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Kuga-Satake construction and
cohomology of hyperkähler manifolds

Nikon Kurnosov1, Andrey Soldatenkov2, Misha Verbitsky3

Abstract Let M be a simple hyperkähler manifold. Kuga-Satake
construction gives an embedding of H2(M,C) into the second coho-
mology of a torus, compatible with the Hodge structure. We con-
struct a torus T and an embedding of the graded cohomology space
H•(M,C) → H•+l(T,C) for some l, which is compatible with the
Hodge structures and the Poincaré pairing. Moreover, this embed-
ding is compatible with an action of the Lie algebra generated by all
Lefschetz sl(2)-triples on M .
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1 Introduction

1.1 Kuga-Satake construction and k-symplectic geom-

etry

The classical Kuga-Satake construction [KS], introduced by Ichiro Satake and
Michio Kuga in 1967, is used to construct a holomorphic embedding of the
space of Hodge structures of K3 type (identified with the bounded Hermitian
symmetric domain of Cartan type IV) into the space of Hodge structures of
abelian varieties, identified with the bounded Hermitian symmetric domain
of Cartan type III. The construction attaches to a Hodge structure H of K3
type a Hodge structure V of weight one, where V is the even part of the
Clifford algebra of H with the intersection form. This way, the Kuga-Satake
construction produces an abelian variety from a given polarized K3 surface.
More generally, from a non-algebraic K3 surface the construction produces a
compact complex torus.

We give an interpretation of the Kuga-Satake construction based on the
theory of k-symplectic spaces. Our main result is Theorem 4.1.

The k-symplectic spaces were introduced in [SV2]; however the corre-
sponding geometric structure for k = 3 was known since 1990-ies under the
name “hypersymplectic”. A hypersymplectic space ([DS]) is a vector space V
over a field k = R or C equipped with a triple of symplectic forms ω1, ω2, ω3

in such a way that the operators ωi ◦ ω−1
j : V −→ V generate the matrix

algebra Mat(2, k).
Hypersymplectic manifolds are manifolds equipped with a triple of sym-

plectic forms giving it a hypersymplectic structure at each tangent space.
They were introduced by N. Hitchin [Hi], because the hyperkähler reduction
can be naturally extended to the hypersymplectic case. In fact, the hyper-
symplectic manifolds admit a unique torsion-free connection preserving the
triple of symplectic forms (see [JV1]). As shown in [JV1], any hyperkähler
manifold M admits a natural complexification MC, which is realized as a
component in the moduli of rational curves in its twistor space, and this
space is a complex hypersymplectic manifold.

In the paper [Ka], H. Kamada classified hypersymplectic structures on
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compact surfaces, and gave interesting examples of hypersymplectic struc-
tures on a Kodaira surface.1

In [JV2], Hitchin’s construction for hyperkähler and hypersymplectic re-
duction was applied to a complex hypersymplectic manifold obtained as
a component in the space of rational curves in the twistor space of a hy-
perkähler manifold. This procedure was called trihyperkähler reduction.

In [JV2], trihyperkähler reduction was applied to the space of geometric
instantons on CP 3. Using this method it was shown that the moduli of
geometric instantons in CP 3 is smooth; this solves a longstanding conjecture
by W. Barth.

In hyperkähler and real hypersymplectic case, the moment map associ-
ated with the G-action takes values in g∗ ⊗R R3, where g∗ is the dual space
to the Lie algebra of G. For the trihyperkähler reduction, the moment map
takes values in g∗ ⊗R R7, suggesting that there are higher analogues of sym-
plectic, trisymplectic and trihyperkähler structures for which the geometric
reduction decreases the dimension by 2k dim g; this higher analogues should
be associated with stable bundles on CP n, n > 3, in the same way as the
hypersymplectic structures are associated to the instantons on CP 3.

Hypersymplectic structures were generalized to k-symplectic structures in
[SV2]. The starting point was again hyperkähler geometry, but an entirely
different facet. Consider a compact complex torus T in a sufficiently general
deformation of a complex manifold M of hyperkähler type. In [SV2] it was
shown that the first cohomology H1(T,R) is equipped with a k-symplectic
structure, where k = b2(M). The intuition behind this construction is very
simple. Consider a general triple of cohomology classes w1, w2, w3 ∈ H2(M);
it is not hard to see that their restrictions to H2(T ), considered as 2-forms
on H1(T ), form a hypersymplectic structure.

This is the intuition which underlies the notion of a k-symplectic struc-
ture, and here is its formal definition.

Definition 1.1: Let V be a vector space, and Ω ⊂ Λ2V ∗ a subspace of
dimension k. We say that Ω is a k-symplectic structure if the following
two properties are satisfied

(i) For any non-zero w ∈ Ω, the form w has maximal rank, or its rank is
1
2
dim V . This implies, in particular, that the set of degenerate forms

ω ∈ Ω is a quadric (see [SV2]; this is an easy exercise in linear algebra).

1Kodaira surface is a non-Kähler compact complex surface obtained as an isotrivial
holomorphic elliptic fibration over an elliptic curve.
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(ii) The quadric Q ⊂ P(Ω) consisting of all degenerate forms ω ∈ Ω is
non-degenerate.

It is still unknown what kind of geometric structure is given by a k-
symplectic analogue of a hypersymplectic manifold, when we are given k
symplectic forms on a manifold M satisfying the k-symplectic properties at
each tangent space TxM .

1.2 Hyperkähler manifolds

For the convenience of the reader we will recall below the main definitions
related to hyperkähler manifolds. For more details see [GHJ] and [Bes].

Definition 1.2: (E. Calabi, [C]) Let (M, g) be a Riemannian manifold with
three integrable complex structure operators I, J,K ∈ End(TM), satisfying
the quaternionic relations I2 = J2 = K2 = IJK = − Id. Suppose that g is
Kähler with respect to I, J andK. Then (M, I, J,K, g) is called hyperkähler.

Definition 1.3: A holomorphically symplectic manifold is a complex mani-
fold equipped with a non-degenerate, holomorphic (2, 0)-form.

The metric g on a hyperkähler manifold M is Kähler with respect to the
complex structures I, J and K. Hence we have the Kähler forms ωI , ωJ ,
ωK , each of them of type (1, 1) with respect to the corresponding complex
structure. One can check that the form ΩI := ωJ +

√
−1ωK is a holomorphic

symplectic (2,0)-form on (M, I). This shows that every hyperkähler manifold
is holomorphically symplectic. The partial converse to this statement follows
from Yau’s solution of the Calabi conjecture (see [Y]):

Theorem 1.4: LetM be a compact holomorphically symplectic Kähler man-
ifold. Then M admits a hyperkähler metric which is uniquely determined by
the cohomology class of its Kähler form.

In this paper we will consider only compact Kähler holomorphically sym-
plectic manifolds. There is the following structure theorem for such mani-
folds.

Definition 1.5: A compact hyperkähler manifold M is of maximal holo-
nomy, or simple, or IHS, if π1(M) = 0, H2,0(M) = C.
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Theorem 1.6: (Bogomolov’s decomposition: [Bo1]) Any compact hyper-
kähler manifold admits a finite étale covering which is a product of a torus and
several maximal holonomy hyperkähler manifolds. The maximal holonomy
hyperkähler components of this decomposition are uniquely determined.

Further on, all hyperkähler manifolds are tacitly assumed to be of maxi-
mal holonomy. The following theorem is crucial for the study of cohomology
algebras of IHS manifolds.

Theorem 1.7: (Fujiki, [F]) Let M be an IHS manifold, dimC M = 2n.
Then there exist a non-degenerate primitive integer quadratic form q on
H2(M,Z) and a rational constant c, such that for any η ∈ H2(M,C) we have
∫

M
η2n = cq(η, η)n.

Definition 1.8: The quadratic form q from the theorem above is called the
Bogomolov-Beauville-Fujiki (BBF) form.

The BBF form is determined up to a sign by the relation from Fujiki’s
theorem. The sign may be determined by the condition q(Ω,Ω) > 0, where
Ω is the holomorphic symplectic form. It is known that the form q has
signature (3, b2(M) − 3). It is negative definite on ω-primitive forms, and
positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.

2 Graded Frobenius algebras and sl(2)-triples

To relate k-symplectic structures and the Kuga-Satake construction, we use
the Lie algebra action generated by all Lefschetz triples on the cohomology
of a hyperkähler manifold. This action was discovered and studied in [LL,
V1, V2]. Let us now recall the main elements of these works.

2.1 Frobenius algebras

Definition 2.1: Let A• =
⊕r

i=0A
i be a graded-commutative algebra with

dimAr = 1. Consider the Ar-valued form on A• mapping x, y ∈ A• to the
Ar-component of xy. The algebra A• is called degree r graded Frobenius
algebra if this pairing is non-degenerate.

– 5 – version 1.0, Mar. 21, 2017



N. Kurnosov, A. Soldatenkov, M. Verbitsky Kuga-Satake construction and cohomology of HK manifolds

The basic example of a Frobenius algebra is the cohomology algebra of a
compact manifold.

A Lefschetz triple in a Frobenius algebra A =
⊕2n

i=0A
i is a triple of

operators Lη,Ξ,Λη ∈ End(A•) where η ∈ A2 is a fixed element, Lη(x) :=
ηx, Ξ

∣

∣

Ai
= i − n and Λη is an element such that Lη,Ξ,Λη form an sl(2)-

triple. It is easy to see that such Λη is uniquely determined by Ξ and η (this
statement is sometimes called “Morozov’s lemma”, and sometimes included
in the statement of Jacobson-Morozov theorem). Existence of one Lefschetz
triple is a non-trivial condition; however, the space of η ∈ A2 for which the
Lefschetz triple exists is Zariski open.

Definition 2.2: The Frobenius-Lefschetz algebra is a Frobenius algebra
admitting a Lefschetz sl(2)-triple.

Remark 2.3: Let A• be a Frobenius-Lefschetz algebra. Consider the Lie
algebra g(A•) ⊂ End(A•) generated by all sl(2)-triples. It was computed for
the cohomology of hyperkähler manifolds in [V1, LL] and for other geometric
examples of Frobenius algebras (flag varieties, Hodge classes on an abelian
variety) in [LL].

Theorem 2.4: Let M be a hyperkähler manifold of maximal holonomy, A•

its cohomology algebra and gtot(M) := g(A•) the Lie algebra generated by
all Lefschetz sl(2)-triples. Then gtot(M) is isomorphic to so(4, b2(M)− 2).

Proof: See [LL] or the proof of Theorem A.10; an explicit description of
this algebra is also given there.

An important property of the Lie algebra gtot(M) ∼= so(4, b2(M) − 2)
acting on cohomology of a hyperkähler manifold is that it contains the Weil
operators WI for all complex structures of hyperkähler type on M (see Sub-
section A.2). Recall that for a compact Kähler manifold (M, I) the Weil
operator WI ∈ End(H•(M)) acts on Hp,q(M) as

√
−1 (p− q).

This implies that the Hodge structure on H•(M,C) is induced by the
action of gtot(M). We will use this observation to construct the Kuga-Satake-
type embedding of the cohomology of M into the cohomology of a complex
torus (see Section 3 and Theorem 4.1). The construction essentially consists
of three steps:

1. Start from a hyperkähler manifold of maximal holonomy, and let H =
H2(M,C) be its second cohomology space equipped with the BBF form.
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Construct a k-symplectic space V such that ϕ : H →֒ Λ2V ∗ is its k-
symplectic structure. Both V and ϕ will be naturally defined over Q.
We will interpret Λ2V ∗ as the second cohomology of a complex torus
T well-defined up to isogeny.

2. Let g(H) ⊂ gtot(T ) be the subalgebra generated by the image of H in
Λ2V ∗. Then g(H) ≃ gtot(M). Consider the action of g(H) onH•(T,C).
Let g0(H) ⊂ g(H) be the set of all elements which preserve the grading.
By construction, the embedding ϕ is g0(H)-invariant. Since the Weil
endomorphisms of H2(T,C) and of H belong to g(H), the embedding
ϕ is compatible with the Hodge structure.

3. One can choose V in such a way that the gtot(M)-module Λ•V ∗ contains
H•(M,C) as a submodule. This gives the desired embedding of Hodge
structures.

2.2 F -algebras

Let V be a vector space over an algebraically closed field of characteristic
zero. Let q be a non-degenerate scalar product on V , and S•V the symmetric
algebra. We will identify V and V ∗ via q. Then q can be considered an
element of S2V . Multiplication by qk gives a natural embedding SlV →֒
Sl+2kV . Denote by Rn,k(V ) ⊂ Sn+kV the orthogonal complement to the

image of Sn−kV
·qk→֒ Sn+kV with respect to the non-degenerate symmetric

pairing on Sn+kV induced by q. Let F •

n(V ) be the quotient of S•V by the
ideal generated by

⋃

k Rn,k(V ), with the grading multiplied by two, so that
F 2i
n (V ) is the quotient of SiV .

Definition 2.5: The algebra F •

n(V ) is called the n-th F -algebra of V .
This is an even-graded algebra, with dimF 4n(V ) = 1.

Remark 2.6: By definition, the natural map SiV −→ F 2i
n (V ) is an isomor-

phism for i 6 n. For degree greater than n, one has F 2n+2i
n (V ) ∼= Sn−iV . It

is clear from this description that F 2n+2i
n (V ) is dual to F 2n−2i

n (V ), that is,
F •

n(V ) is a graded Frobenius algebra.

Remark 2.7: It is easy to see (see e. g. [Bo2]) that the F -algebra has the
following description:

F •

n(V ) ∼= S•V

〈xn+1 | x ∈ V, q(x, x) = 0〉 .
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Theorem 2.8: Let F •

n(V ) be the F -algebra of a vector space V , and g the Lie
algebra generated by all sl(2)-triples. Then g is isomorphic to the Lie algebra
g = so(Ṽ ), where Ṽ = V0 ⊕ V2 ⊕ V4 is the Mukai extension of (V, q) defined
as in the Section 3.4. Moreover, F •

n(V ) is an irreducible g-representation
generated by 1 ∈ F 0

n(V ).

Proof: This is just an explicit description of irreducible components of
the symmetric power of the fundamental representation of g = so(Ṽ ); see
[V2] for more details.

3 Clifford modules and the Kuga-Satake con-

struction

3.1 Clifford algebras

We start by fixing some notations involving Clifford algebras. For more
details see [LM]. In this section k will always denote a field of characteristic
zero.

Let H be a finite-dimensional vector space over k and q ∈ S2H∗ a non-
degenerate symmetric bilinear form. Let T •H denote the tensor algebra and
I ⊂ T •H be the two-sided ideal generated by all elements of the form v⊗v−
q(v, v) · 1 for v ∈ H . The Clifford algebra is by definition Cℓ(H, q) = T •H/I.
When H and q are clear from the context, we will denote the Clifford algebra
by C. Recall that C is Z/2Z-graded C = C0 ⊕ C1, and denote by α : C → C
the parity involution. Denote by β : C → Cop the antiautomorphism induced
by v1 ⊗ . . .⊗ vk 7→ vk ⊗ . . .⊗ v1. We will use the notation a = αβ(a).

Recall that we have the canonical embedding H →֒ C. The Clifford group
is by definition G = {a ∈ C× |α(a)Ha−1 = H}. The group G comes with the
natural action on H . Note that any non-isotropic x ∈ H is contained in G.
The action of x on H is by reflection: v 7→ −xvx−1 = v− 2q(x, x)−1q(x, v)x.

For any a ∈ G and v ∈ H we have q(α(a)va−1, α(a)va−1) = (α(a)va−1)2 =
av2a−1 = q(v, v), so the action of G on H is orthogonal, and we get a mor-
phism ρ : G → O(H, q). This morphism is surjective because O(H, q) is
generated by reflections, and they are in the image of ρ. One can check that
the kernel of ρ consists of invertible scalars k× ([LM], Proposition 2.4).

Let Gi = G ∩ Ci. The surjectivity of ρ and the description of its kernel
imply that any element a ∈ G is a product a = x1 · . . . · xn where xi ∈ H
are non-isotropic vectors. It follows that G = G0

∐

G1 and G0 is a normal
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subgroup of index two. Moreover, if we define N(a) = aa then N(a) =
(−1)n

∏n

i=1 q(xi, xi) ∈ k
× and N(a) is called the norm of a. The group

Pin(H, q) is by definition the kernel of N . We have Pin = Pin0∐Pin1 and
by definition Spin(H, q) = Pin0(H, q).

The Lie algebra so(H, q) can be canonically identified with Λ2H and
embedded into C via the map Λ2H → C, x∧ y 7→ 1

2
(xy− yx). This identifies

so(H, q) with the subspace of C spanned by the commutators of elements of
H . The Lie bracket with any element of this subspace preserves H and this
gives the description of the canonical action of so(H, q) on H .

3.2 Invariant forms on C-modules

Consider a Z/2Z-graded C-module V = V 0 ⊕ V 1 with a bilinear form

b : V ⊗ V → k.

Definition 3.1: The bilinear form b is called C-invariant if b(au, v) = b(u, av)
for all a ∈ C and u, v ∈ V .

Remark 3.2: Our convention in this definition differs from what can be
found in the literature by the parity automorphism. It makes no difference
when we consider only the action of C0 on V , but in what follows it is im-
portant to use precisely the above definition.

If b is C-invariant, then for any a ∈ G we have b(au, av) = b(u, aav) =
N(a)b(u, v) = N(a)b(u, v). In particular for a ∈ Pin(H, q) we have N(a) = 1,
and we see that b ∈ (V ∗ ⊗ V ∗)Pin(H,q).

We will now consider C as a left module over itself. There exists a natural
C-invariant symmetric bilinear form on C. For u, v ∈ C let

τ(u, v) = Tr(uv).

Here Tr(a) is the trace of a considered as an endomorphism of C. Note that
the following relations hold: Tr(a) = Tr(α(a)) = Tr(β(a)) = Tr(a); Tr(uv) =
Tr(vu); Tr(a) = 0 for a ∈ C1. This clearly implies that τ(u, v) = τ(v, u).
Moreover, for any a, u, v ∈ C we have τ(au, v) = Tr(auv) = Tr(uva) =
Tr(uav) = τ(u, av), so the form τ is C-invariant. The trace of an odd degree
element is zero, so the form τ is even: τ ∈ S2(C0)∗ ⊕ S2(C1)∗.

Definition 3.3: We will call the form τ described above the invariant trace
form on C.
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Lemma 3.4: Let H be a quadratic vector space, a ∈ H be a non-isotropic
element, H ′ ⊂ H the orthogonal complement of a and C′ = Cℓ(H ′, q). Let τ ′

be the corresponding trace form on C′. Then the Clifford algebra decomposes
into τ -orthogonal direct sum C ≃ C′ ⊕ aC′. We have τ |C′ = 2τ ′ and τ |aC′ =
−2q(a, a)τ ′.

Proof: For u, v ∈ C′ we have τ(au, v) = Tr(auv). The action of auv on
C′⊕aC′ exchanges the summands, so the trace is zero and the decomposition
C ≃ C′ ⊕ aC′ is τ -orthogonal.

Assume that u, v ∈ C′ have the same parity. In this case auv = uva and

the action of uv on C′ ⊕ aC′ is given by the matrix

(

uv 0
0 uv

)

. We have

τ(u, v) = Tr(uv) = 2Tr′(uv) where Tr′ is the trace in C′. If u and v have
different parity, the trace is zero. This proves that τ |C′ = 2τ ′.

Note that τ(au, av) = Tr(auv a) = −q(a, a) Tr(uv). This implies that
τ |aC′ = −2q(a, a)τ ′.

Corollary 3.5: The invariant trace form τ is non-degenerate.

Proof: This follows from the previous lemma and induction on dimH .
For dimH = 1 we have C ≃ k[x]/(x2−d) for some d ∈ k

× and the trace form
is clearly non-degenerate.

3.3 The embedding

Let V be a C-module of dimension 4n with a C-invariant symmetric bilinear
form τ ∈ S2V ∗. Assume that the form τ is non-degenerate. For x ∈ H
and u, v ∈ V let ωx(u, v) = τ(xu, v). Since x = −x, we have ωx(u, v) =
−τ(u, xv) = −ωx(v, u) and so ωx ∈ Λ2V ∗. We get a map

ϕ : H → Λ2V ∗, x 7→ ωx. (3.1)

We will use the parity-twisted action of Pin(H, q) on Λ2V ∗: for ω ∈ Λ2V ∗,
a ∈ Pin(H, q) and u, v ∈ H let (a · ω)(u, v) = ω(a−1u, α(a)−1v).

Lemma 3.6: In the above setting ϕ is a morphism of Pin(H, q)-modules.
For any non-isotropic x ∈ H the form ωx is non-degenerate.
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Proof: For any a ∈ Pin(H, q) we have a = a−1. For any x ∈ H and any
u, v ∈ V we obtain ωα(a)xa−1(u, v) = τ(α(a)xa−1u, v) = τ(xa−1u, α(a)v) =
τ(xa−1u, α(a)−1v) = (a · ωx)(u, v), which proves the first claim.

The second claim follows from non-degeneracy of τ : for any u ∈ V one
can find v ∈ V with τ(u, v) 6= 0. Then ωx(u, xv) = τ(xu, xv) = −τ(u, x2v) =
−q(x, x)τ(u, v) which is non-zero for non-isotropic x.

Denote by W the image of H in Λ2V ∗ under the map ϕ. Consider the
polynomial p ∈ S2nW ∗ given by p(ω) = ω∧2n (here we identify Λ4nV ∗ with
k). Analogously to [SV2, Lemma 3.10] we can prove that W is a k-symplectic
structure.

Lemma 3.7: In the above setting p is proportional to qn. For any isotropic
x ∈ H the form ωx has rank 2n.

Proof: We may assume that the base field is algebraically closed. The
polynomial p is the restriction to W of P ∈ S2n(Λ2V ∗) defined in the
same way: P (ω) = ω∧2n. But P is Spin(H, q)-invariant since the action
of Spin(H, q) on Λ4nV ∗ is trivial (Λ4nV ∗ is one-dimensional). By Lemma 3.6
H is embedded into Λ2V ∗ as a Spin(H, q)-submodule, so p is invariant under
the Spin(H, q)-action on H . This action factors through SO(H, q), so p is
invariant with respect to the special orthogonal group. Classical invariant
theory (see [CP], Theorem 5.6) implies that p is proportional to a power of
the quadratic form q. We can choose the isomorphism Λ4nV ∗ ≃ k so that
p = qn.

Let x ∈ H be isotropic and dim(kerωx) = 2r. Pick a non-isotropic
element y ∈ H such that q(x, y) 6= 0. Consider the polynomial p̃(t) =
p(ωx + tωy). We have p̃(t) = q(x + ty)n, so p̃ must have zero of order n at
t = 0. But

p̃(t) = (ωx+tωy)
∧2n = trω∧(2n−r)

x ∧ω∧r
y +tr+1ω∧(2n−r−1)

x ∧ω∧(r+1)
y +. . .+t2nω∧2n

y ,

and ω
∧(2n−r)
x ∧ ω∧r

y 6= 0. So the order of zero at t = 0 is r, hence r = n.

Let A be the subalgebra in Λ•V ∗ generated by W ⊂ Λ2V ∗. It is clear that
A is a quotient of the symmetric algebra S•H . We would like to describe the
corresponding ideal in S•H .

Proposition 3.8: Assume that k = k. Let A• be the subalgebra in Λ•V ∗

generated by W , where V is a Clifford module over Cℓ(H, q). Then A• is
isomorphic to the F -algebra F •

n(H) (see Definition 2.5), where n = dimk V .

– 11 – version 1.0, Mar. 21, 2017



N. Kurnosov, A. Soldatenkov, M. Verbitsky Kuga-Satake construction and cohomology of HK manifolds

Proof: We will identify H and H∗ via q. The algebra A is a quotient of
S•H , let I be the corresponding ideal. Note that I contains all elements of
the form xn+1 for isotropic x ∈ H , as follows from Lemma 3.7.

Recall the following facts from representation theory of the orthogonal
group O(H, q) (see [How]). The form q defines the trace maps tr : SkH →
Sk−2H whose kernels are called spaces of harmonic polynomials, we will de-
note them by Hk. By definition H1 = H . It is known that Hk are irreducible
O(H, q)-modules. We also have the following decomposition of SkH into
irreducible O(H, q)-modules:

SkH =
⊕

r≥0

qrHk−2r,

where by q we mean the element of S2H , corresponding to the form q under
the isomorphism H ≃ H∗.

Note that for any x ∈ H with q(x, x) = 0 we have tr(xk) = 0, hence
xk ∈ Hk. Since Hk is irreducible, we see that it is spanned by the elements
of the form xk with isotropic x. Also note that in the decomposition of
the tensor product Hk ⊗H1 into irreducible submodules we have two terms
Hk+1 ⊕Hk−1 plus some other components, not isomorphic to Hm (this can
be checked using highest weight theory). So the image of the multiplication
map Hk ⊗H1 → Sk+1H is contained in Hk+1⊕ qHk−1. One can easily check
that the image actually coincides with this direct sum. More generally, for
any k ≥ m the image of the multiplication map Hk ⊗ Hm → Sk+mH is
Hk+m ⊕ qHk+m−2 ⊕ . . .⊕ qmHk−m.

Going back to our algebra A•, note that the ideal I contains Hn+1. Let
us denote by J the ideal generated by Hn+1, then we have J ⊂ I and A
is the quotient of B• = S•V/J . For k ≤ n we have Bk = SkH . From the
description of the multiplicative structure on irreducible components Hm it
is easy to see that Bn+i ≃ qiBn−i for all i ≥ 0. In particular B2n ≃ k.

We claim that multiplication maps Bk ⊗ B2n−k → B2n ≃ k give non-
degenerate pairing on B•. In order to see this, take an element x ∈ qrHk−2r

for some r, so that x = qrξ with ξ ∈ Hk−2r. Multiplication gives us surjective
map Hk−2r ⊗Hk−2r → H2k−4r ⊕ qH2k−4r−2⊕ . . .⊕ qk−2rk. Hence there exists
an element η ∈ Hk−2r, such that ξη = qk−2r. Then for y = qn−k+rη ∈
qn−k+rHk−2r ⊂ B2n−k we have xy = qn. This shows that the pairing is non-
degenerate. In particular, all non-trivial ideals of the algebra B• contain the
element qn which generates B2n.

Note that for the algebra A• the graded component A2n is non-zero, be-
cause (ωx)

∧2n 6= 0 for a non-isotropic x ∈ H . But if A• were a quotient of B•

– 12 – version 1.0, Mar. 21, 2017



N. Kurnosov, A. Soldatenkov, M. Verbitsky Kuga-Satake construction and cohomology of HK manifolds

by some non-trivial ideal, this ideal would contain B2n ≃ k and A2n would
be trivial. We conclude that A is isomorphic to B•.

3.4 Mukai extension

As above, let (H, q) be a quadratic vector space. Let H̃ = k ⊕ H ⊕ k be
the graded vector space with direct summands of degree 0, 2 and 4. Define
the quadratic form q̃ on H̃ : let q̃((a, x, b), (a′, x′, b′)) = q(x, x′) + ab′ + a′b, so
that degree 0 and degree 4 summands make up a hyperbolic plane which is
orthogonal to H , and the restriction of q̃ to H is q. We will refer to (H̃, q̃)
as Mukai extension of (H, q). The Lie algebra g = so(H̃, q̃) has the induced
grading g = g−2 ⊕ g0 ⊕ g2. Its components can be described as follows.

Lemma 3.9: We have g2 ≃ g−2 ≃ H as vector spaces, g0 ≃ k⊕ so(H, q) as
subalgebra (the first summand is the center of g0). The action of g0 on g−2

and g2 is via the standard representation of so(H, q). The Lie bracket of two
elements x ∈ g−2 and y ∈ g2 is given by [x, y] = (q(x, y), x ∧ y) ∈ g0, where
we use the natural isomorphism so(H, q) ≃ Λ2H .

Proof: Any element x ∈ H defines two endomorphisms of H̃ of degree 2
and −2: one is given by (a, z, b) 7→ (0,−ax, q(x, z)), the other by (a, z, b) 7→
(q(x, z),−bx, 0). It is straightforward to check that these endomorphisms
are contained in g. It is also easy to check the stated commutator relations.
Hence we get two embeddings H →֒ g−2 and H →֒ g2. The generator of the
center of g0 acts as (a, z, b) 7→ (−2a, 0, 2b). The embedding so(H, q) →֒ g0
is the obvious one. All these embeddings are isomorphisms for dimension
reasons.

3.5 The Lie algebra action

Recall that for a quadratic vector space (H, q) we denote by C the Clifford
algebra Cℓ(H, q). For any C-module V with a non-degenerate C-invariant
symmetric bilinear form τ ∈ S2V ∗ we have constructed the embedding
ϕ : H → Λ2V ∗ (see 3.1).

We will show that the embedding ϕ induces an action of the Mukai-
extended Lie algebra so(H̃, q̃) on Λ•V ∗ compatible with the grading.

For x ∈ H we will denote its image in Λ2V ∗ by ωx. Consider the endo-
morphisms Lx,Λx ∈ End(Λ•V ∗) given by Lxη = ωx ∧ η, Λxη = ωx y η (to
define the convolution with ωx we identify V and V ∗ via τ). The action of
a ∈ C on V can be extended to a derivation of the algebra Λ•V ∗ which we
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will denote by δa. Denote by Ξ the endomorphism of Λ•V ∗ that acts on the
homogeneous component of degree k as multiplication by k − 1

2
dimV .

Theorem 3.10: The Lie subalgebra of End(Λ•V ∗) generated by Lx, Λx for
all x ∈ H is isomorphic to the orthogonal Lie algebra so(H̃, q̃) of the Mukai
extension H̃ .

Proof: Recall that so(H, q) ≃ Λ2H →֒ C, x ∧ y 7→ 1
2
(xy − yx) is an

isomorphism of so(H, q) and a Lie subalgebra of C spanned by commutators
of elements ofH . Hence the operators δ 1

2
(xy−yx) span a subalgebra isomorphic

to so(H, q). The statement of the theorem now follows from Lemma 3.9 and
Lemma 3.12 by identifying g2 with the subspace spanned by all Lx for x ∈ H ,
g−2 with the subspace spanned by all Λx and the unit element of the center
of g0 with Ξ.

Remark 3.11: In the case k = R and (H, q) the cohomology of a hyperkähler
manifold with BBF form, one can prove the above theorem by checking
that the so(4, 1)-relations hold for any non-degenerate 3-dimensional sub-
space H3 ⊂ H . This subspace is associated with a hypersymplectic structure
which is a complexification of a hyperkähler structure, and satisfies the same
relations.

Lemma 3.12: For any x, y ∈ H we have

[Λx,Ly] = δ 1
2
(xy−yx) + q(x, y)Ξ. (3.2)

Proof: Below we will give an explicit argument, based on computations.
However, these computations are possible to avoid as follows: first, one
checks (3.2) in a 3-symplectic space (this is true and well known because
for 3-symplectic space the algebra generated by Lωi

and Λωj
is known and

described explicitly in Appendix (Remark A.7). Then, one can notice that
it is possible to find a 3-symplectic structure on V containing any generic
x, y ∈ H ⊂ Λ2V ∗, and hence the relation (3.2) is true on a Zariski dense set
of x, y.

We can assume that k = k. Since non-isotropic vectors form a Zariski-
open subset of H , it is enough to prove the identity assuming that x is
non-isotropic. So we fix a pair of elements x, y ∈ H with q(x, x) 6= 0. Note
that for any u ∈ V we have τ(xu, u) = 0, so we can find a basis V =
〈e1, f1, . . . , e2n, f2n〉 where fi = xei and all elements of the basis are pairwise
orthogonal. We can also assume that τ(ei, ei) = 1 and then τ(fi, fi) =
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−q(x, x). In the dual basis ωx = −q(x, x)
∑

e∗i ∧ f ∗
i . Using τ to identify V

and V ∗ we can write ωx =
∑

ei ∧ fi.
Let η ∈ ΛkV ∗ and ξ1, . . . , ξk ∈ V . We have

(ΛxLyη)(ξ1, . . . , ξk) =

2n
∑

p=1

(ωy ∧ η)(ep, fp, ξ1, . . . , ξk) =

2n
∑

p=1

τ(yep, fp)η(ξ1, . . . , ξk) +
2n
∑

p=1

k
∑

i=1

(−1)iτ(yep, ξi)η(fp, . . . , ξ̌i, . . .) +

2n
∑

p=1

k
∑

i=1

(−1)i−1τ(yfp, ξi)η(ep, . . . , ξ̌i, . . .) +

2n
∑

p=1

∑

i<j

(−1)i+j−1τ(yξi, ξj)η(ep, fp, . . . , ξ̌i, . . . , ξ̌j, . . .).

The last term in this formula is equal to (LyΛxη)(ξ1, . . . , ξk). The sum of the
second and third terms is (δxyη)(ξ1, . . . , ξk), where we use that

ξi =
∑

j

(τ(ξi, ej)ej −
1

q(x, x)
τ(ξi, fj)fj).

The sum
∑

p τ(yep, fp) =
∑

p τ(yep, xep) can be rewritten in terms of the
trace of xy acting on V : we have Tr(xy) =

∑

i(e
∗
i (xyei) + f ∗

i (xyfi)) =
∑

i(τ(ei, xyei)− q(x, x)−1τ(fi, xyfi)) = −2
∑

i τ(xei, yei). We have obtained
the following formula:

[Λx,Ly] = δxy − 1
2
Tr(xy)Id.

Using the identity xy = 1
2
(xy−yx)+q(x, y) we see that Tr(xy) = q(x, y) dimV ,

and since δq(x,y)η = kq(x, y)η we have finished the proof.

Corollary 3.13: For any non-isotropic x ∈ H the operators Lx, Ξ and
−q(x, x)−1Λx form an sl2-triple in End(Λ•V ∗).

Proof: The identity [Lx,−q(x, x)−1Λx] = Ξ follows from the lemma. The
identities [Ξ,Lx] = 2Lx and [Ξ,−q(x, x)−1Λ] = −2(−q(x, x)−1Λx) follow from
the fact that Lx is of degree 2 and Λx is of degree −2.

We obtain an action of the Lie algebra so(H̃, q̃) on Λ•V ∗ for any C-module
V with an invariant symmetric bilinear form τ . Consider a pair of such mod-
ules V1, V2 with the forms τ1, τ2 and let ϕi : H → Λ2V ∗

i be two embeddings
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constructed as above. On V = V1⊕V2 we have the form τ1⊕τ2 and it is clear
by construction that ϕ : H → Λ2V ∗ equals the composition of (ϕ1, ϕ2) : H →
Λ2V ∗

1 ⊕Λ2V ∗
2 and the natural embedding Λ2V ∗

1 ⊕Λ2V ∗
2 →֒ Λ2V ∗. This implies

that the natural isomorphism Λ•(V1⊕V2)
∗ ≃ Λ•V ∗

1 ⊗Λ•V ∗
2 is compatible with

the action of so(H̃, q̃).

Theorem 3.14: For any quadratic vector space (H, q) and any represen-
tation W of g = so(H̃, q̃) there exists a Cℓ(H, q)-module V with invariant
symmetric bilinear form τ , such that Λ•V ∗ contains W as a g-submodule.

Proof: Step 1: Assume additionally that the representation W is irre-
ducible. We denote C = Cℓ(H, q). Let V1 denote C as the left C-module
with τ1 the invariant trace form. The action of so(H̃, q̃) on Λ•V ∗

1 induces an
action of the group Spin(H̃, q̃). Let us prove that this action is faithful. The
construction behaves naturally under the base field extensions, so we may
assume that k = k. The Spin-group is connected, and we have to check that
its center acts non-trivially on Λ•V ∗

1 .
The structure of the center of Spin depends on dim(H) modulo 4. If

the dimension is odd, then the only non-trivial element of the center is
−1 ∈ Spin(H̃, q̃) ⊂ Cℓ(H̃, q̃). This element is also contained in Spin(H, q) ⊂
Spin(H̃, q̃) and it clearly acts non-trivially on V ∗

1 ⊂ Λ•V ∗
1 . In the case when

the dimension of H is even, we have to consider one more element of the
center. It can be described as follows. Let H̃ = 〈e1, . . . , e2d, f1, f2〉 be the
orthonormal basis, such that the elements f1 and f2 span the orthogonal com-
plement to H ⊂ H̃. Then the central element is g = e1 . . . e2df1f2. Observe
that g is the product of g1 = e1 . . . e2d ∈ Spin(H, q) and g2 = f1f2 ∈ Spin(U)
where U is the hyperbolic plane. Under the isomorphism Spin(U) ≃ k× the
element g2 corresponds to

√
−1. The action of g1 on P(V ∗

1 ) is non-trivial and
the action of g2 is trivial. Hence the action of g on V ∗

1 is non-trivial.
Since Λ•V ∗

1 is a faithful Spin(H̃, q̃)-module, by [DMOS], Proposition 3.1
(p. 40), any irreducible representation of Spin(H̃, q̃) is contained in (Λ•V ∗

1 )
⊗N

for N big enough. Then we can take V = V ⊕N
1 .

Step 2: Consider the case when W is not necessarily irreducible. We will
prove thatW can still be embedded into (Λ•V ∗

1 )
⊗N ifN is big enough. We use

induction on the number of irreducible components ofW . LetW ≃ W ′⊕W ′′,
where W ′ is irreducible.

Let us denote by L the trivial one-dimensional representation of Spin(H̃, q̃).
There exists k, such that the representation U = (Λ•V ∗

1 )
⊗k contains L, so that

U ≃ U ′ ⊕L for some representation U ′. On the other hand, U ≃ Λ•((V ∗
1 )

⊕k)
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is still a faithful Spin(H̃, q̃)-module by the argument from step 1. This
implies that U ′ is faithful. It follows that for big N ′ the representation
U⊗N ′ ≃ (Λ•V ∗

1 )
⊗kN ′

contains both the irreducible representation W ′ and L.
By induction, we can assume that U⊗N ′′

contains both W ′′ and L, for some
N ′′. Then U⊗N ′ ⊗ U⊗N ′′ ≃ (Λ•V ∗

1 )
⊗k(N ′+N ′′) contains W ′ ⊕W ′′ ≃ W and L.

This completes the induction step.

4 Multidimensional Kuga-Satake construction

4.1 The embedding

Let us apply the results of Section 3 to the cohomology of hyperkähler man-
ifolds. This will give a multidimensional analogue of the Kuga-Satake con-
struction.

Theorem 4.1: Let M be a hyperkähler manifold. There exists an integer
l ≥ 0, a complex torus T , an embedding gtot(M) →֒ gtot(T ) of Lie algebras,
and an embedding Ψ: H•(M,C) →֒ H•+l(T,C) of gtot(M)-modules. For
each complex structure I of hyperkähler type on M there exists a complex
structure on T such that Ψ is a morphism of Hodge structures.

Proof: Let H = H2(M,R) and q be the BBF form (see Definition 1.8).
We know that gtot(M) = so(H̃, q̃) (see Theorem A.10). We apply the con-
struction from Section 3.3 and Theorem 3.14 to the pair (H, q) and to W =
H•(M,R). We obtain a Cℓ(H, q)-module V , an embedding H →֒ Λ2V ∗ (a
k-symplectic structure on V ) and an embedding W →֒ Λ•V ∗ of gtot(M)-
modules. Note that the grading on W and Λ•V ∗ is induced by the action of
gtot(M), so we have a degree l morphism Ψ: H•(M,R) →֒ Λ•+lV ∗ of graded
vector spaces, for some l (the shift of degree is due to the difference of dimen-
sions of M and V ). We define T to be the quotient of V by a lattice. Note
that both V and the morphism Ψ are defined over Q, since the BBF form is
defined over Q, and the constructions from Section 3 behave naturally under
base change.

The Hodge decomposition on H•(M,C) is given by the u(1)-action which
belongs to the Lie algebra so(H, q) ⊂ so(H̃, q̃) (see Section A.2). The corre-
sponding element of so(H, q) is a skew-symmetric matrix µ of rank two. Let
P = 〈e1, e2〉, where e1 = ReΘ, e2 = ImΘ and Θ is a generator of H2,0(M),
normalized so that q(ei, ei) = 1. Then µ = e1e2 ∈ so(H, q) ⊂ Cℓ(H, q). It
acts trivially on the orthogonal complement to the 2-dimensional subspace
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P , and as

(

0 2
−2 0

)

on P . However, on each Clifford module µ acts as a

complex structure, because µ2 = −1 in the Clifford algebra. Therefore, µ
acts as a complex structure on H1(T,R).

The weight decomposition under the etµ-action onH•(M,C) andH•(T,C)
gives the Hodge decomposition on these cohomology spaces, hence Ψ is com-
patible with the Hodge structures.

4.2 Polarization

Like in the classical Kuga-Satake construction, in the case when the hy-
perkähler manifold M admits a polarization, the complex torus T from
Theorem 4.1 admits a polarization too. The proof of this is essentially the
same as in the classical case.

Let HQ = H2(M,Q), H = HQ ⊗ R, h ∈ HQ an ample class and H ′ ⊂ H
the orthogonal complement of h with respect to the BBF form q. Recall from
the proof of Theorem 4.1 that T is a quotient of V = V ⊕N

1 for sufficiently
big N , where V1 ≃ Cℓ(H, q). To prove that T is polarized it is enough to
construct a rational Hermitian form σ ∈ Λ2V ∗

1 . Let C′ = Cℓ(H ′, q|H′). Note
that Cℓ(H, q) ≃ C′ ⊕ hC′ and this induces the decomposition V1 ≃ C′⊕2 of
rational Hodge structures, because the Hodge structure on V1 is defined by a
Weil operator which lies in C′. Hence it is enough to produce a polarization
on C′.

We have reduced the problem to the following: (HQ, q) is a rational
quadratic vector space, q has signature (2, n) for some n and we need to con-
struct a polarization on V = Cℓ(H, q) where H = HQ ⊗ R. Let e1, e2 ∈ HQ

span a two-dimensional subspace in H on which q is positive. Assume that
q(e1, e2) = 0 and denote a = e1e2 ∈ Cℓ(HQ, q). For x, y ∈ Cℓ(H, q) let

σa(x, y) = Tr(xay).

Proposition 4.2: Either σa or −σa defines a polarization on V .

Proof: It is easy to check that σa is skew-symmetric, non-degenerate
and Pin(H, q)-invariant. The complex structure on V is given by an element
µ = e′1e

′
2 ∈ so(H, q) ⊂ Cℓ(H, q), where e′i ∈ H are such that q(e′i, e

′
i) = 1,

q(e′1, e
′
2) = 0. We need to check that σa(x, µx) 6= 0 for x 6= 0, because this

would imply that σa is sign-definite.
Note that we can find an element g ∈ Spin+(H, q) such that µ is propor-

tional to gag−1. Here Spin+(H, q) is the connected component of the identity
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in the Spin-group. The orbit of σa under the action of Spin+(H, q) is con-
nected, and all forms in this orbit are non-degenerate. Hence the form σa is
sign-definite if and only if σµ is. So it is enough to prove that σµ(x, µx) 6= 0
for x 6= 0.

We prove this by induction on dimH . Consider the orthogonal decom-
position H = P ⊕ H ′, where P = 〈e′1, e′2〉. Pick a non-zero element z ∈ H ′

and let H ′′ be the orthogonal complement to z. Let C′′ = Cℓ(H ′′, q|H′′), then
V ≃ C′′⊕zC′′. One can check like in the proof of Lemma 3.4 that σµ|C′′ = 2σ′′

µ

and σµ|zC′′ = −2q(z, z)σ′′
µ, where σ′′

µ is the corresponding form on C′′. Since
q(z, z) < 0, it is enough to prove that σ′′

µ is positive-definite, and so we can
replace H by H ′′. This completes the induction step. It remains to consider
the case when H = P . In this case Cℓ(H, q) is the algebra of 2 × 2 real
matrices. One can check that σµ is positive definite on this algebra by a
straightforward computation.

Remark 4.3: The form σa which we use to define the polarization is not
contained in the image of the embedding ϕ from 3.1.

A Supersymmetry in hyperkähler geometry

We give a summary of results which are used to study the cohomology of a
hyperkähler manifold. We follow [V3] and [V4]; see also [FKS].

A.1 Supersymmetry on Kähler manifolds

Let (M, I, g) be a compact Kähler manifold, ω its Kähler form, and Λ•(M)
its de Rham algebra. On Λ•(M), the following operators are defined:

1. de Rham differential d, its adjoint d∗ and the Laplacian ∆;

2. the Lefschetz operator L(α) = ω ∧ α and its adjoint Λ(α) := ∗L ∗ α;

3. the Weil operator W
∣

∣

∣

Λp,q(M)
=

√
−1 (p− q).

The following theorem is a convenient way to summarize the Kähler re-
lations and the Lefschetz sl(2)-action.
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Theorem A.1: These operators generate a Lie superalgebra a of dimension
(5|4), acting on Λ•(M). Moreover, the Laplacian ∆ is central in a, hence a

also acts on the cohomology of M .

Corollary A.2: The sl(2)-action of 〈L,Λ,Ξ〉 and the action of the Weil
operator W commute with Laplacian, hence preserve the harmonic forms on
a Kähler manifold.

A.2 Supersymmetry on hyperkähler manifolds

Let (M, I, J,K, g) be a hyperkähler manifold, ωI , ωJ , ωK its Kähler forms.
On Λ•(M), the following operators are defined:

1. de Rham differential d, its adjoint d∗ and the Laplacian ∆;

2. The Lefschetz operators

LI(α) = ωI ∧ α, LJ(α) = ωJ ∧ α, LK(α) = ωK ∧ α

and their adjoints

ΛI(α) = ∗LI ∗ α, ΛJ(α) = ∗LJ ∗ α, ΛK(α) = ∗LK ∗ α;

3. The Weil operators WI

∣

∣

∣

Λp,q(M,I)
=

√
−1(p−q), WJ

∣

∣

∣

Λp,q(M,J)
=

√
−1(p−

q), WK

∣

∣

∣

Λp,q(M,K)
=

√
−1 (p− q).

The following result is an analogue of Theorem A.1:

Theorem A.3: These operators generate a Lie superalgebra a of dimension
(11|8), acting on Λ•(M). Moreover, the Laplacian ∆ is central in a, hence a

also acts on the cohomology of M .

Remark A.4: The Weil operators span the Lie algebra su(2) of unitary
quaternions. In fact, one has [LI ,ΛJ ] = WK , [LJ ,ΛK ] = WI , [LI ,ΛK ] =
−WJ ([V0]. This means that the quaternionic action belongs to a. The
twisted de Rham differentials dI , dJ , dK , associated to I, J,K also belong to
a: dI = [WI , d], dJ = [WJ , d], dK = [WK , d].
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Remark A.5: The action of aeven on aodd is the fundamental representation
of sp(1, 1,H) in H2, with the quaternionic Hermitian metric on aodd provided
by the anticommutator. This implies that the odd part

〈d, dI , dJ , dK , d∗, d∗I , d∗J , d∗K〉

generates the 9-dimensional odd Heisenberg algebra, with the only non-trivial
supercommutators being

{d, d∗} = {dI , d∗I} = {dJ , d∗J} = {dK , d∗K} = ∆.

Remark A.6: The even part of a is isomorphic to sp(1, 1,H)⊕ R ·∆. The
natural homomorphism to sp(1, 1,H)⊕R ·∆ is given by the previous remark.
To see that it is an isomorphism we use the dimension count.

Remark A.7: The algebra sp(1, 1,H) is isomorphic to so(4, 1). To construct
this isomorphism, we consider the action of a on the 5-dimensional graded
vector space H• = H0⊕H2⊕H4, with H0 = R, H2 = 〈ωI , ωJ , ωK〉, H4 = R,
defined in the same way as the action of a on the 5-dimensional subspace in
the cohomology of a hyperkähler manifold of real dimension 4.

Remark A.8: A Cartan subalgebra of

so(4, 1) ⊂ a

can be given as 〈Ξ,
√
−1WI〉. The weight decomposition on H•(M) associ-

ated with this Cartan algebra action coincides with the Hodge decomposition.

A.3 Lie algebra generated by all so(4, 1).

The following was observed in [V1] (see also [LL]).

Proposition A.9: Let Lω,Ξ,Λω and Lω′ ,Ξ,Λω′ be two sl(2)-triples on a
hyperkähler manifolds. Then [Λω′ ,Λω] = 0.

Proof: From the Torelli theorem for hyperkähler manifolds (see e. g.
[AV]) it follows that the set of pairs ωI , ωJ associated with the hyperkähler
structures is Zariski dense in the space of all pairs ω1, ω2 ∈ H2(M,R) such
that ω2

1 = ω2
2 > 0 and q(ω1, ω2) = 0. Therefore it suffices to prove this
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relation for ω, ω′ ∈ 〈ωI , ωJ , ωK〉. In this case, the relation [Λω′ ,Λω] = 0
follows from commutation relations in so(4, 1).

From this result, the following structure theorem can be deduced ([V2],
[LL]).

Theorem A.10: The algebra g generated by all so(4, 1) for all hyperkähler
triples on a given hyperkähler manifold M of maximal holonomy is isomor-
phic to so(4, b2(M)− 2).

Proof. Step 1: Consider the action of g on the Mukai extension of
H2(M,R) (see Section 3.4):

H̃ := R · x⊕H2(M,R)⊕ R · y,

where x has degree 0, y has degree 4, H2(M,R) is in degree 2. On H̃ we
have the extended quadratic form q̃. The action of g is determined by the
following properties:

1. It is compatible with the grading;

2. For all α, β ∈ H2(M,R), one has Lαx = α, Lαβ = q(α, β)y, where q is
the BBF form.

3. Λαy = α, Λαβ = q(α, β)x.

To see that this action is well-defined, we need to check that commutator
relations hold. This follows from commutator relations in so(4, 1) and Zariski
density of pairs α, β ∈ 〈ωI , ωJ , ωK〉 in the set of all pairs α, β ∈ H2(M,R).
To obtain that the set of such pairs is Zariski dense, we use Torelli theorem
(see e. g. [AV]).

Step 2: We have constructed a homomorphism g−→ End(H̃). By con-
struction, it preserves the Mukai pairing q̃ ∈ S2(H̃∗). This defines a homo-
morphism Ψ : g−→ so(H̃, q̃) = so(4, b2(M)− 2).

Step 3: Ψ is surjective, because it is surjective on generators, and injec-
tive, because the relations in so(4, b2 − 2) can be obtained from relations in
so(4, 1).
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Remark A.11: It is easy to see that the center of the corresponding Lie
group Spin(4, b2−2) acts as −1 on odd-dimensional cohomology and trivially
on the even-dimensional cohomology (see [V3]).
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