'
• = Y2

• [Bxx] [Bxy]- f[h x )'
«

[Ayx] [Ayy] [Byx] [Byy]_
(6.10b)

where {hx} and {hy} are sub-vectors of {h}, [Axx], [Axy], [Ayx], [Ayy] and 
[Bxx], [Bxy], [Byx], [Byy] are sub-matrices (of order GxG) of [A] and [B] 

respectively. The matrix [A] is in fact the sum of three matrices:

[A] = [S] + [W] + [T] (6.11a)
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in sub-matrix form, there are relations:

[Axx] = [Sxx] + [Wxx] + [Txx] (6.11b)

[Axy] = [Sxy] + [Wxy] + [Txy] (6.11c)

[Ayx] = [Syx] + [Wyx] + [Tyx] (6. lid)

[Ayy] = [Syy] + [Wyy] + [Tyy] (6. lie)

Where [Sxx], [S*y], [Syx], [Syy], [Wxx], [Wxy], [Wyx], [Wyy], [Txx], 

[Txy], [Tyx], [Tyy] are the sub-matrices (of order GxG) of [S], [W ], and 
[T] respectively.

The matrix elements of the global matrices [S], [W ], [T] and [B] can 
be obtained by simple summations of matrix elements of corresponding local 
element matrices [S(e>], [B(e>], [W(p)], [T(,)]:

S xx(g ,h) =
E

I
Ne
X

Ne
X ( C ) M

\

( e )
a n s SjVm . n ) (6 . 1 2 a)

e = 1 M = 1 N = 1
11 g

S xy(g ,h) =
E

I
Ne
X

Ne
X ( C ) M

A Mh

( e )
a n S ^ ( M , N ) (6 .1 2 b)

e = 1 M = 1 N = 1 g

S yx(g ,h ) =
E

I
Ne
X

Ne
X

( e )
a mk

( e )
a n S { ' )( M , N ) (6 . 1 2 c)

e = 1 M = 1 N = 1
n g

S yy(g ,h) =
E

I
Ne
X

Ne
X

( e )
a mh

( e )
a n S ^ ( M , N ) (6 . 1 2 d)

e = 1 M = 1 N = 1 g

B xx(g ,h ) _
E

I
Ne
X

Ne
X

( e )
a mk

( e )
a n B { ! )( M , N ) (6.13a)

e = 1 M = 1 N = 1
n g

Bxy(g ,h ) =
E

I
Ne
X

Ne
X

( e )
A  Mk

( e )
a n B x y ^ M .N ) (6.13b)

e = 1 M = 1 N  = 1
n g

Byx(g ,h ) =
E

Z

N e

X
N e

X
( e )
A  Mk

( e )
a n B y x ^ M .N ) (6.13c)

e = 1 M = 1 N = 1
II g

B yy(g ,h ) =
E

I
N e

X
N e

X
( e )
A  Mfa B y y ^ M .N ) (6.13d)

e = 1 M = 1 N  = 1 g
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Wxx(g,h) =
P *

I
N p

I
N p

X ( P > MM
h

( £ > NM W ^ M .N ) (6.14a)
P = 1 M = 1 N  = 1

11 s

Wxy(g,h) =
P *

I
N p

X
N p

X <£>mM
“ jj g

W^VM.N) (6.14b)
P = 1 M = 1 N  = 1

Wyx(g,h) =
P *

I
N p

I
N p

X <£>mMh
< £ > nM W ^(M ,N) (6.14c)

P =  1 M = 1 N = 1 &

Wyy(g,h) =
P *

I
N p

I
N p

X 1—1 h g
Wyf'(M,N) (6.14d)

P = 1 M = 1 N  = t

Txx(g,h) =
Q *

I

or
* 

W N q

X © h
(<1 }N 

0  N T^CM.N) (6.15a)
q = l M = 1 N  = 1

n g

Txy(g,h) =
Q *

I
N q

I
N q

X ( , ] ) M
0 „

( q ^  0 NTxJ^M.N) (6.15b)
q = l M = 1 N  = 1 g

Tyx(g,h) =
Q *
I

N q

X
N q

X (<l )M e  M
U

( q 0 NTyjfyM.N) (6.15c)
q = 1 M = 1 N  = 1

11 g

Tyy(g,h) =
Q *

I
N q

X
N q

X ( < l ) M
6 h 0 Nt# ( m ,n ) (6.15d)

q = 1 M = 1 N  = 1 g

The matrix elements of all local element matrices can be finally expanded 
from (6 .6 ) to (6.9) to the following expressions ready for programming:

Sxx^M.N) f L \ i \ i /  e  ̂ +  K
zz dy  y M dy  Y N yy dX t M dx  t N5  ¥ ( e ) ^ V e )T u  ^ v  t  s

kf
0 y m  y n

d ( e ) d 
yx dy  M oX N

( e ) l

* J
ds (6.16a)

3 y ‘ > _ 3 _w(‘ ) + ktu Tr-zz dy  r M dx t n

d (e)  9 (e)\lf K J
T w  flA > T  *

yx dy  y M dy  Yl
, ( e )  1

N J

yy dX y M dy y N

ds (6.16b)

u -
K - A w ( e > _ l w ( e > +  K

zz dx t m  dy n  xx ay t m  ax t n
3 y O  3 «,<•>

T  w  T  ̂

-  K e) — \j/T\m Ay t ixy dx y m  a x
ds (6.16c)

- 85 -



Syy^M.N) u K -JL \ | / (e) _JL\j/(e) + K ” u  A y  T t -zz dx  Y M dx  r N . . I * , ' 0  —xx dy  y m  dy

k2 v*e Vie) -  Ko y m  y n a V ‘ >
a

xy dX y M dy d

B x x }( M , N )  = [  K  
J S e  "

y m
v <e)
y n

ds

B x y ^ M j N )  = - f  K  
J s .  ^

v (e>
y m

v ( e )
y n

ds

B y x ^ M .N )  = - r  k
J 5 c  xy

¥ (e )
y m

w (‘ >
y n

ds

B y y ^ M .N )  = r  k
5 c  xy

w (‘ >
y n

ds

W :S?) ( M , N ) =
{ l T  I

- K
yy

(x-n) w (p)
v 7 y m dX Y N

+ k (y-n) w
yx VJ '  y M

( p )
— w (p) dx  y N

► dl

W $(M ,N) = f j  -  K (x-n) y
U p e c  \  yy Y ]

( p )
M

l y ( ’ >
dy  y n

+ k (y-n) \i/(p) „ _ 
yx 7 y m  ay  y na v ,(p)

Wy?)(M,N)= r
J ,z T

k (y-n) \i/(p) 
-  VJ 7 y m - / V p)dX y N

+ k (x-n) w (p) „ „
xy y M 3JC y N3  v ,(p)

W ^(M ,N) = r  /  _  K  (y-n) w
J , o e c  (  xx J

( P )
M

_ 1  ¥ (p) 
dy  y n

+ k (x-n) w (p) „ Y 
xy v 7 y m  a y  y n

I
}

}

dl

dl

dl

T S )(M,N) (K(+)
yy

.(+)

K(_)) (x-n(+)) \i/ ' 'wyy 7 ” U )̂V T1
( q)  _d_ 

M ax
(q)

N

+ (k 't ' -  k ' 0 ) (y-nw ) v (q) - J - v
yx yx 7 VJ 7 Y M Ylr}

(6.16d)

(6.17a)

(6.17b)

(6.17c)

(6.17d)

(6.18a)

(6.18b)

(6.18c)

(6.18d)

(6.19a)
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f {  -  (K(+)-  K(' }) (x-n(+)) \|T(q) _^- \ j /q)
\  yy yy M dy Y N

+ (>£>- i£>) (y-nw) v ^ >  - ^ y < q> }  dl (6.19b)

f / - ( K (+)- K (-))(y.n(+)) v < , ) -ir - V <,)J ^ n t  (  xx xx M dX  N

+ (tC ~  Kly>} (xn<+>> v L q) - w V ls q) } dl (6-19c)

f /  _ (K<+)-  k( )) (y n(+)) y (q) - ^ - V (q)
J ^ in t  ( v xx xx 7 7 YM d y  Y N

+ (K^ "  Kxy)} (X " <+)) ^ q) - § f  V n0  }  ^  (619<i)

6.5 Properties of The Resultant Matrix Equation

In the resultant matrix eigenvalue equation (6.10a), the matrices [A]
and [B] may, in general, be complex and non-symmetric. It is easy to see
that the global matrices [S], [W], [T] and [B] have the same symmetries as
their corresponding local element matrices [S(e)], [W(p)], [T(q)] and
[B(e)].

If the waveguide is isotropic and inhomogeneous, then the matrix
elements of local element matrices can be simplified as

Sxx^M.N) =

Sxy*(M,N) =

Syx)(M ,N) =

Syy}(M ,N) =

® y  * '  * —— \ | /  e 1 +  K — —  y  * * * — l L \ | / e *
T  u  A aj  T x r  T w  t *J o  {  K ay  t m ay t n ' "  ax t m ax t n

- * > M e ) < e) } < f c  (6.2°a)

J J -  + < C> i f  < ’} * (62°b)

J S e f  K T F < e )  a f  +  KW ^ C) ^ F ^ n 0 }  ds ( 6 -2 0 c )

J 5 J  K W < e > T F < e ) + K - a f < e > l f < e>

-  *o < e)< e>}  *  (6.20d)

T #(M ,N ) =

T ^ )(M,N) =

T ^ M .N )
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B^(M ,N) = f K w (, 0  w<e) ds
J 5 e M N

B^(M ,N) = 0 

B^(M ,N) = 0 

Byy>(M,N) = J

(6.21a)

(6 .2 1 b)

(6 .2 1 c)

(6 .2 1 d)

W I(, (M,N)= 0 

W $(M ,N) = 0 

WjS)(M,N)= 0 

Wyf>(M,N) = 0

(6 .2 2 a)

(6 .2 2 b)

(6 .2 2 c)

(6 .2 2 d)

'L?

T#(M ,N) = f . /  -  (k<+)-  K(_)) (x-nw )
JL r  I

\ l / ( q ̂
y m

a
ax < q>) dl (6.23a)

\ l /
y m

a
ay < q)} dl (6.23b)

\ J / ( q)
y m

a
ax < q)} dl (6.23c)

\ l / ( q)
y m

a
ay ■ < " } dl (6.23d)

J r i n tLq V

It can be easily proven from (6.20) to (6.23) that for lossless 
isotropic inhomogeneous waveguide, the resultant matrices [A] and [B] are 
real, [B] is symmetric and positive definite, but [A] is asymmetric. The 
asymmetry of [A] evidence the possible presence of complex modes although 
the dielectric is lossless. It is interesting to note from (6.20), (6.22), 
and (6.23) that the source of this asymmetry and then, of the existence of 
complex modes, resides in the line integral part [T] (6.23) (because [A] = 
[S] + [W] + [T], [S] is symmetric and [W] is zero here). If we did not 
take into account the line integral term [T] then [A] would also be
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symmetric in such a manner that the possible existence of complex modes 
could not be included. We can see that it is the existence of 
inhomogeneity in the dielectric which makes complex modes possible although 
it does not guarantee their presence.

For isotropic homogeneous lossless waveguide, both [W] and [T] are 
zero matrices so that [A] and [B] are real symmetric. Therefore, no complex 
mode can exist.

In section 6.4, we have obtained a matrix eigenvalue equation of the 
canonical form:

[A] {x} = X [B] {x} (6.25)

where the eigenvalue X is the square of propagation constant (real or 
complex). The matrices [A] and [B] are in general large and sparse. They 
are also non-symmetric (non-hermitian) in the presence of dielectric 
inhomogeneity and/or anisotropy. Furthermore, the matrix elements are 
complex (and so are the eigenvalues) in case of lossy dielectrics. For the 
lossless case, both matrices in ( 1 ) are real but the eigenvalues and 
eigenvectors can still possibly be complex conjugate (as in the case of 
complex modes in lossless guides).

6.6 Choice of Elements

6.6.1 Bilinear Quadrilateral Element

Quadrilateral is a particularly interesting element shape for our 
formulations. Quadrilateral elements provide for flexibility in geometric 
modelling that is comparable with triangles, and are used by many analysts 
in preference to triangles [115]. The bilinear shape functions in 
quadrilateral elements can improve the accuracy of the line integral terms 
in our formulation. Moreover, the use of quadrilateral elements, which 
are actually linear isoparametric elements, makes it easier to extend to 
(quadratic) isoparametric elements which are more suitable to follow 
arbitrary curves.

The domain of a straight-edged quadrilateral elements is defined by 
the locations of its four nodal points (xe, ye), a = 1, ..., 4 in the

2 a a
E -plane. We assume the nodal points are labeled in ascending order
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corresponding to the counterclockwise direction (see Fig. 6.1). We seek a 
change of coordinates which maps the given quadrilateral into the biunit 
square, as depicted in Fig. 6.1. The biunit square is sometimes called the 
parent domain [115]. The coordinates of a point

u = [:}
in the biunit square are to be related to the coordinates of a point 

in Se by mappings of the form
4

x(u,v) = £  ot (u,v) xei i
a = 1 

4

y(u,v) = I  a  (m ,v )  y *

a = 1

The bilinear functions a  (u,v) are expressed as

a.(w,v) = — (1 + uu) (1 + vv),
i 4 i i

where u and v are defined in Fig. 6.1.i i
u

(6.25)

(6.26)

(6.27a)

(6.27b)

(6.28)

( - 1 .1)o—

1

( 1 . 1 )—o

•1 . - 1 ) ( 1 , - 1 ) 

Parent domain

(*§' y§)

Fig. 6.1 Bilinear quadrilateral element domain and local numbering
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The mapping (6.27) is bilinear, i.e., linear in u and v taken

individually; straight lines in the u-v plane therefore map into straight
lines in the x-y plane. The coordinate transformation (6.27) is stable as

long as the determinant of its Jacobian matrix [J] = d(x,y)/d(u,v) is
greater than zero; This condition is equivalent to that all interior angles 

formed by two adjacent edges are less than 180° [116]; this is also the
only condition to guarantee the smoothness of the trial functions on S

e
(Note that N  is always a smooth function of u and v).a

The Jacobian matrix [J] of a coordinate transformation 7 expresses 

the local geometric properties of 7. Its magnitude det([J]) denotes the 
local area magnification, while its individual components show the relative
twisting and stretching in the different coordinate directions.

It can be shown that the Jacobian matrix [J] reduces to constant ones

if opposite sides of the quadrilateral in the x-y plane are of the same
length [9]. This simplification occurs for parallelograms, geometric 
figures far more flexible than squares or rectangles.

, . y

n =  2 .2 8 0 1

6  •-] 1

n = 2 .2500

(a)

Fig. 6.2 An integrated optical channel waveguide.
(a) Basic geometry.

(b) A typical finite element mesh, showing orthodox 
elements bordered by infinite elements.
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6.6.2 Infinite Elements

As we mentioned in Chapter 2, one difficulty concerning dielectric 
waveguides, particularly optical waveguides, is that they have open 
boundaries. Open-boundary problems may be solved without simple truncation 
by several techniques, all having in common the idea that the open region 
is subdivided into interior and exterior portions so that the interior part 
contains the structures and fields of principal interest. In this study, 
we choose to adopt the simple infinite elements [9], [63], [70]. The open 
regions of the problem space are bordered with elements extending to 
infinity, such as depicted in Fig. 6.2.

Every such border edge of a element is chosen parallel to one or other 
of the coordinate axes. Suppose this edge is parallel to the y-axis, so 
that the infinite element will be concerned with a finite range of y, say 
from yi to y^ and an infinite range of x, say from x^ to -h*>. A one 
dimensional trial function U(x) is constructed for each of the relevant 
//-components so that it spans the nodes y  = y and y -  y2 (and any 
intermediate nodes, if high-order trial functions are being employed). Now 
within the infinite element an overall trial function

U(y)exp[-(x -  x^A] (6.29)

is used, where A, namely decay factor, is an additional undetermined 
parameter. The integrations necessary to establish the contribution of the 
infinite element will extend to x  = +<*>, but of course with the presence of 
the exponential factors such infinite integrals present no particular 
difficulty. Each y-border infinite element associated with x  —> is 
given a similar treatment with the same decay factor to preserve continuity 
in the y-direction. Cases where the infinite problem region extends to x  -  
-oo are dealt with merely by changing the sign in the exponential part of 
the trial function. Infinite elements corresponding to a jc-border are also 
similarly dealt with employing

U(x)exp[-(y -  yJB]  (6.30)

as the trial function while corner infinite elements are constructed with 
an appropriate variation

exp\-{x -  x x)A] exp[-(y -  y^fl] (6.31)
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The practice is to leave A and B undetermined so as to be optimized by the 
variational extremization process. The exponential form of the variation 

chosen to be ‘built in’ may be justified on the grounds that in simple
cases where an analytic solution can be found for open dielectric
waveguides, the fields do indeed die away in this fashion. An alternative 
way may be to use predetermined but plausible values of these parameters 
rather than go to the factors required to obtain their variational 
estimates.

6.6.3 Remarks
a) Shape of elements

It is often stated that triangular elements are responsible for the 
geometric flexibility of the two-dimensional finite element method. This
is perhaps somewhat of an exaggeration as triangular shapes are not needed
in practice. Most regions are conveniently discretized by arbitrary 
quadrilateral elements. It is also often stated that triangles enable 
modelling of particularly intricate geometries and that these shapes
facilitate transition from coarsely meshed zones of a grid to finely meshed 
zones. This is, of course, true, but quadrilaterals are capable of doing
the same thing at least to some degree. To illustrate this point, consider
Fig. 6.3 in which a triangular zone is discretized into three 
quadrilaterals. Thus we see any triangular element could be replaced by
quadrilaterals. Mesh generation for triangular regions via quadrilaterals 
may be handled similarly, see Fig. 6.4. Quadrilaterals may also be used to 
perform mesh transition as illustrated in Fig. 6.5.
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b) Order of elements
The first order element with linear and bilinear polynomials are the 

simplest finite element forms. The motivation for introduction of higher 
order trial functions is obviously one of achieving a better approximation 
to the solution of the problem at hand.

Refinement of solution can be achieved either by successive creation 
of finer meshes of elements with the use of same trial functions or by 
introduction of successively higher order functions with a constant mesh 
subdivision.

From the practical point of view, obviously, the best choice will be 
the one achieving highest accuracy at least computational expense. It has 
been found that, sometimes, higher order approximations appear to be more 
cost effective (although the actual optimum is very problem dependent) 
[116]. However, for simplicity, we will always stick to using the lowest 
possible order trial functions.

6.7 Non-symmetric Sparse Matrix Solver

The single most time-consuming part of finite element computer 
programs is usually the solution of the resultant matrix equation. This is 
particularly evident in those cases needing the solution of eigenvalue 
problems. For large, sparse, real and symmetric (or complex hermitian) 
eigenvalue equations there are efficient commercial software available in 
such standard computer libraries as HARWELL [124], NAG [125], and IMSL
[126] or special software developed within this group [62], [77].
However, for large, sparse, non-hermitian (real or complex) eigenvalue 
problems, there is no efficient commercial software available [8 6 ]-[8 8 ], 
[124]-[126].

Without an efficient sparse solver, one has to resort to the dense
matrix algorithm QR (for real), or QZ (for real or complex) which are the 
only two available for complex non-hermitian problems [8 6 ]-[8 8 ], 
[124]-[126]. Using the dense solver, one can only treat a very limited 
size of problems at a great expense even with supercomputers [8 6 ]-[8 8 ] 
[133]-[135]. Roughly speaking, the cpu time and memory requirement of
dense solvers are proportional to N3 and N2 respectively, where N  denotes
matrix order. As shown in [85], [8 6 ], it requires 27 MB memory and about

- 94 -



40 second cpu time for an complex problem of 508 unknowns (153 nodes) on a 
HITACHI S-810/10 supercomputer [85], and it requires about 30 seconds for a

o j’ STB unknowns
real problem A on CRAY X-MP/48 supercomputer. It can be estimated that it 
is hardly possible to treat problems of more than 1 0 0 0  unknowns on a top
model supercomputer. More statistics are shown in section 7.6 in Chapter 
7.

In order to take full advantage of the sparsity of matrix equation
(6.5) and to solve it efficiently, a sparse matrix solver has been 
especially developed for our problem (6.10) or (6.25). The solver has been 
studied, programmed and tested by a colleague, at UCL, Zhu. We, of course, 
initiated the project to develop the solver and collaborated in tests and 
applications of the solver.

The general eigenvalue problem (6.25) is here solved using a subspace 
iteration algorithm [119]-[ 122] applied to non-symmetric matrices. We 
start with two sets of p right and left initial vectors [X(0)] and [Y(0)] 
of a length n (p «  n, the order of matrices [A] and [B]), and an 
appropriately selected shift rj, which may be complex. Two sets of trial
vectors are simultaneously iterated using:

([A] -  n  [B]) = [B] [X<s>] (6.32a)

[Y(,+ I)]T ([A] -  n  [B]) = [Y(!)]t [B] (6.32b)

where [X(s>] and [Y(s)] are nxp matrices presenting p  vectors of length n. 
With adequate normalization of the iteration vectors after each iteration, 
a reduction of the order of the problem is performed using the 
transformations:

[A<!+1)] = [y <!+1)]t ([A] -  T| [B]) [X<,+l)] (6.33a)

[B(s+1)| = [Y(,+1)]t [B] [X(!+1)] (6.33b)

Solution is completed by solving the (now dense) eigenvalue problems
of much smaller order p:

[A(s+1>] [U(s+1)] = [B<s+1>] [U(s+1)] [x(,+1>] (6.34a)

- 95 -



[V(" T  [A(s+1)] = [x(!+1>] [V(J+,)]T [B(,+1)] (6.34b)

and recovering the right and left eigenvectors:

[X] = [X(,+1>] [U(!tl)] (6.35a)

[Y] = [Y(,+1)] [V(!+l>] (6.35b)

These are now available to restart the iterations if necessary. 
Convergence can be tested by comparing the normalized difference with a 
given tolerance TOL:

X,<s + 1 * -  Xis)
—i— — -i—  < TOL (6.36)

i

The current estimate to the /th eigenvalue (/ < p) X*+1 is given by

X(s+1) = x[s+1) + tj (6.37)

where %(s+1) is the ith element of the diagonal matrix [%(s+I)] of 
(6.34).

Setting p -  1 reduces this procedure to inverse iteration and in this
case successive updating of shift r\ can be used to accelerate convergence.

The crucial step regarding time consumption in the above procedure is 
the solution of the linear systems (6.32a) and (6.32b). We have 
implemented these using the package ME28 for complex matrices from the 
Harwell Library of Subroutines [123]-[124]. This results in a very
efficient solution, taking full advantage of the sparsity of the matrices 
and allowing the use of the same L-U decomposition of the matrices for both 
systems and repeatedly through the iterations.

A more compact form of this procedure can (and has been) achieved 
using only a single set of eigenvectors (e.g. the right eigenvectors).
This is still valid but convergence has been found to require a few more 
(although faster) iterations. In this case [Y] = [X] is used in (3a). The 
procedure now consists only of (6.32a), (6.33a), (6.34a) and (6.35a). Our
choice, though, has been for the use of both eigenvectors.
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CHAPTER 7

COMPUTATIONAL RESULTS

7.1 Introduction

In the preceding chapters 5-6 we have derived and implemented the 
finite element variational formulation, and obtained the matrix eigenvalue 
equation which is readily for computer language coding.

In this chapter, we will demonstrate the strength of the new method 
presented in chapters 5-6 by a series of examples covering all four 
categories of inhomogeneous waveguides — isotropic lossless, anisotropic 
lossless, isotropic lossy, and anisotropic lossy waveguides. Considering 
optical waveguides, several open-bounded waveguiding structures are 
included with the use of infinite elements.

The finite element formulation has been coded in FORTRAN 77 language 
and the software has been tested on a variety of computers from 
workstations to supercomputers, and the results show good consistency. For 
some examples, both the dense solver F02BJF from NAG library and the sparse 
solver SGECS developed at UCL during the later stage of the study are used. 
Statistics of the sparse matrix eigenequation solver are also presented.

Depending on situation, the problem size may be referred to by one of 
the four parameters:

a) NP : number of nodal points;
b) Ne : number of elements;
c) Nm : matrix order, where Nm = 2N P;

d) Nu : number of unknowns, where Nu equals to Nm minus known boundary
values.

When referring to questions of computing time or convergence, choosing Nu 

rather than N P is more sensible, because computing cost depends explicitly 
on Nu whereas it may depend on 2N P, 3NP, 4N P, or 6N P for different methods. 
When referring to computing memory requirement, the matrix order Nm is 
suitable.
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7.2 Description of the FORTRAN Program

We begin by briefly looking at some computational aspects of this 
study. A software package, with the name FEMDI, has been developed based 
on the afore presented derivations. The FEMDI system mainly includes five 
parts — controller, preprocessor, matrix eigenvalue equation generator, 
matrix eigenvalue equation solver, and postprocessor. The FEMDI is coded 
in the standard FORTRAN 77 language, and its basic structure is shown in 
Fig. 7.1.

The controller, namely CASP1, controls
(a) input options: whether to get a finite element mesh data from a 

preprocessed data file or from the mesh generator subroutine directly;
(b) loop parameters when dispersion characteristics required;
(c) the order of subspace, tolerance of solutions for the sparse matrix

solver;
(d) eigenvalue and eigenvector shift for the sparse matrix solver;
(e) output options: the number of modes for which their field 

distributions are required to be output for further postprocessing.

The preprocessor, namely MESHGE, is a mainly a mesh generator which
produces a set of data including waveguide geometric structure, refractive 
index profile, and boundary-value conditions. The mesh generator itself 
could be an independent program just to produce the mesh data and output 
the data into a file, and the data file may be used later as the input file 
of FEMDI.

The matrix eigenvalue equation generator, namely CASP2, is the most
important part of the program. Its purpose is to translate a physical 
dielectric waveguide problem from its finite element mesh data form into a 
digital-matrix form, which will be solved later as a general eigenvalue 
equation.

The matrix eigenvalue equation solver, namely SGECS, efficiently produces 
both eigenvalue and eigenvector solutions for the large, sparse, 
non-symmetric, complex matrix eigenvalue equation. The SGECS is specially 
developed for FEMDI within this group. The algorithm of the sparse matrix
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FEMDI

Input file

Mesh
Generator

Controller
input option 
loop parameters 
order of subspace 
eigensolution shift

Matrix Eigenvalue 
Equation 
Generator

Matrix Eigenvalue 
Equation 

Solver

Postprocessor

Output file

Further postprocessing

Fig. 7.1 Basic structure of the FEMDI software
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solver is introduced in [136] and also described in section 6.7.

The postprocessor, with the name VALVEC, use eigenvalue solutions to 
workout
(a) propagation constants and normalized propagation constants;
(b) two-dimensional field distribution by filling in the missed known 

boundary values into the eigenvector solutions;
(c) one-dimensional field distribution on a given straight line within the 

waveguide cross section.

From the output data of FEMDI we can do further postprocessing such as 
3-D, 2-D (contours), and 1-D plotting of field distribution as well as 
dispersion curve drawing via the use of standard library software or PC 
software.

As the requirement of this study, the main purpose of developing FEMDI 
is to provide numerical examples to verify the validity of the new 
variational finite element formulation. The computers used for this study 
are those at University College Computer Centre (UCCC) and University of 
London Computer Centre (ULCC) (see Appendix B), the access to these 
computers is through the local area network. Because there is not a fixed 
computing environment, we do not intend to develop a very friendly software 
at this stage. However, FEMDI has got the frame work of professional 
software, and so it will not be very difficult to develop it into a 
friendly package if a computer system is decided.

The FEMDI has been run on a variety of computers from workstations to 
supercomputers. Appendix B lists the computers (with such basic 
specifications as quoted speed, memory capacity, and operating system, 
etc.) used in the numerical computation for this study

7.3 Isotropic Lossless Waveguides

7.3.1 Dielectric-Slab-Loaded Metallic Rectangular Waveguide

As the first example, we consider a dielectric-slab-loaded metallic 
rectangular waveguide (inset of Fig. 7.1) which is one of few types of 
inhomogeneous waveguide structures for which analytical solutions exist. 
This kind of waveguide has been used as a basic test for new methods [81],
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[84], [87].
Fig. 7.2 shows the dispersion curves of the lowest five modes in an 

dielectric-slab-loaded metallic rectangular waveguide. The results were 
obtained taking advantage of symmetry with a mesh of 18x6 rectangular 
elements (133 nodes) over half of the cross section of the guide.
Excellent agreement with the analytical results can be observed despite the 
relatively coarse mesh used.

Fig. 7.3 shows the relative error, Id, in the finite element
solutions of propagation constant for the fundamental LSE10 and the first 
higher LSM^ modes in the waveguide as a function of the number of
unknowns, Nu, at kQb = 3. Ten meshes, 2LxL (L = 2, 3, ..., 11), of first
order square elements are chosen in the computation.

The relative error e is defined by

* = (p - m  (7 . 1 )

where (3 and ]5 are the computed and exact values [15], respectively.
As expected in a variational approach, the relative error e 

monotonically decreases with the increase of matrix order and so with the 
number of elements and the number of nodes. It is also found that the 
finite element solution is a lower bound to the true solution.

We have confirmed not only from the eigenvalues but also from
eigenvectors that spurious solutions do not appear. Fig. 7.3 shows the
profiles of Hx and Hy components for the lowest 10 modes in a 
dielectric-slab-loaded waveguide. The profiles are obtained directly from 
the eigenvectors of the finite element solutions using in the case NAG
subroutine F02BJF. The field profiles match very well with the exact
solutions. The calculated Hy components of LSE . LSE , LSE_ modes and

r  10 20 30

the Hx components of LSM^, LSM2i, LSM31 modes, which are exactly zero in 
the analytical solutions, are at least 1 0  orders of magnitude smaller than 
their corresponding dominant components; well below the tolerance of any 
practical application. Besides, with an adjustable tolerance parameter 
which is available in the sparse solver, these errors can be reduced to 
whatever one wants subject to the limitation of computer resources.
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Fig. 7.2 Dispersion characteristics of the lowest five modes in an 
dielectric-slab-loaded rectangular waveguide (inset).
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Fig. 7.3 Convergence of the finite element solutions {k b  = 3).
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7.3.2 Complex Modes in Shielded Image Waveguides

Complex waves are modes existing in lossless, inhomogeneous waveguides 
having complex propagation constants [19]. They always occur in pairs with
the propagation constant of one being the complex conjugate of the other.
Although they carry no real power, the influence of their presence has been 
recognized in the analysis of waveguide discontinuities. It has been
observed that complex modes have to be included in the field expansion used 
in mode matching procedures for analysis of waveguide discontinuities [18],
[127], and that their omission may lead to serious errors.

Fig. 7.5 shows dispersion characteristics of the lowest six modes in a 
lossless dielectric image waveguide (e = 9), shielded with a conventional 
rectangular Ku-band housing (15.799x7.899 mm2, 12.4-18 GHz). For 
simplicity, the normalized phase and attenuation constant are plotted in 
the same diagram in the opposite direction. Dispersion curves of 
normalized propagation constants for the frequency range 12-18 GHz

show close agreement with those presented by Strube and Arndt [18].
The dotted lines indicate complex waves with y = ± a  ± jB .cw cw cw

Taking advantage of symmetry, half of the cross section of the guide
is divided into a mesh of 31x27 = 837 non-uniform rectangular elements (896 
nodes). Both matrices are in this case real, the numbers of unknowns are 
1674 for PEC and 1676 for PMC symmetry walls respectively.

Fig. 7.6 shows the effect of varying the permittivity of the dielectric 
insert on the normalized propagation constant y/&0= (aJkQ, jp /kQ) at 
frequency 14 GHz. In Fig. 7.6, H indicate H (TE ) modes inmnO mn mn
homogeneous metallic rectangular waveguide. One can see that even for low
permittivity, a complex mode exists at this frequency. It is also
interesting to note that as the permittivity increases, complex modes 
appear intermittently.

For curiosity, Figs. 7.7 and 7.8 show, for the first time, the 
profiles and contours of the Hx and Hy components of the complex mode in 
Fig. 7.5 at /  = 14 GHz, respectively.

The examples also show the completeness of the solutions which do not 
miss complex modes — an essential part of guided wave spectrum. To our 
knowledge, these are the first finite element solutions of complex modes.
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Fig. 7.6 Propagation constant Y/^0= (o/A: » P/&0) versus relative
permittivity e of a shield image waveguide with /  = 14 GHz, 
a = 15.799 mm, b = 7.899 mm, w = 3.45 mm, t = 3.2 mm.
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7.3.3 Rectangular Dielectric Waveguide

Fig. 7.9 shows the dispersion characteristics for the E x and E ymn mn
modes of an isotropic rectangular dielectric waveguide of height t and 
width w buried in a medium with a refractive index n2 of value 1.0; the
refractive index of the core is 1.5. The dispersion curves are drawn in
terms of the normalized index b and normalized frequency v, which are 
defined by:

b = ((p/*0)2 -  «2)/(«2 -  n2) (7.2)

v = v A T T / k

We compare our solutions with the results of Goell [16], showing
excellent agreement even at low frequency. Goell’s solution is derived 
from cylindrical harmonic analysis, and has often been used as a standard 
for comparison in literature [81], [83], [86]. However, a finite element
solution is more versatile than a cylindrical harmonic analysis.

Unlike the crude simple truncation at a certain distance with 
artificial conductor walls enclosing the dielectric core [81], [86], we
have used infinite elements in this example to extend a fixed finite

+t>
element area of dimension (w+w)x(t+w). This improves the solution 
substantially in the lower frequency A (in this example v < 0.5). The decay 
factor can be easily optimized by looking for one that minimizes the 
eigenvalue solution as our formulation is a variational one. Fig. 7.10 
shows the variation of the optimum decay factor versus frequency.

In this example, only one-quarter of the cross-section has been 
divided in 456 quadrilateral elements utilizing the inherent symmetry of 
the different modes. The CPU time is about 35 seconds for each point on a 
SUN SPARC 2 workstation, the memory requirement is less than 3 Mbytes.

Fig. 7.11 shows the contours of the Hx and Hy components of the lowest 
four modes at v = 1.5 in one quarter of the waveguide. The shaded area 
indicates the position of the dielectric core. The contours agree well 
with the mode designations and profiles [16] in both shape and magnitude 
for all four modes.
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7.3.4 Rib Waveguide

In Fig. 7.12 we compare our solutions of GaAs/GaAlAs rib waveguide 
structure (inset) with the results by the spectral index method and the
modified weighted index method [128]. The curve for the dominant Hy mode

2 2 2 2is drawn in terms of the normalized index b = ((p/&Q) -  /z3)/(«2 -  n3)
the layer depth D with n 1.0 (air), n=  3.40 (GaAs), «3= 3.44 (GaAlAs),
2W = 3 pm, H + D = 1 pm, X = 1.15 pm. The normalized index b is very 
sensitive to the value p, therefore it is preferable to use b rather than p 
for comparison purposes.

A mesh of quadrilateral elements with 992 nodal points on half of the 
rib guide cross-section is used, the symmetry plane is placed at x = 0, the 
finite-to-infinite element boundaries are placed at x = 2.0 pm, y = -1.0 
pm, and y = 1.2 pm. The sparse matrix solver is used. On a SUN SPARC 2 
workstation, the cpu time is about 35 seconds for one layer depth D.

The rib waveguide is considered as an open structure, hence infinite 
elements are used with optimized decay factors. Using infinite elements 
gives an accurate solution even when the finite-to-infinite element 
boundary is placed very close to the guide. Fig. 7.13 illustrates the 
field distribution with a close finite-to-infinite element boundary, 
showing good agreement with the corresponding ‘true’ field in Fig.
7.14 obtained with far finite-to-infinite element boundary (x = 0, x = 3.0 
pm, y = -2.5 pm, and y = 1.5 pm).

Figs. 7.14 and 7.15 show the profiles and contours of the dominant 
components of H* , H* modes, showing good agreement with those 
corresponding modes in [128]-[130].
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7.4 Anisotropic Lossless Waveguide

7.4.1 Rectangular Dielectric Waveguide

Fig. 7.16 shows the dispersion characteristics for the E* and E ymn mn
modes of an anisotropic rectangular dielectric waveguide of height t, width 
W = 2t, core permittivity n -  n = 2.31, n = 2.19, and cladding

2 x z y
permittivity «2 = 2.05. Our results agree excellently with the results of 
Ohtaka [131]. Ohtaka’s results are obtained by a variational method with
cylindrical-harmonic-function expansion, and have been used frequently as a 
standard for comparison of results of anisotropic dielectric waveguide 
[81], [86], [88]. Similarly with the example of isotropic rectangular
dielectric waveguide in section 7.3.3, the use of infinite elements greatly
improves the accuracy of solution at the lower frequency range (kQt < 3.5), 
giving better results than [81], [86], [88]. It is worth mentioning that
Svedin [88] uses infinite elements, but he does not get the good agreement 
in the lower frequency range.

The finite element area adopted and the mesh used in this example are 
the same of example in section 7.2.3. Also in this anisotropic case, no
spurious solutions appear.

7.4.2 Channel Waveguide

Fig. 7.17 shows the dispersion characteristics for the lowest four H*n
modes of an anisotropic LiNb03 channel waveguide. The structure and 
parameters of the channel waveguide are shown in the inset of Fig. 7.17. 
Our results agree well for all four modes with Rahman and Davies [69] and 
for the dominant mode with Vandenbulcke and Lagasse [55], and Koshiba et 
al. [67].

Utilizing the inherent symmetry of the different modes, only half of 
the cross-section of the waveguide are divided into a mesh of 306 nodes
with infinite elements beyond x = 0.8W and y= -2t and 0.5t. The CPU time 
is about 30 seconds per point on a SUN SPARC 2 workstation.

Fig. 7.18 shows the contours of the dominant magnetic field components 
of the lowest four modes at kQt = 20, showing clearly the field
distribution of each mode.
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7.5 Isotropic Lossy Waveguides

7.5.1 Dielectric-Loaded Metallic Rectangular Waveguide

Fig. 7.19 shows the relative error of the finite element solutions, of 
the propagation constant for the fundamental TEio and the first higher 
order TEqi modes in a rectangular metallic waveguide filled with lossy 
homogeneous isotropic dielectric of relative permittivity e = 1.5 -  jl.5 , 
as a function of the number of unknowns (usually less than or equal to 
2NP). Six meshes, 4x2, 12x6, 28x14, 56x28, 64x32, and 100x50 first order 
square elements, are chosen in the numerical computation. The statistics 
of CPU and memory requirement for this example are shown in Figs. 7.26 and 
7.27 in section 7.6.

10°
TE,

C©
TE

104
10° 101

Number o f unknowns

Fig. 7.19 The relative error in the finite element solutions of the 
propagation constant for the fundamental TEiq mode and 
higher order TEqi mode in the lossy dielectric-loaded 
metallic rectangular waveguide (inset) as a function of 
the number of unknowns, using square first order elements.

The relative error e is defined by
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/ (a  -  a ) /a  for a ttenuation  constant
e = \  (7.4)

v (p -  PV P for phase constant

where (a  , (3) and (a  , J3) are the finite element and exact solutions, 
respectively. The exact solutions are

(7.5)

where, m and n stand for the mode indices for the * and y directions,
respectively.

It is easily seen from Fig. 7.19 that the relative error decreases as
the number of unknowns increases. Also it is interesting to note that the
directions of convergence are opposite between the real and imaginary parts 
of the propagation constant; i.e., e > 0 for a  whereas e < 0 for p.

7.5.2 Shielded Image Waveguide

Fig. 7.20 shows the dispersion characteristics in the slow-wave region 
for the Ej mode of a lossy isotropic image waveguide, taking the imaginary 
part of relative permittivity, e", as a parameter. As it can be seen from
Fig. 7.20a, the phase constant p for e" = 0.15 is very close to that for e"
= 0, i.e., the lossless case.

Our results show the same trend as those of Hayata et al. [85]. For 
the oc/k curves both results are very close, whereas for the p/kQ curves 
they differ considerably especially towards the lower frequency range. 
Hayata et al.’s three p/k curves (e" = 0.15, 0.75, and 1.5) start from
about k t = 3.4, 3.9, 4.2, and end at about p/k = 1.17, 1.20, 1.28,
respectively, while our corresponding curves start from about kQt = 1.71,
1.95, 2.09, and end at about p/&Q = 1.210, 1.243, and 1.330, respectively.
It can be explained that our results are more accurate. One reason is that 
our solution always provides a lower bound to the true p solution and our 
results for this example are greater than those of Hayata et al. throughout
the range in Fig. 7.20a. The other reason is that Hayata et al. use a very
coarse mesh of only 81 nodes (for which the memory requirement is 7.6 
MB !), and we use a much more finer mesh of 625 nodes (for which the 
memory requirement is less than 2.5 MB , the CPU time is about 17
seconds for each point on a SUN SPARC 2 workstation).
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Fig. 7.20 Dispersion characteristics of E* mode in shielded image 
waveguide with isotropic lossy dielectrics
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7.6 Anisotropic Lossy Waveguides

Figs. 7.21 and 7.22 show the dispersion characteristics in the slow 
wave region for the E* mode of a lossy anisotropic image waveguide shown
in the insets. The real part of e , e ' , is chosen as a parameter in Fig.

yy yy
7.21 ("dielectric anisotropy"), whereas the imaginary part of £yy, e" , is
chosen in Fig. 7.22 ("conductivity anisotropy"). Comparison between Figs.
7.21(a) and 7.22(a) clearly shows that a similar effect is seen in the
phase behaviour from the two types of anisotropy. On the contrary, from
the comparison between Figs. 7.21(b) and 7.22(b), the opposite effect is
found in the attenuation behaviour from the two types of anisotropy. That
is, the attenuation becomes smaller as e ' increases while it becomes

yy
larger as e" increases, yy

Similar to Fig. 7.20, the results in Figs. 7.21 and 7.22 show the same 
trend as those of Hayata et al. [85] but they differ in value considerably
for the p/&o curves.

For curves in Fig. 7.21(a), the three $/kQ curves (for e ' = 2.0, 1.5,
and 1.0) in [85] start from about kQt = 3.6, 4.2, 5.7 and end at about p/kQ
= 1.44, 1.28, 1.12, respectively, while our corresponding curves start from
about kQt = 1.79, 2.09, 2.87, and end at about p/kQ = 1.485, 1.330, and
1.168 respectively.

For curves in Fig. 7.22(a), the three p/kQ curves (for = 2.0, 1.5,
and 1.0) in [85] start from about k t = 3.9, 4.2, 4.5 and end at about p/kQ
= 1.36, 1.28, 1.23, respectively, while our corresponding curves start from
about kQt = 1.96, 2.09, 2.22, and end at about p/kQ = 1.399, 1.330, and
1.270, respectively.

For the same reason as in the example in section 7.5.2, our results 
are much more accurate and economical than those of Hayata et al. [85]. A 
mesh of 625 nodes (24x24 quadrilateral elements) is used. The CPU time is 
about 17 seconds for each frequency and memory requirement is less than 2.5 
MB on a SUN SPARC 2 workstation (with quoted speed at about 4.2 MFLOP, see 
Appendix B). This compares very favourably with Hayata’s mesh of only 81 
nodes needing 7.6 MB of memory and about 10 second CPU time for each 
frequency on a HITACHI S-810/10 supercomputer (with quoted speed at about 
800 MFLOPS [97]).

- 131 -



=  2.0Exx =  £zz =  I-5 - J 1 -5

£yy — £ yy * j 1-5
yy

1.4

1.5

13
£
k 0

1.2
1.0

1.1

U— 2t —J

1.0
10860 42

V
(a) Normalized phase constant.

0.70

=  1.0yy

0.60

Ct
*.

0.55

2.0
0.50

0.45
1084 60 2

(b) Normalized attenuation constant.

Fig. 7.21 Dispersion characteristics of mode in shielded image 
waveguide with anisotropic lossy dielectrics.
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Fig. 7.22 Dispersion characteristics of mode in shielded image 
waveguide with isotropic lossy dielectrics
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7.7 Statistics of the Matrix Eigenequation Soivers

In this section, we show the statistics of CPU time and memory 
requirements of the new sparse matrix solver for several examples of use in 
connection with our new finite element formulation. For comparison purpose 
we have used the dense matrix algorithm QZ, the only algorithm available 
for this type of problem in standard computer libraries. In particular, we 
used the real number routine F02BJF for lossless waveguide problems and the 
complex number routine F02GJF for lossy waveguide problems from the NAG 
library [125].

Figs. 7.23 and 7.24 show the measured CPU time and estimated memory 
requirement using the dense real matrix solver F02BJF subroutine for the 
dielectric-slab-loaded metallic rectangular waveguide solution in section 
7.2.1. The computation was performed on a-it Amdahl 5890 computer (see 
Appendix B). A curve fitting algorithm is used to approximate the measured 
CPU time by the function in (7.6), shown by the dotted line in Fig. 
7.23.

t ~ 3.288-10’6-Nu054 (seconds) (7.6)
dr

The memory requirement m ^  for a dense real matrix problem is estimated by 
(7.7)

mdr = 0.096 Np + 0.132 NP + 200 (kilobytes) (7.7)

where the assumption of 8 bytes for a DOUBLE PRECISION data, 4 bytes for a 
REAL data, and 2 bytes for an INTEGER data is adopted (see Appendix B). 

Formulae (7.6) and (7.7) agree to the well known fact of CPU time and
3 2memory requirement being proportional to N  and N  respectively for large 

matrix order N  when using a dense matrix solver.
Figs. 7.25 and 7.26 show the statistics of CPU time and memory 

requirement for the example of complex modes shown in
section 7.3.2 using the sparse matrix solver with a subspace of order 6. 
For comparison the corresponding complex dense matrix routine F02GJF from 
the NAG library is used solving the same problem.

For this example, the measured CPU time t £ and the memory m for the
s6 so

sparse matrix solver can be fitted and estimated by (7.8) and (7.9),
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respectively

f = 9.596-10'4 N i6095 + 12.3 (seconds) (7.8)
SO

m , -  4.496 NP + 250 (kilobytes) (7.9)
so

The memory requirement for the dense complex matrix solver F02GJF, mdc 
can be estimated by (7.10)

mdc -  0.192 Np + 0.164 NP + 200 (kilobytes) (7.10)

It is apparent from the figures that the dense matrix solver rapidly 
becomes impractical (even with supercomputers) with increasing matrix 
order. For the same example using the sparse matrix solver, both the CPU 
time and memory are drastically reduced. For this example a subspace of
order 6 is used. If only one mode was desired, the CPU time could be
reduced even further.

Figs. 7.27 and 7.28 show the statistics of CPU time and memory 
requirement for the calculation of a lossy waveguide problem shown in 
section 7.5.1. In this example, the subspace of order 1 is chosen. The 
corresponding fitting function for the measured CPU time f and the 
estimated function for the memory requirement m are expressed in (7.11) 
and (7.12), respectively

I = 4.3047-10‘4 N i4855 + 0.2 (seconds) (7.11)sl

mgi -  3.694 NP + 250 (kilobytes) (7.12)

Fig. 7.27 shows three computing times: (a) the total CPU time which 
includes mesh generating, matrix element calculation and assembling, and 
solution of the eigenvalue equation; (b) the matrix solver CPU time which 
only includes the CPU time used for solving the matrix eigenvalue equation;
(c) the CPU time per iteration in the sparse matrix solver. Comparing the
total time and the matrix solver time clearly shows that the most time 
consum ing part of the finite element solution is solving the matrix 
eigenvalue equation.
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7.8 Two More Interesting Examples

7.8.1 A Lossy Optical Waveguide
In this subsection, we show the finite element solutions of a

practical lossy optical waveguide structure provided by the French company 
Alcatel [132].

Fig. 7.29 shows the waveguide structure and material parameters. The 
losses of the P+InP buffer layer and the N+InP substrate need to be taken 
into account. In addition, the loss of the metal cladding of the waveguide
has also been included, as metals are highly absorbing at the optical
frequency range.

In this example, a mesh of 1760 nodal points with infinite elements on 
the cross-section of waveguide is used. The finite-to-infinite element 
border is placed at x = -2.5 pm, x = 2.5 pm, y = -1.2 pm, and y = 1.96 pm. 
The working wavelength X is 1.52 pm. With the sparse solver, the
computations were run on an IBM RISC 6000 workstation (see Appendix B). 
The cpu time is about 113 seconds for one calculation with the subspace of 
order 1.

Table 7.1 shows the finite element solutions of the propagation 
constants of the two lowest modes of the GalnAsP/lnP optical waveguide 
shown in Fig. 7.29 in comparison with Alcatel’s own calculations [132] by
the effective index method [1]. The relative errors of the phase constants
between our results and those of Alcatel are very small. The effective 
index method can only approximate certain types of structures, but the
finite element method is much more versatile and can treat more complicated 
problems.

metal, n = 0 .1 4 - j 8 .4 9  

P + lnP, n = 3 . 1 7 1 9 4 -j2 .2x 10 '4
1.56 urn

1.16 pm

Ay
0.16 |im -  

- 0.2 pm 4

N'lnP, n = 3 .1 7 2 9 4  

GalnAsP, n = 3 .28733

 — — — —

—  N + InP, n = 3.16447-j2 .2x10'5

(<— — ------  3.0 pm--------- — — H

Fig. 7.29 A metal-clad buried GalnAsP/lnP optical waveguide
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Table 7.1 Normalized propagation constant y/kQ = a Jk + jp/kQ

A lca te l’ s P resen t r e l a t  ive
c a lcu la tio n m ethod e rro r  o f (3

T E  mode 6.30E-6+j3.175304 3 .16E -5+ j3 .175835 1.67E-4

TM mode 1.54E-5+j3.173879 1.29E-5+j 3.173762 -3.68E -5

7.8.2 Variations o f Complex Modes in lossy Waveguide
In section 7.3.2, we have shown the complex modes in lossless

waveguide. For curiosity, it may be interesting to see what might happen
if some small losses are introduced in the lossless waveguide supporting 
complex modes. Figs. 7.30 and 7.31 show the variations of complex modes 
and their derivative modes in lossy waveguides.

In connection with Fig. 7.5, Fig. 7.30 plots the dispersion curves of
normalized propagation constant y/kQ = (aJkQ, fi/kQ) against frequency /  of 
an image waveguide of the same geometry with the waveguide in Fig. 7.5 at 
the frequencies around the complex mode bifurcation. Fig. 7.31 plots the 
dispersion curves of the square of the propagation constant, namely, the 
eigenvalue, on the complex plane. Fig. 7.31 gives a different view of the 
behaviour of complex modes and may also be helpful to understanding the 
variations shown in Fig. 7.30.

In Fig. 7.30, the single-dot-dashed lines indicate the complex modes 
(14.3 - 14.4065 GHz) and their derivative modes in the image guide with
lossless material e = 9.0; in Fig. 7.31, the dotted and dashed lines
indicate the pair of eigenvalues representing the complex modes (between 
14.0 - 14.4065 GHz), where they are exactly complex conjugate, and their
derivative modes. In both Figs. 7.30 and 7.31, the two-dot-dashed and 
three-dot-dashed lines indicate respectively the two perturbed complex
modes and their derivative modes in the image guide with a small loss
material e = 9.0 -  j 0.01.

In connection with Fig. 7.5, Fig. 7.32 show the variations of
propagation constant against loss (e") for the HE2J mode and the perturbed
complex modes at /  = 12 GHz, where e = 9.0 - je".
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7.9 Remarks

The computational results of all the examples are very satisfactory. 
No spurious solutions appear in any of the examples which cover all
categories of dielectric waveguide problem — lossless isotropic, lossless 
anisotropic, lossy isotropic, lossy anisotropic dielectric waveguides
including both closed and open structures. Furthermore, complex modes in 
lossless waveguide are successfully analyzed, showing the completeness of 
the solutions from the new formulation. Finite element solutions of 
complex modes have not been achieved by other finite element formulations.

Statistics of the sparse matrix eigenequation solver show its high
efficiency. With this solver, one can efficiently solve problems with more
than 10 thousand unknowns just on a medium-sized workstation.

The standard FORTRAN 77 software of the formulation has been run on a 
variety of computers from workstations to supercomputers. The computational 
results show good consistency

The final two examples of a practical lossy optical waveguide and the 
variation of complex modes in lossy waveguide provide further proofs of the 
applicability and effectiveness of the new finite element formulation.
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CHAPTER 8

CONCLUSION

8.1 Introduction

In the final chapter, we will briefly summarize some important points 
of view and major achievements obtained during this study. In order to 
keep the clarity and completeness of this chapter, some of the statements
appeared in previous chapter are restated in this chapter.

8.2 The Criteria of Judgments

In judging the appropriateness of a general finite element formulation 
for dielectric waveguide problems, the following 8 criteria may be adopted.
1) The formulation should be robust and capable of including as many

waveguide features, such as arbitrarily shaped cross-section, 
inhomogeneity, anisotropy, and significant loss (or gain), as
possible.

2) The formulation should not include undesirable non-physical spurious
modes, and also should not miss any physical solutions such as complex 
modes.

3) The resultant matrix equation of the formulation should be
well-conditioned (for instance, it should not breakdown due to the 
choice of shape function or mesh).

4) The electromagnetic fields are preferred to be represented in terms of
only magnetic field H, because the magnetic field is continuous 
everywhere, and no special treatment is needed to enforce normal 
component of electric field at dielectric interfaces.

5) The solution should be direct for complex propagation constant in
terms of specified real frequency, so as to be more efficient and
reliable.

6) If possible, the formulation variables should be represented by only
two field components, the least number necessary to represent a
general problem, thus minimizing the unknowns.
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7) The formulation should lead to a canonical eigenvalue equation which 
can be solved efficiently.

8) The resultant matrices of the formulation should be highly sparse able 
to utilize a fast and efficient matrix equation solver. This is of 
decisive importance for large problems, even on a supercomputer.

Criterion 1 refers to the problem coverage; criteria 2 and 3 refer to 
robustness and applicability; criteria 4 and 5 refer to simplicity and user 
friendliness; criteria 5 to 8 refer to ability to treat large problems.

8.3 Origin of Spurious Modes

Strictly speaking, the classical definitions (the two curl equations 
or the double-curl equation with associated tangential or normal boundary 
conditions) of the source-free boundary-value problems are not complete, 
they may only be adequate for traditional analytical solutions. For an 
approximate solution, the classical definition can introduce non-physical 
spurious solutions. The insufficient definitions of a source-free 
boundary-value problem are the inherent origin of spurious modes.

8.4 Elimination of Spurious Modes
For approximate solutions of Maxwell source-free boundary-value 

problems, the classical definitions are not sufficient. One of the 
following complete definitions should be adopted. They are sufficient to 
eliminate the spurious modes.

E-H-definition:
The equations

V x E = -j co |Xop  H

V x H = j co e I  EJ 0
V • ( eoe-E ) = 0

V • ( n ^  H ) = 0 

The interface conditions

n x (E -  E ) = 0
x a b '

n x (H -  H ) = 0
a b
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n • (e -E -  e-E J = 0
a a b b

n ■ (jl H -  I  H ) = 0
a a b b

The boundary conditions

n x E = 0 (on PEC)

n x H = 0 (on PMC)

n • pH  = 0 (on PEC)

n • e-E = 0 (on PMC)

H definition:
The equations

V x ( e V x H ) -  co2eopop>H = 0

V • ( pop-H ) = 0

The interface conditions

n x (H -  H ) = 0
a b

„ • (P,H -  pb Hb) = 0 

n • (V x H -  V x H ) = 0
a b

n x (I V x H -  I / 1- V x H ) = 0
a a b b

The boundary conditions

n • pH  = 0 (on PEC)

n x H = 0 (on PMC)

n x ( f  V x H) = 0 (on PEC) 

n • V x H = 0 (on PMC)

E definition:
The equations

V x ( ft V x E ) -  co2eopoI-E = 0

V • ( eoe-E ) = 0 

The interface conditions

n x (E -  E ) = 0
a b
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n • (e E -  e E ) = 0
a a b b

n • (V x E -  V x E ) = 0
a b

n x (ff V x E -  p  V x EJ  = 0
a a b b

The boundary conditions

n x E = 0 (on PEC) 

(on PMC) 

(on PEC)

n • e-E = 0

n • V x E = 0

n x (fi V x E) = 0 (on PMC) ■

Remarks:
For only H approximation under the H-definition or only E approximation 
under the E-definition, the interface and boundary conditions with the curl 
operator may not have all to be imposed, only the tangential and normal 
conditions of the field are essential and have to be imposed. ■

8.5 The Variational Finite Element Formulation

In this study, a variational finite element formulation for the 
full-wave analysis of microwave and optical waveguide problems with 
arbitrary cross section and inhomogeneous, transverse-anisotropic, and 
lossy dielectrics have been derived so as to eliminate the spurious modes in 
finite element solutions of dielectric waveguide problems.

The computational results of implementing the formulation are very 
satisfactory. No spurious solution appear in any of the examples. The 
coverage of examples is quite wide. The examples cover lossless isotropic, 
lossless anisotropic, lossy isotropic, lossy anisotropic dielectrics as well 
as both closed and open structures. Furthermore, solutions for complex 
modes in lossless waveguide are successfully achieved, showing the 
completeness of the solutions of the method.

Summarizing the study and computational results, this formulation has 
the following features:

1) it can treat a wide range of dielectric waveguide problems with 
arbitrarily-shaped cross section, inhomogeneity, transverse- 
anisotropy, and loss (or gain);
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2) it totally eliminates troublesome non-physical spurious solutions
which ordinarily appear interspersed with the correct results in many
other vectorial finite element solutions;

3) it allows direct solution for propagation constant at a specified 
frequency (rather than for the frequency at a specified propagation
constant as in the usual approaches);

4) the numerical efficiency of solution is maximized since this
formulation uses only two magnetic field components, this being 
achieved without losing the matrix sparsity which only depends on the
topology of the mesh used. This property is of decisive importance
for solving large-size problems;

5) it provides the capability to compute complex modes in lossless
waveguide, showing the completeness of the solutions;

8.6 The Sparse Matrix Eigenequation Solver

An efficient matrix solver for large, sparse, non-symmetric (real or 
complex) matrix eigenequations has been especially developed by Zhu for 
this work [136].

Statistics of the sparse matrix eigenequation solver show its high 
efficiency and drastically drop of computing time and memory requirement 
comparing to the only available standard library subroutines.

The use of a ‘shift’ in the sparse solver makes it possible to
concentrate on a particular (dominant or higher) mode with the minimum 
computing cost to achieve best results. With this solver, one can 
efficiently solve problems with more than 10 thousand complex unknowns on a 
medium-sized workstation.

The sparse matrix solver, developed for this study, is apparently the 
unique efficient solver to solve large, sparse, non-symmetric, and complex 
matrix eigenequation. No other solver with similar functions is available 
or has been reported.

8.7 Concluding Remarks

There is a pressing need for robust and numerically efficient computer 
simulation techniques for analysis and design of optical and microwave 
waveguidei with arbitrary dielectric profile and arbitrary cross-section.
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Facilities are needed for considering loss (or gain), arbitrary 
polarization and without troublesome spurious modes. The objectives of 
this study are to develop a method to satisfy the need.

In this study, all the original objectives have been achieved. A
effective finite element method for dielectric waveguide problems with
arbitrary cross-section, inhomogeneity, transversely-anisotropy, and loss
(or gain) has been developed. Our method shows considerable advances over 
the state-of-the-art methods. Using this method, one can establish more 
realistic models of real waveguides. This method provides a powerful tool to 
analyze more complicated waveguiding structures in optoelectronics and 
microwaves.

This study provides the first finite element solutions of complex 
modes in lossless waveguides and the variations of complex modes in lossy 
waveguides, and the first finite element solutions of (large) practical 
lossy waveguide problems. This method fills in the gap of adequate 
treatment of lossy waveguide.

Our finite element method together with our unique efficient sparse 
matrix solver provides probably the only approach in the world for some 
complicated waveguide problems.
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APPENDIX A

ADJOINTNESSES OF THE DIFFERENTIAL OPERATORS

This appendix gives the details of investigating the adjointnesses of 
the differential operators in Eq. (5.1) (in chapter 5). To begin with, we
rewrite Eq. (5.1) as follows:

ft H + ft H + f t  H + t2 b H = 0 (A.l)
I t  2  t  3 t  * t

where each of the individual differential operators are expressed as:

A _ = V x ( k V x _ )  (A.2a)
1 t zz  t

A2 _ = — z x [ V x ( z V • _ ) ] (A.2b)

A = -  co2u e (A.2c)
3 ~  0 0 ~~

IB _ = z x [ k • ( z x _ ) ] (A.2d)
tt

The adjoint operator of L is an operator L* such that

< H ' , l H >  = cl'H ’, H >  + b.t. (A.3)
t t  t  t

where ‘b.t.’ stands for boundary terms, < • , • > is a inner product.

An operator fl_ is a self-adjoint operator if Q_a = L.

After defining a real inner product for our problem as follows:

< A , B >  =  f  A -  B  ds (A.4)
t  t  J g  t  t

where S is the cross-section of the waveguide, we investigate each term of
Eq. (A.l) individually.

The 1st term:



= <V x H a , k V x H >  + C = <k V x H a , V x H >  + C
t t zz t t 1 zz t t t t 1

= <Vx ( k  V x Ha ) , H >  + C + C
t v zz t t '  t 1 2

= <A Ha , H > + b.t.
l  t t

where

C = f [ ( k  V x H ) x Ha ] • n  dl
1 J  ^  ZZ t  t  t

= j co e f ( E x Ha ) • n dl
0 J £  z t

= j co e f ( Ha x n ) • E dl  > 0 on PMC
J (2 _ 1 z

= j co e f ( n x E ) • Ha dl  > 0 on PEC
J 0 J C  Z t

= 0 (on PEC and PMC)

and

C = f t H X ( K V X H* ) ] • n dl
2 J Q  t zz t t

= j  CO 8  f ( H X Ea ) • n dl
0 J t z

= j c o e  f ( n x H )  Ea d/  > 0 on PMC
0 J ^  t z

= j CO e f ( Ea x n ) • H dl  > 0 on PEC
0 J q  Z t

= 0 (on PEC and PMC)

The 2nd term:

<Ha , A H >  = <Ha , - z x [ k  • V x ( z V- H ) ]>
t 2 t  t t t t  t t

= <z x H" , f  • V x ( z V- H)>
t tt t t i

= <k T- ( z x Ha ) , V x ( z V- H)>
t t t t t t

= < V x [ k t ( z x H* ) ] , z V • H > + C
t t t v t / J  t t 3

= <z ■ Vx  [ k T- ( z x Ha ) ] , V- H >  + C
t L t t v t / J t t 3

(A.5)

(A. 6)

(A.7)
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= <- V { z • V x [ icj. ( z x h ; ) ] ) , H > + C3 + C4 

* <ftH*, H > + b.t. (A.8)
2 t t

where

C =  f ( V • H ) { z X [ k }  (  z x H‘ ) ] ) • n dl
J  i  i  u  I

= 0 (on PMC) (A.9)

and

C = [ ( z • V x [S j  • ( z x H* ) ] ) ( H ' n ) dl4 J p i  t  t t  t  tc
0 (on PEC) (A. 10)

The 3rd term:

<Ha , ft H >  = <H“ , - co2h e H >  = <- co2u e H‘ , H >
t 3 t  t  ^ 0  0  t * 0  0  1 t

<A Ha , H >  (A .ll)
3 t t

The 4th term:

<Ha , IB H > = <Ha , z x [ k • ( z x H ) ]>
t  i t t ’ 1 a  v r  J

= - <z x H a , K • ( z x H )>
t  tt t

= - < k t - ( z  x  H* ) , z  x  H >
t t  t t

= <z x [ k t - ( z x H*) ] , H >
t t  t t

= <B H" , H >  (if k t = k ) (A. 12)
I t  t  t t  tt

Because the permittivity tensor is assumed symmetric (see Eq. (3.1) in 
chapter 3), we know from (A.5), (A.8), (A.l l)  and (A. 12) that operators, 

A3, and IB are self-adjoint, and only A2 is non-self-adjoint.

- 152 -



APPENDIX B

LIST OF COMPUTERS USED FOR THIS STUDY

During the last three years of my Ph.D. study, there were two 
replacements of computers at University College Computer Centre (UCCC) and 
two replacement of computers at University of London Computer Centre 
(ULCC). The frequent replacements caused some disruptions to the research, 
but, on the other hand, the author has had the chance to experience a 
variety of computers. The computers used for the study are listed in the 
table below.

computer model 
location
period available to the author

dependence
***** most 

* least

operating system 
quoted speed 
memory capacity

GEC EUCLID 4000 * OS4000
UCCC —

12/1988 to 06/1990 1.8 Mbytes
PYRAMID 98x * OSx
UCCC —

05/1990 to 09/1991 —

SUN SPARC 2 workstation ***** SunOS
UCCC 4.2 MFLOPS

12/1990 to 09/1991 56 Mbytes
IBM RISC 6000-540 workstation *** AIX
UCCC 13.7 MFLOPS
07/1991 to now 128 Mbytes

AMDAHL 5890-300 large computer **** MVS/XA
ULCC —

12/1989 to 09/1991 32 Mbytes
CRAY X-MP/28 supercomputer ** UNICOS
ULCC < 500 MFLOPS

12/1990 to 09/1991 64 Mbytes
CONVEX C210 supercomputer * ConvexOS
ULCC < 500 MFLOPS
08/1991 to now 256 Mbytes

Notes:
(1) MFLOPS : mega floating-point operation per second.
(2) The OSx, SunOS, AIX, UNICOS, and ConvexOS are all UNIX-like operating 

systems.
(3) CRAY gives 64-bit precision for REAL and INTEGER, and 128-bit

precision for DOUBLE PRECISION. While other machines usually give
32-bit precision for REAL, 16-bit or 32-bit precision for INTEGER, and 
64-bit precision for DOUBLE PRECISION.

(4) CONVEX C210 will soon be replaced by a CONVEX C3840 supercomputer with 
the memory capacity of 1 gigabytes.
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